Early Determinants of Adverse Motor Outcomes in Preschool Children with a Critical Congenital Heart Defect
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Outcome Assessment
2.4. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Motor Development at 42 Months
3.3. Motor Development per Diagnosis Group
3.4. Motor Outcomes at 42 Months Related to Early Motor Development
3.5. Predictors for Motor Outcomes at Preschool Age
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Total | TGA | SVP | TOF | AAA | Others | |
---|---|---|---|---|---|---|
n = 147 | n = 72 | n = 27 | n = 25 | n = 15 | n = 8 | |
Type of cardiac surgery | ||||||
Arterial switch | 39 (26.5) | 39 (54.2) | - | - | - | - |
Arterial switch with aortic arch repair | 1 (0.7) | 1 (1.4) | - | - | - | - |
Arterial switch with VSD closure | 20 (13.6) | 20 (27.8) | - | - | - | - |
Arterial switch with aortic arch repair and VSD closure | 4 (2.7) | 4 (5.6) | - | - | - | - |
Norwood | 21(14.3) | - | 21 (77.8) | - | - | - |
AP-shunt | 13 (8.8) | 6 (8.3) | 3 (11.1) | 4 (16.0) | - | - |
PCPC | 1 (0.7) | - | 1 (3.7) | - | - | - |
ToF correction | 21 (14.3) | - | - | 21 (84.0) | - | - |
TAPVC correction | 4 (2.7) | - | - | - | - | 4 (50.0) |
Aortic arch repair | 6 (4.1) | - | - | - | 6 (40.0) | - |
Aortic arch repair with VSD closure | 7 (4.8) | - | - | - | 7 (46.7) | - |
Aortic arch repair with Ross Konno procedure | 1 (0.7) | - | - | - | 1 (6.7) | - |
VSD closure | 2 (1.4) | - | - | - | - | 2 (25.0) |
Ross Konno procedure | 1 (0.7) | - | - | - | - | 1 (12.5) |
DKS procedure and BT shunt | 2 (1.4) | - | 2 (7.4) | - | - | - |
Yasui operation | 1 (0.7) | - | - | - | 1 (6.7) | |
Brom Aortoplasty | 1 (0.7) | - | - | - | - | 1 (12.5) |
Nikaidoh procedure | 1 (0.7) | 1 (1.4) | - | - | - | - |
Other | 1 (0.7) | 1 (1.4) | - | - | - | - |
Appendix B
N = 147 | M-ABC-II Total Motor Development | M-ABC-II Manual Dexterity | M-ABC-II Aiming and Catching | M-ABC-II Ball Skills | ||||
---|---|---|---|---|---|---|---|---|
Spearman’s Rho | p-Value | Spearman’s Rho | p-Value | Spearman’s Rho | p-Value | Spearman’s Rho | p-Value | |
Age at surgery (days) | 0.012 | 0.89 | 0.075 | 0.36 | −0.053 | 0.52 | −0.009 | 0.92 |
CPB time (minutes) | −0.129 | 0.12 | −0.186 | 0.03 | −0.125 | 0.14 | −0.075 | 0.37 |
ACC time (minutes) | −0.094 | 0.27 | −0.115 | 0.18 | −0.170 | 0.045 | −0.041 | 0.63 |
Total mechanical ventilation time (days) | −0.154 | 0.06 | −0.212 | 0.01 | −0.141 | 0.1 | 0.002 | 0.98 |
Gestational age (weeks) | 0.170 | 0.04 | 0.101 | 0.23 | 0.257 | <0.01 | 0.098 | 0.24 |
Apgar-1 | −0.054 | 0.55 | −0.063 | 0.48 | −0.008 | 0.09 | −0.101 | 0.26 |
Apgar-5 | 0.007 | 0.94 | −0.020 | 0.82 | 0.044 | 0.63 | −0.039 | 0.67 |
Apgar-10 | 0.038 | 0.78 | −0.049 | 0.71 | 0.102 | 0.45 | 0.030 | 0.82 |
Birthweight (grams) | 0.066 | 0.43 | 0.036 | 0.67 | 0.056 | 0.50 | 0.101 | 0.23 |
PICU stay pre-operative (days) | 0.066 | 0.43 | −0.038 | 0.65 | 0.047 | 0.57 | 0.177 | 0.03 |
Stay on ward pre-operative (days) | 0.011 | 0.89 | 0.049 | 0.55 | 0.019 | 0.82 | 0.006 | 0.94 |
