N-Terminal of the Prohormone Brain Natriuretic Peptide Predicts Postoperative Cardiogenic Shock Requiring Extracorporeal Membrane Oxygenation
Abstract
:1. Introduction
2. Methods
3. Statistical Analysis
4. Results
5. Discussion
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nashef, S.A.; Roques, F.; Sharples, L.D.; Nilsson, J.; Smith, C.; Goldstone, A.R.; Lockowandt, U. EuroSCORE II. Eur. J. Cardiothorac. Surg. 2012, 41, 734–744. [Google Scholar] [CrossRef] [PubMed]
- Duchnowski, P.; Hryniewiecki, T.; Kuśmierczyk, M.; Szymański, P. Performance of the EuroSCORE II and the Society of Thoracic Surgeons score in patients undergoing aortic valve replacement for aortic stenosis. J. Thorac. Dis. 2019, 11, 2076–2081. [Google Scholar] [CrossRef] [PubMed]
- Jeger, R.V.; Radovanovic, D.; Hunziker, P.R.; Pfisterer, M.E.; Stauffer, J.C.; Erne, P.; Urban, P. Ten-year trends in the incidence and treatment of cardiogenic shock. Ann. Intern. Med. 2008, 149, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Eugène, M.; Duchnowski, P.; Prendergast, B.; Wendler, O.; Laroche, C.; Monin, J.L.; Jobic, Y.; Popescu, B.A.; Bax, J.J.; Vahanian, A.; et al. Contemporary Management of Severe Symptomatic Aortic Stenosis. J. Am. Coll Cardiol. 2021, 78, 2131–2143. [Google Scholar] [CrossRef]
- Bowels, C.; Hiesinger, W. Postcardiotomy shock extracorporeal membrane oxygenation: Peripheral or central? JTCVS Open. 2021, 8, 66–69. [Google Scholar] [CrossRef]
- Arendarczyk, A.; Wilimski, R.; Michniewicz Czub, P.; Hendzel, P. Recommendations for the clinical application of ECMO in adults. Folia. Cardiol. 2017, 12, 113–117. [Google Scholar] [CrossRef]
- Van Diepen, S.; Graham, M.; Nagendran, J.; Norris, C.M. Predicting cardiovascular intensive care unit readmission after cardiac surgery: Derivation and validation of the Alberta Provincial Project for Outcomes Assessment in Coronary Heart Disease (APPROACH) cardiovascular intensive care unit clinical prediction model from a registry cohort of 10,799 surgical cases. Crit. Care 2014, 18, 651. [Google Scholar]
- Redfors, B.; Angeras, O.; Ramunddal, T.; Dworeck, C.; Haraldsson, I.; Ioanes, D.; Petursson, P.; Libungan, B.; Odenstedt, J.; Stewart, J.; et al. 17-year trends in incidence and prognosis of cardiogenic shock in patients with acute myocardial infarction in western Sweden. Int. J. Cardiol. 2015, 185, 256–262. [Google Scholar] [CrossRef]
- Siddiqui, M.; Paras, I.; Jalal, A. Risk factors of prolonged mechanical ventilation following open heart surgery: What has changed over the last decade? Cardiovasc. Diagn. Ther. 2012, 2, 192–199. [Google Scholar]
- Nardi, P.; Vacirca, S.R.; Russo, M.; Colella, D.F.; Bassano, C.; Scafuri, A.; Pellegrino, A.; Melino, G.; Ruvolo, G. Cold crystalloid versus warm blood cardioplegia in patients undergoing aortic valve replacement. J. Thorac. Dis. 2018, 10, 1490–1499. [Google Scholar] [CrossRef]
- Roberts, E.; Ludman, A.J.; Dworzynski, K.; Al-Mohammad, A.; Cowie, M.R.; McMurray, J.J.; Mant, J. The diagnostic accuracy of the natriuretic peptides in heart failure: Systematic review and diagnostic meta-analysis in the acute care setting. BMJ 2015, 350, h910. [Google Scholar] [CrossRef] [PubMed]
- Maisel, A.; Mueller, C.; Adams, K.; Anker, S.D.; Aspromonte, N.; Cleland, J.G.; Cohen-Solal, A.; Dahlstrom, U.; DeMaria, A.; Di Somma, S.; et al. State of the art: Using natriuretic peptide levels in clinical practice. Eur. J. Heart Fail. 2008, 10, 824–839. [Google Scholar] [CrossRef] [PubMed]