Pre-operative hospital stay (days) | −0.009 | 0.92 | 0.017 | 0.84 | −0.016 | 0.84 | 0.072 | 0.39 |
PICU stay postoperative (days) | −0.158 | 0.06 | −0.199 | 0.02 | −0.141 | 0.09 | −0.026 | 0.75 |
Stay on ward postoperative (days) | −0.099 | 0.23 | −0.152 | 0.07 | −0.085 | 0.31 | −0.007 | 0.94 |
Postoperative hospital stay (days) | −0.119 | 0.15 | −0.188 | 0.02 | −0.096 | 0.25 | 0.007 | 0.93 |
Total Paediatric Intensive Care Unit (PICU) stay (days) | −0.090 | 0.28 | −0.155 | 0.06 | −0.119 | 0.15 | 0.061 | 0.46 |
Total stay on ward (days) | −0.170 | 0.04 | −0.172 | 0.04 | −0.11 | 0.18 | −0.074 | 0.38 |
Total length of hospital stay (days) | −0.156 | 0.06 | −0.201 | 0.02 | −0.130 | 0.12 | 0.004 | 0.96 |
Number of CCs < 18 months | −0.151 | 0.07 | −0.216 | <0.01 | −0.053 | 0.53 | −0.076 | 0.36 |
Number of cardiac surgeries < 18 months | −0.174 | 0.04 | −0.151 | 0.07 | −0.150 | 0.07 | −0.053 | 0.53 |
Number of CCs < 42 months | −0.069 | 0.14 | −0.203 | 0.01 | −0.041 | 0.62 | −0.069 | 0.41 |
Number of cardiac surgeries < 42 months | −0.207 | 0.01 | −0.180 | 0.03 | −0.157 | 0.06 | −0.083 | 0.32 |
Bayley-III-total motor score 3 months | 0.017 | 0.08 | 0.034 | 0.72 | 0.249 | <0.01 | 0.158 | 0.09 |
Bayley-III-FMSS 3 months | 0.010 | 0.28 | 0.011 | 0.91 | 0.196 | 0.04 | 0.104 | 0.27 |
Bayley-III-GMSS 3 months | 0.012 | 0.19 | 0.030 | 0.76 | 0.189 | 0.04 | 0.101 | 0.29 |
Bayley-III-total motor score 9 months | 0.247 | <0.01 | 0.230 | 0.01 | 0.188 | 0.03 | 0.184 | 0.03 |
Bayley-III-FMSS 9 months | 0.198 | 0.02 | 0.205 | 0.02 | 0.183 | 0.03 | 0.091 | 0.29 |
Bayley-III-GMSS 9 months | 0.218 | 0.01 | 0.188 | 0.03 | 0.154 | 0.073 | 0.192 | 0.03 |
Bayley-III-total motor score 18 months | 0.439 | <0.001 | 0.411 | <0.001 | 0.222 | <0.01 | 0.383 | <0.001 |
Bayley-III-FMSS 18 months | 0.366 | <0.001 | 0.363 | <0.001 | 0.218 | 0.01 | 0.251 | <0.01 |
Bayley-III-GMSS 18 months | 0.358 | <0.001 | 0.331 | <0.001 | 0.161 | 0.056 | 0.346 | <0.001 |
Appendix C
n = 147 | M-ABC-II Total Motor Development | M-ABC-II Manual Dexterity | M-ABC-II Aiming and Catching | M-ABC-II Ball Skills | ||||
---|---|---|---|---|---|---|---|---|
Chi-Square (df) | p-Value (2-Sided) | Chi-Square (df) | p-Value (2-Sided) | Chi-Square (df) | p-Value (2-Sided) | Chi-Square (df) | p-Value (2-Sided) | |
Gender | 0.47 (b) | 0.12 (b) | 0.68 (b) | 0.20 (b) | ||||
Cardiac diagnosis | 0.29 (b) | 0.08 (b) | 0.63 (b) | 0.53 (b) | ||||
Antenatal diagnosis (yes/no) | 0.88 (b) | 0.74 (b) | 0.83 (b) | 0.53 (b) | ||||
Type of delivery | 0.89 (b) | 0.58 (b) | 0.57 (b) | 0.31 (b) | ||||
BAS (yes/no) | 0.41 (b) | 0.38 (b) | 0.33 (b) | 0.80 (b) | ||||
Secondary sternum closure (yes/no) | 0.37 (b) | 0.02 (b) | 0.50 (b) | 0.06 (b) | ||||
Need for mechanical ventilation support pre-operative (yes/no) | 1.568 (2) | 0.46 (a) | 0.19 (b) | 4.467 (2) | 0.12 (a) | 0.38 (b) | ||
Low Cardiac Output Syndrome (LCOS) postoperative (yes/no) | 0.07 (b) | 0.30 (b) | 0.11 (b) | 0.21 (b) | ||||
ECLS (yes/no) | 0.47 (b) | 0.41 (b) | 0.19 (b) | 1.00 (b) |
References
- Liu, Y.; Chen, S.; Zu, L.; Black, G.C.; Choy, M.; Li, N.; Keavney, B.D. Global Birth Prevalence of Congenital Heart Defects 1970–2017: Updated Systematic Review and Meta-Analysis of 260 Studies. Int. J. Epidemiol. 2019, 48, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Oster, M.E.; Lee, K.A.; Honein, M.A.; Riehle-Colarusso, T.; Shin, M.; Correa, A. Temporal Trends in Survival Among Infants with Critical Congenital Heart Defects. Pediatrics 2013, 131, e1502–e1508. [Google Scholar] [CrossRef] [PubMed]
- Mahle, W.T.; Newburger, J.W.; Matherne, G.P.; Smith, F.C.; Hoke, T.R.; Koppel, R.; Gidding, S.S.; Beekman, R.H.; Grosse, S.D. Role of Pulse Oximetry in Examining Newborns for Congenital Heart Disease: A Scientific Statement from the AHA and AAP. Pediatrics 2009, 124, 823–836. [Google Scholar] [CrossRef]
- Khairy, P.; Ionescu-Ittu, R.; MacKie, A.S.; Abrahamowicz, M.; Pilote, L.; Marelli, A.J. Changing Mortality in Congenital Heart Disease. J. Am. Coll. Cardiol. 2010, 56, 1149–1157. [Google Scholar] [CrossRef]
- Hövels-Gürich, H.H. Factors Influencing Neurodevelopment after Cardiac Surgery during Infancy. Front. Pediatr. 2016, 4, 137. [Google Scholar] [CrossRef] [PubMed]
- Wernovsky, G.; Licht, D.J. Neurodevelopmental Outcomes in Children with Congenital Heart Disease-What Can We Impact? Pediatr. Crit. Care Med. 2016, 17, S232–S242. [Google Scholar] [CrossRef]
- Peyvandi, S.; Latal, B.; Miller, S.P.; McQuillen, P.S. The Neonatal Brain in Critical Congenital Heart Disease: Insights and Future Directions. Neuroimage 2019, 185, 776–782. [Google Scholar] [CrossRef]
- Morton, P.D.; Ishibashi, N.; Jonas, R.A. Neurodevelopmental Abnormalities and Congenital Heart Disease: Insights into Altered Brain Maturation. Circ. Res. 2017, 120, 960–977. [Google Scholar] [CrossRef]
- Mussatto, K.A.; Hoffmann, R.; Hoffman, G.; Tweddell, J.S.; Bear, L.; Cao, Y.; Tanem, J.; Brosig, C. Risk Factors for Abnormal Developmental Trajectories in Young Children with Congenital Heart Disease. Circulation 2015, 132, 755–761. [Google Scholar] [CrossRef]
- Huisenga, D.; La Bastide-Van Gemert, S.; Van Bergen, A.; Sweeney, J.; Hadders-Algra, M. Developmental Outcomes after Early Surgery for Complex Congenital Heart Disease: A Systematic Review and Meta-Analysis. Dev. Med. Child Neurol. 2020, 1–18. [Google Scholar] [CrossRef]
- Latal, B. Neurodevelopmental Outcomes of the Child with Congenital Heart Disease. Clin. Perinatol. 2016, 43, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Sprong, M.C.A.; Broeders, W.; van der Net, J.; Breur, J.M.P.J.; de Vries, L.S.; Slieker, M.G.; van Brussel, M. Motor Developmental Delay After Cardiac Surgery in Children with a Critical Congenital Heart Defect: A Systematic Literature Review and Meta-Analysis. Pediatric Phys. Ther. 2021, 33, 186–197. [Google Scholar] [CrossRef] [PubMed]
- Naef, N.; Wehrle, F.; Rousson, V.; Latal, B. Cohort and Individual Neurodevelopmental Stability between 1 and 6 Years of Age in Children with Congenital Heart Disease. J. Pediatr. 2019, 215, 83–89. [Google Scholar] [CrossRef]