- Sezai, A.; Shiono, M. Natriuretic peptides for perioperative management of cardiac surgery. J. Cardiol. 2016, 67, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Arnold, R.; Rau, M.; Brandt, R.; Berkovitsch, A.; Mitrovic, V.; Hamm, C. Relation of N-terminal pro-B-type natriuretic peptide to severity of valvular aortic stenosis. Am. J. Cardiol. 2004, 94, 740–745. [Google Scholar] [CrossRef]
- Jiang, H.; Vánky, F.; Hultkvist, H.; Holm, J.; Yang, Y.; Svedjeholm, R. NT-proBNP and postoperative heart failure in surgery for aortic stenosis. Open Heart 2019, 6, e001063. [Google Scholar] [CrossRef] [PubMed]
- Zaphiriou, A.; Robb, S.; Murray-Thomas, T.; Mendez, G.; Fox, K.; McDonagh, T.; Hardman, S.M.; Dargie, H.J.; Cowie, M.R. The diagnostic accuracy of plasma BNP and NTproBNP in patients referred from primary care with suspected heart failure: Results of the UK natriuretic peptide study. Eur. J. Heart Fail. 2005, 7, 537–541. [Google Scholar] [CrossRef]
- Yamamoto, K.; Burnett, J.C.; Bermudez, E.A.; Jougasaki, M.; Bailey, K.R.; Redfield, M.M. Clinical criteria and biochemical markers for the detection of systolic dysfunction. J. Card. Fail. 2000, 6, 194–200. [Google Scholar] [CrossRef]
- Krishnaswamy, P.; Lubien, E.; Clopton, P.; Koon, J.; Kazanegra, R.; Wanner, E.; Gardetto, N.; Garcia, A.; DeMaria, A.; Maisel, A.S. Utility of B-natriuretic peptide levels in identifying patients with left ventricular systolic or diastolic dysfunction. Am. J. Med. 2001, 111, 274–279. [Google Scholar] [CrossRef]
- Lorgis, L.; Cottin, Y.; Danchin, N.; Mock, L.; Sicard, P.; Buffel, P.; L’huillier, I.; Richard, C.; Beer, J.C.; Touzery, C.; et al. Impact of obesity on the prognostic value of the N-terminal pro-B-type natriuretic peptide (NT-proBNP) in patients with acute myocardial infarction. Heart 2011, 97, 551–556. [Google Scholar] [CrossRef]
- Endicott, K.M.; Amdur, R.L.; Greenberg, M.D.; Trachiotis, G.D. B-type Natriuretic Peptide Predicts Morbidity and Long-Term Mortality in Coronary Artery Bypass Grafting and Valve Surgery. Innovations 2016, 11, 439–443. [Google Scholar] [CrossRef]
- Cui, Y.; Qu, J.; Liang, H.; Li, Z. Relationship between perioperative N-terminal pro-brain natriuretic peptide and maximum inotropic score in children after cardiac surgery. J. Thorac. Cardiovasc. Surg. 2018, 155, 2619–2621. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.; Dashey, S.; Zlocha, V.; Hanna Jumma, S. The successful use of extra-corporeal membrane oxygenation as rescue therapy for unilateral pulmonary edema following minimally invasive mitral valve surgery. Perfusion 2019, 35, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Maybauer, M.O.; El Banayosy, A.; Hooker, R.L.; Vanhooser, D.W.; Harper, M.D.; Mihu, M.R.; Swant, L.V.; Horstmanshof, D.A.; Koerner, M.M. Percutaneous venoarterial extracorporeal membrane oxygenation as a bridge to double valve implantation in acute biventricular heart failure with profound cardiogenic shock. J. Card. Surg. 2019, 34, 1664–1666. [Google Scholar] [CrossRef] [PubMed]
- Passos Silva, M.; Caeiro, D.; Neves, F.; Braga, P. Acute Prosthetic Aortic Valve Obstruction Leading to Free Aortic Insufficiency Veno-Arterial Extracorporeal Membrane Oxygenation as a bridge to surgery. Rev. Port. Cir. Cardiotorac. Vasc. 2019, 26, 143–145. [Google Scholar] [PubMed]
- Unai, S.; Khullar, V.; Elgharably, H.; Navia, J.L. ECMO as a Bridge to Reoperative Cardiac Surgery in a Patient with Cardiogenic Shock and Severe Aortic Insufficiency Due to an Acute Aortic Valve Homograft Failure. Heart Surg. Forum. 2019, 22, E281–E282. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar]
- Krichevskiy, L.A.; Kozlov, I.A. Natriuretic Peptides in Cardiac Anesthesia and Intensive Care. J. Cardiothorac. Vasc. Anesth. 2019, 33, 1407–1419. [Google Scholar] [CrossRef]