- Brosig, C.L.; Bear, L.; Allen, S.; Simpson, P.; Zhang, L.; Frommelt, M.; Mussatto, K.A. Neurodevelopmental Outcomes at 2 and 4 Years in Children with Congenital Heart Disease. Congenit. Heart Dis. 2018, 13, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Brosig, C.L.; Bear, L.; Allen, S.; Hoffmann, R.G.; Pan, A.; Frommelt, M.; Mussatto, K.A. Preschool Neurodevelopmental Outcomes in Children with Congenital Heart Disease. J. Pediatr. 2017, 183, 80–86.e1. [Google Scholar] [CrossRef] [PubMed]
- Sprong, M.C.A.; van Brussel, M.; de Vries, L.S.; van der Net, J.; Nijman, J.; Breur, J.M.P.J.; Slieker, M.G. Longitudinal Motor-Developmental Outcomes in Infants with a Critical Congenital Heart Defect. Children 2022, 9, 570. [Google Scholar] [CrossRef]
- Gaynor, J.W.; Stopp, C.; Wypij, D.; Andropoulos, D.B.; Atallah, J. Neurodevelopmental Outcomes After Cardiac Surgery in Infancy. Pediatrics 2015, 135, 816–825. [Google Scholar] [CrossRef]
- Cheung, P.-Y.; Hajihosseini, M.; Dinu, I.A.; Switzer, H.; Joffe, A.R.; Bond, G.Y.; Robertson, C.M.T. Outcomes of Preterm Infants with Congenital Heart Defects After Early Surgery: Defining Risk Factors at Different Time Points During Hospitalization. Front. Pediatr. 2021, 8, 616659. [Google Scholar] [CrossRef]
- Smits-Engelsman, B.C.M.; Niemeijer, A.S.; van Waelvelde, H. Is the Movement Assessment Battery for Children-2nd Edition a Reliable Instrument to Measure Motor Performance in 3 Year Old Children? Res. Dev. Disabil. 2011, 32, 1370–1377. [Google Scholar] [CrossRef]
- Rasbash, K.; Steele, F.; Browne, W.J.; Goldstein, H. A User’s Guide to MLwiN v2.33; University of Bristol: Bristol, UK, 2015. [Google Scholar]
- Acton, B.V.; Biggs, W.S.G.; Creighton, D.E.; Penner, K.A.H.; Switzer, H.N.; Thomas, J.H.P.; Joffe, A.R.; Robertson, C.M.T. Overestimating Neurodevelopment Using the Bayley-III after Early Complex Cardiac Surgery. Pediatrics 2011, 128, e794–e800. [Google Scholar] [CrossRef]
- Claessens, N.H.P.; Breur, J.M.P.J.; Groenendaal, F.; Wosten-van Asperen, R.M.; Stegeman, R.; Haas, F.; Dudink, J.; de Vries, L.S.; Jansen, N.J.G.; Benders, M.J.N.L. Brain Microstructural Development in Neonates with Critical Congenital Heart Disease: An Atlas-Based Diffusion Tensor Imaging Study. NeuroImage Clin. 2019, 21, 101672. [Google Scholar] [CrossRef] [PubMed]
- Mebius, M.J.; Kooi, E.M.W.; Bilardo, C.M.; Bos, A.F. Brain Injury and Neurodevelopmental Outcome in Congenital Heart Disease: A Systematic Review. Pediatrics 2017, 140, e20164055. [Google Scholar] [CrossRef] [PubMed]
- McQuillen, P.S.; Barkovich, A.J.; Hamrick, S.E.G.; Perez, M.; Ward, P.; Glidden, D.V.; Azakie, A.; Karl, T.; Miller, S.P. Temporal and Anatomic Risk Profile of Brain Injury with Neonatal Repair of Congenital Heart Defects. Stroke 2007, 38, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Sanz, J.H.; Berl, M.M.; Armour, A.C.; Wang, J.; Cheng, Y.I.; Donofrio, M.T. Prevalence and Pattern of Executive Dysfunction in School Age Children with Congenital Heart Disease. Congenit. Heart Dis. 2017, 12, 202–209. [Google Scholar] [CrossRef]
- Stegeman, R.; Feldmann, M.; Claessens, N.H.P.; Jansen, N.J.G.; Breur, J.M.P.J.; de Vries, L.S.; Logeswaran, T.; Reich, B.; Knirsch, W.; Kottke, R.; et al. A Uniform Description of Perioperative Brain MRI Findings in Infants with Severe Congenital Heart Disease: Results of a European Collaboration. Am. J. Neuroradiol. 2021, 42, 2034–2039. [Google Scholar] [CrossRef] [PubMed]
- Algra, S.O.; Jansen, N.J.G.; Van Der Tweel, I.; Schouten, A.N.J.; Groenendaal, F.; Toet, M.; Van Oeveren, W.; Van Haastert, I.C.; Schoof, P.H.; De Vries, L.S.; et al. Neurological Injury after Neonatal Cardiac Surgery: A Randomized, Controlled Trial of 2 Perfusion Techniques. Circulation 2014, 129, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Beca, J.; Gunn, J.K.; Coleman, L.; Hope, A.; Reed, P.W.; Hunt, R.W.; Finucane, K.; Brizard, C.; Dance, B.; Shekerdemian, L.S. New White Matter Brain Injury after Infant Heart Surgery Is Associated with Diagnostic Group and the Use of Circulatory Arrest. Circulation 2013, 127, 971–979. [Google Scholar] [CrossRef]
- Dulac, O.; Lassonde, M.; Sarnat, H.B. Pediatric Neurology. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Sterken, C.; Lemiere, J.; Van Den Berghe, G.; Mesotten, D. Neurocognitive Development after Pediatric Heart Surgery. Pediatrics 2016, 137, 1–9. [Google Scholar] [CrossRef]
- Diamond, A. Executive Functions. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Van Der Fels, I.M.J.; Smith, J.; De Bruijn, A.G.M.; Bosker, R.J.; Königs, M.; Oosterlaan, J.; Visscher, C.; Hartman, E. Relations between Gross Motor Skills and Executive Functions, Controlling for the Role of Information Processing and Lapses of Attention in 8-10 Year Old Children. PLoS ONE 2019, 14, e0224219. [Google Scholar] [CrossRef]
- Bjarnason-Wehrens, B.; Schmitz, S.; Dordel, S. Motor Development in Children with Congenital Cardiac Diseases. Eur. Cardiol. Rev. 2008, 4, 92. [Google Scholar] [CrossRef]
- Gunn, J.K.; Beca, J.; Hunt, R.W.; Goldsworthy, M.; Brizard, C.P.; Finucane, K.; Donath, S.; Shekerdemian, L.S. Perioperative Risk Factors for Impaired Neurodevelopment after Cardiac Surgery in Early Infancy. Arch. Dis. Child. 2016, 101, 1010–1016. [Google Scholar] [CrossRef] [PubMed]
- Gaynor, J.W.; Stopp, C.; Wypij, D.; Andropoulos, D.B.; Atallah, J.; Atz, A.M.; Beca, J.; Donofrio, M.T.; Duncan, K.; Ghanayem, N.S.; et al. Impact of Operative and Postoperative Factors on Neurodevelopmental Outcomes After Cardiac Operations. Ann. Thorac. Surg. 2016, 102, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Reich, B.; Heye, K.; Tuura, R.; Beck, I.; Wetterling, K.; Hahn, A.; Hofmann, K.; Schranz, D.; Akintürk, H.; Latal, B.; et al. Neurodevelopmental Outcome and Health-Related Quality of Life in Children with Single-Ventricle Heart Disease Before Fontan Procedure. Semin. Thorac. Cardiovasc. Surg. 2017, 29, 504–513. [Google Scholar] [CrossRef]
- Hamrick, S.E.G.; Gremmels, D.B.; Keet, C.A.; Leonard, C.H.; Connell, J.K.; Hawgood, S.; Piecuch, R.E.; Objectives, A. Membrane Oxygenation After Cardiac Surgery. Pediatrics 2003, 111, 671–675. [Google Scholar] [CrossRef] [PubMed]