- Weidemann, F.; Hermann, S.; Stork, S.; Niemann, M.; Frantz, S.; Lange, V.; Beer, M.; Gattenlöhner, S.; Voelker, W.; Ertl, G.; et al. Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation 2009, 120, 577–584. [Google Scholar] [CrossRef]
- Chin, C.; Shah, A.S.; McAllister, D.; Cowell, S.; Alam, S.; Langrish, J.P.; Strachan, F.E.; Hunter, A.L.; Maria Choy, A.; Lang, C.C.; et al. High-sensitivity troponin I concentrations are a marker of an advanced hypertrophic response and adverse outcomes in patients with aortic stenosis. Eur. Heart J. 2014, 35, 2312–2321. [Google Scholar] [CrossRef]
Preoperative Characteristics of Patients (n = 610) | Values All Patients | Values Patients with ECMO (n = 15) | Values Patients without ECMO (n = 595) | p-Value |
---|---|---|---|---|
Age, years * | 63 ± 12 | 63 ± 11 | 65 ± 12 | Ns |
Male: men, n (%) | 351 (57%) | 8 (53%) | 343 (57%) | Ns |
Body mass index, kg/m2 * | 28 ± 8 | 26 ± 6 | 27 ± 8 | Ns |
EuroSCORE II, % * | 3.5 ± 3.1 | 3.9 ± 3.5 | 3.5 ± 3.0 | 0.04 |
NYHA, (classes) * | 2.5 ± 0.5 | 3 ± 0.5 | 2.5 ± 0.6 | 0.03 |
LV ejection fraction, % * | 57 ± 12 | 55 ± 12 | 60 ± 12 | 0.04 |
TAPSE, mm * | 22 ± 8 | 21 ± 7 | 22 ± 7 | Ns |
RVSP, mmHg * | 44 ± 17 | 48 ± 17 | 40 ± 16 | 0.04 |
Atrial fibrillation, n (%) | 266 (43%) | 6 (40%) | 260 (43%) | Ns |
Diabetes mellitus, n (%) | 113 (18%) | 3 (20%) | 110 (18%) | Ns |
NT-proBNP, pg/mL * | 2003 ± 1532 | 7053 ± 3532 | 1875 ± 1430 | 0.002 |
Hs-TnT, ng/L * | 34 ± 28 | 91 ± 58 | 28 ± 15 | 0.009 |
Creatinine, mg/dL * | 0.9 ± 0.5 | 1.4 ± 0.7 | 0.8 ± 5 | 0.02 |
Hemoglobin, g/dL * | 13.6 ± 1.5 | 13.3 ± 1.3 | 13.8 ± 1.4 | 0.04 |
Red cell distribution width, % * | 14.2 ± 1.7 | 15.1 ± 1.7 | 13.8 ± 1.6 | 0.009 |
Intraoperavite and postoperative characteristics of patients: | ||||
AVR, n (%) | 313 (51%) | 7 (46%) | 306 (51%) | Ns |
AVP, n (%) | 17 (3%) | Ns | 17 (3%) | Ns |
MVR, n (%) | 112 (18%) | 3 (20%) | 109 (18%) | Ns |
MVR + AVR, n (%) | 53 (9%) | 2 (13%) | 51 (8%) | 0.04 |
MVP, n (%) | 115 (19%) | 3 (20%) | 112 (18%) | Ns |
Additional procedureCABG, n (%) | 90 (14%) | 2 (13%) | 88 (15%) | Ns |
Aortic cross-clamp time, min * | 101 ± 32 | 122 ± 39 | 98 ± 30 | 0.01 |
Cardiopulmonary bypass time, min * | 125 ± 55 | 143 ± 61 | 118 ± 43 | 0.03 |
Postoperative major blending, n (%) | 47 (8%) | 4 (26%) | 43 (7%) | 0.009 |
Variable | Odds Ratio | 95% CI | p-Value |
---|---|---|---|
Hemoglobin, g/dL | 0.763 | 0.625–0.967 | 0.02 |
NT-proBNP, pg/mL | 1.020 | 1.009–1.036 | 0.001 |
RDW, % | 1.327 | 1.083–1.626 | 0.006 |
Cardiopulmonary bypass time, min * | 1.048 | 0.986–1.114 | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duchnowski, P. N-Terminal of the Prohormone Brain Natriuretic Peptide Predicts Postoperative Cardiogenic Shock Requiring Extracorporeal Membrane Oxygenation. J. Clin. Med. 2022, 11, 5493. https://doi.org/10.3390/jcm11195493
Duchnowski P. N-Terminal of the Prohormone Brain Natriuretic Peptide Predicts Postoperative Cardiogenic Shock Requiring Extracorporeal Membrane Oxygenation. Journal of Clinical Medicine. 2022; 11(19):5493. https://doi.org/10.3390/jcm11195493
Chicago/Turabian StyleDuchnowski, Piotr. 2022. "N-Terminal of the Prohormone Brain Natriuretic Peptide Predicts Postoperative Cardiogenic Shock Requiring Extracorporeal Membrane Oxygenation" Journal of Clinical Medicine 11, no. 19: 5493. https://doi.org/10.3390/jcm11195493
APA StyleDuchnowski, P. (2022). N-Terminal of the Prohormone Brain Natriuretic Peptide Predicts Postoperative Cardiogenic Shock Requiring Extracorporeal Membrane Oxygenation. Journal of Clinical Medicine, 11(19), 5493. https://doi.org/10.3390/jcm11195493