- King-Dowling, S.; Proudfoot, N.A.; Cairney, J.; Timmons, B.W. Motor Competence, Physical Activity, and Fitness across Early Childhood. Med. Sci. Sport. Exerc. 2020, 52, 2342–2348. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.Y.; Dudley, D.A.; Cairney, J. Physical Literacy Profiles Are Associated with Differences in Children’s Physical Activity Participation: A Latent Profile Analysis Approach. J. Sci. Med. Sport 2020, 23, 1062–1067. [Google Scholar] [CrossRef]
- Whitehead, M. Physical Literacy across the World, 1st ed.; Routledge: Milton, MA, USA, 2019. [Google Scholar] [CrossRef]
Total n = 147 | TGA n = 72 | SVP n = 27 | TOF n = 25 | AAA n = 15 | Others n = 8 | |
---|---|---|---|---|---|---|
Male | 92 (63) | 50 (69) | 13 (48) | 14 (56) | 11 (73) | 4 (50) |
Birth weight, grams * | 3450 ± 560 | 3559 ± 516 | 3345 ± 474 | 3154 ± 595 | 3547 ± 762 | 3582 ± 364 |
Gestational age, weeks * | 39.5 ± 1.4 | 39.6 ± 1.4 | 39.2 ± 1.2 | 39.0 ± 1.5 | 39.9 ± 1.3 | 40.1 ± 0.7 |
Apgar score 5 min | 9 (8–10) | 8 (8–9) | 8.5 (7.5–9) | 9 (8.5–9) | 10 (10–10) | 9 (8.5–9.5) |
8.8 ± 1.0 | ||||||
Type of delivery | ||||||
Spontaneous vaginal | 62 (42) | 35 (49) | 6 (22) | 11 (44) | 5 (33) | 5 (63) |
Induced vaginal | 36 (25) | 18 (25) | 11 (41) | 6 (24) | 1 (7) | 0 (0) |
Cesarean Section | 33 (20) | 15 (21) | 7 (26) | 3 (12) | 6 (40) | 2 (25) |
Unknown | 16 (11) | 4 (5) | 3 (11) | 5 (20) | 3 (20) | 1 (12) |
Prenatal diagnosis | 98 (67) | 48 (67) | 24 (88) | 16 (64) | 9 (60) | 1(12) |
Balloon Atrioseptostomy (BAS) | 48 (33) | 44 (61) | 3(11) | 0 (0) | 1 (7) | 0 (0) |
Age at surgery (days) | 10 (7–23) | 9 (7–10) | 7 (5.5–8.0) | 65 (28–94) | 9.5 (8–11) | 68 (35–71) |
25.7 ± 36.0 | ||||||
Intubated pre-operative | 75 (51) | 51 (71) | 10 (37) | 2 (8) | 6 (40) | 6 (75) |
Total mechanical ventilation time (days) | 4.3 (2.2–8.0) | 4.3 (3.0–7.4) | 7.9 (3.8–15.4) | 0.9 (0.2–3.0) | 4.5 (3.0–10.5) | 3.8 (2.0–16.3) |
6.8 ± 10.2 | ||||||
Deep Hypothermic Cardiac Arrest (DHCA) | 36 (24) | 4 (6) | 17 (63) | 0 | 15 (100) | 0 |
Antegrade Cerebral Perfusion (ACP) | 30 (20) | 4 (6) | 15 (56) | 0 | 11 (73) | 0 |
Aortic cross clamp (ACC) time (minutes) | 79 (61–97) | 94 (79–105) | 74 (60–88) | 65 (28–71) | 88 (80–96) | 76 (61–102) |
78.9 ± 39.0 | ||||||
Cardio pulmonary bypass (CPB) time * (minutes) | 134 ± 50.0 | 145 ± 44.1 | 133 ± 59.5 | 94 ± 25.3 | 165 ± 45.2 | 107 ± 53.1 |
Low Cardiac Output Syndrome (LCOS) postoperative | 30 (20) | 16 (22.2) | 13 (48.1) | 0 | 1 (6.7) | 0 |
Need for Extra Corporeal Life Support (ECLS) | 2 (1) | 0 | 2 (7.4) | 0 | 0 | 0 |
Total length of hospital stay (days) | 19 (15–27) | 18 (16–20) | 118 (36–127) | 27 (13–37) | 19 (17–21) | 24 (18–37) |
29.5 ± 32.6 | ||||||
Postoperative hospital stay (days) | 11 (8–16.5) | 9 (7–12) | 113 (31–120) | 12 (8–22) | 10 (9–10) | 15 (13–33) |
22.3 ± 32.9 | ||||||
Total Pediatric Intensive Care Unit (PICU) stay (days) | 9 (6–13) | 10 (7–13) | 16 (14–26) | 7 (4–11) | 6 (4–8) | 8 (7–20) |
12.5 ± 15.1 | ||||||
PICU stay pre-operative (days) | 3 (1–5) | 4 (2–7) | 5 (2–6) | 1 (0–4) | 1 (0–2) | 1 (1–2) |
3.4 ± 3.3 | ||||||
PICU stay postoperative (days) | 5 (3–8) | 5 (3–6) | 13 (8–24) | 6 (3–9) | 5 (4–6) | 7 (6–19) |
9.0 ± 14.5 | ||||||
Total stay on ward (days) | 10 (7–16) | 8 (5–11) | 89 (23–103) | 18 (9–24) | 13 (13–13) | 18 (11–19) |
17.1 ± 24.6 | ||||||
Stay on ward pre-operative (days) | 3 (0–7) | 3 (0–5) | 0 (0–2) | 9 (6–13) | 9 (8–9) | 0 (0–4) |
3.78 ± 4.0 | ||||||
Stay on ward postoperative (days) | 6 (4–9) | 5 (3–6) | 89 (21–99) | 6 (4–10) | 5 (4–5) | 11 (7–15) |
13.3 ± 25 | ||||||
Number of cardiac surgeries | 1 (1–2) | 1(1–1) | 2(2–2) | 1 (1–2) | 1(1–1) | 1 (1–2.5) |
≤18 months | 1.33 ± 0.55 | 1.13 ± 0.33 | 1.96 ± 0.34 | 1.28 ± 0.54 | 1.27 ± 0.59 | 1.38 ± 1.06 |
1 operation | 103 (70) | 63 (88) | 2 (7) | 19 (76) | 12 (80) | 7 (88) |
2 operations | 40 (27) | 9 (12) | 24 (89) | 5 (20) | 2 (13) | 0 (0) |
3 operations | 3 (2) | 0 (0) | 1 (4) | 1 (4) | 1 (7) | 0 (0) |
4 operations | 1(1) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (12) |
Number of cardiac catheterization’s (CCs) | 1 (0–1) | 1 (0–1) | 2 (1.5–3) | 0 (0–2) | 0.5 (0–1) | 1 (0.5–2) |
≤18 months | 0.95 ± 1.15 | 0.67 ± 0.53 | 2.41 ± 1.45 | 0.56 ± 1.16 | 0.53 ± 0.74 | 0.63 ± 1.06 |
Number of cardiac surgeries | 1 (1–2) | 1(1–1) | 3(3–3) | 1 (1–2) | 1.5(1–2) | 1 (1–2.5) |
≤42 months | 1.5 ± 0.80 | 1.13 ± 0.33 | 2.78 ± 0.43 | 1.28 ± 0.54 | 1.47 ± 0.83 | 1.38 ± 1.06 |
1 operation | 99 (67) | 63 (88) | 0 | 19 (76) | 10 (67) | 7 (88) |
2 operations | 24 (16) | 9 (12) | 6 (22.2) | 5 (20) | 4 (27) | 0 (0) |
3 operations | 22 (15) | 0 (0) | 21(77.8) | 1 (4) | 0 (0) | 0 (0) |
4 operations | 2 (1) | 0 (0) | 0 | 0 (0) | 1 (7) | 1 (12) |
Number of CCs | 1 (0–1) | 1 (0–1) | 4 (2.5–4) | 0.5 (0–2) | 0.5 (0–1) | 1 (0.5–2) |
≤42 months | 1.18 ± 1.47 | 0.69 ± 0.57 | 3.37 ± 1.71 | 0.68 ± 1.25 | 0.67 ± 0.98 | 0.7 ± 1.04 |
Movement ABC-II-NL Percentile Scores | Total | TGA | SVP | TOF | AAA | Others | p Value |
---|---|---|---|---|---|---|---|
42 months | n = 147 | n = 72 | n = 27 | n = 25 | n = 15 | n = 8 | |
Total motor score | 9.5 ± 3.14 | 10.1 ± 3.18 | 8.5 ± 2.50 | 10.0 ± 3.39 | 7.9 ± 3.31 | 9.0 ± 2.27 | 0.041 * |
>P16 | 107 (72.8) | 53 (73.6) | 19 (70.4) | 20 (80.0) | 9 (60.0) | 6 (75.0) | |
>P5≤P16 | 27 (18.4) | 16 (22.2) | 5 (18.5) | 2 (8.0) | 3 (20.0) | 1 (12.5) | |
≤P5 | 13 (8.8) | 3 (4.2) | 3 (11.1) | 3 (12.0) | 3 (20.0) | 1 (12.5) | |
Domain standard scores | |||||||
Manual dexterity | 9.7 ± 3.09 | 10.1 ± 3.06 | 8.9 ± 3.06 | 10.4 ± 2.63 | 8.1 ± 3.75 | 9.1 ± 2.23 | 0.053 |
>P16 | 113 (76.9) | 57 (79.2) | 19 (70.4) | 21 (84.0) | 10 (66.7) | 6 (75.0) | |
>P5≤P16 | 25 (17) | 13 (18.1) | 5 (18.5) | 4 (16.0) | 1 (6.7) | 2 (25.0) | |
≤P5 | 9 (6.1) | 2 (2.8) | 3 (11.1) | 0 (0.0) | 4 (26.7) | 0 (0.0) | |
Aiming and catching | 9.4 ± 2.68 | 9.7 ± 2.52 | 9.2 ± 2.59 | 9.0 ± 3.55 | 9.1 ± 2.17 | 9.4 ± 2.56 | 0.73 |
>P16 | 115 (78.2) | 58 (80.6) | 21 (77.8) | 16 (64.0) | 13 (86.7) | 7 (87.5) | |
>P5≤P16 | 19 (12.9) | 10 (13.9) | 4 (14.8) | 4 (16.0) | 1 (6.7) | 0 (0.0) | |
≤P5 | 13 (8.8) | 4 (5.6) | 2 (7.4) | 5 (20.0) | 1 (6.7) | 1 (12.5) | |
Balance | 9.7 ± 3.30 | 10.2 ± 3.6 | 8.9 ± 2.09 | 10.0 ± 3.66 | 8.5 ± 3.11 | 9.3 ± 2.25 | 0.39 |
>P16 | 113 (76.9) | 56 (77.8) | 2 (81.5) | 19 (76.0) | 9 (60.0) | 7 (87.5) | |
>P5≤P16 | 26 (17.7) | 13 (18.1) | 3 (11.1) | 5 (20.0) | 4 (26.7) | 1 (12.5) | |
≤P5 | 8 (5.4) | 3 (4.2) | 2 (7.4) | 1 (4.0) | 2 (13.3) | 0 (0.0) | |
42 months vs. 18 months | n = 140 | n = 69 | n = 25 | n = 24 | n = 14 | n = 8 | |
Motor score deteriorated | 31 (22.1) | 15 (21.7) | 5 (20.0) | 5 (13.5) | 5 (35.7) | 1 (12.5) | |
Motor score improved | 5 (3.6) | 2 (2.9) | 3 (12) | 0 (.0) | 0 (0.0) | 0 (0.0) | |
Motor score equal | 104 (74.3) | 52 (75.4) | 17 (68) | 19 (2.2) | 9(64.3) | 7 (87.5) |
Model | Estimate (S.E) | Level 2 Variance | Level 1 Variance | Log Likelihood (χ2) | p-Value Model |
---|---|---|---|---|---|
Empty model intercept | −0.047 (0.051) | 0.224 (0.046) | 0.570 (0.041) | 1354.943 | |
Final model intercept | −4.671 (1.003) | ||||
+Gestational age | 0.040 (0.025) | 1326.902 | <0.001 | ||
+CPB time (min) | −0.0432 (0.080) | 1301.536 | <0.001 | ||
+Cross clamp time (hours) | −0.009 (0.108) | 1232.105 | <0.001 | ||
+Number CCs up to 18 months | −0.032 (0.036) | 1223.814 | 0.004 | ||
+Bayley-III-NL GMSS 9 months | 0.052 (0.013) | 1100.542 | <0.001 | ||
+Bayley-III-NL FMSS 9 months | 0.076 (0.022) | 1089.136 | <0.001 | ||
+Bayley-III-NL GMSS 18 months | 0.085 (0.012) | 1007.887 | <0.001 | ||
+Bayley-III-NL FMSS 18 months | 0.097 (0.019) | 0.000 (0.000) | 0.470 (0.031) | 978.763 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sprong, M.C.A.; Huijgen, B.C.H.; de Vries, L.S.; Talacua, H.; van Loon, K.; Eijsermans, R.M.J.C.; Nijman, J.; Breur, J.M.P.J.; van Brussel, M.; Slieker, M.G. Early Determinants of Adverse Motor Outcomes in Preschool Children with a Critical Congenital Heart Defect. J. Clin. Med. 2022, 11, 5464. https://doi.org/10.3390/jcm11185464
Sprong MCA, Huijgen BCH, de Vries LS, Talacua H, van Loon K, Eijsermans RMJC, Nijman J, Breur JMPJ, van Brussel M, Slieker MG. Early Determinants of Adverse Motor Outcomes in Preschool Children with a Critical Congenital Heart Defect. Journal of Clinical Medicine. 2022; 11(18):5464. https://doi.org/10.3390/jcm11185464
Chicago/Turabian StyleSprong, Maaike C. A., Barbara C. H. Huijgen, Linda S. de Vries, Hanna Talacua, Kim van Loon, Rian M. J. C. Eijsermans, Joppe Nijman, Johannes M. P. J. Breur, Marco van Brussel, and Martijn G. Slieker. 2022. "Early Determinants of Adverse Motor Outcomes in Preschool Children with a Critical Congenital Heart Defect" Journal of Clinical Medicine 11, no. 18: 5464. https://doi.org/10.3390/jcm11185464
APA StyleSprong, M. C. A., Huijgen, B. C. H., de Vries, L. S., Talacua, H., van Loon, K., Eijsermans, R. M. J. C., Nijman, J., Breur, J. M. P. J., van Brussel, M., & Slieker, M. G. (2022). Early Determinants of Adverse Motor Outcomes in Preschool Children with a Critical Congenital Heart Defect. Journal of Clinical Medicine, 11(18), 5464. https://doi.org/10.3390/jcm11185464