Variability of Isavuconazole Trough Concentrations during Longitudinal Therapeutic Drug Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Collection
2.2. Therapeutic Drug Monitoring of ISA
2.3. Treatment Response and Adverse Effects
2.4. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. Variability of ISA Concentrations
3.3. Determinants of the ISA Cmin
3.4. Clinical Outcomes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALAT | alanine aminotransferase |
ALP | alkaline phosphatase |
ASAT | aspartate aminotransferase |
Cmin | trough concentrations |
CRP | C-reactive protein |
CV | coefficient of variation |
CYP | cytochrome P450 |
GGT | gamma glutamyltransferase |
ISA | isavuconazole |
LDH | lactate dehydrogenase |
TDM | Therapeutic drug monitoring |
References
- Maertens, J.A.; Raad, I.I.; Marr, K.A.; Patterson, T.F.; Kontoyiannis, D.P.; Cornely, O.A.; Bow, E.J.; Rahav, G.; Neofytos, D.; Aoun, M.; et al. Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): A phase 3, randomised-controlled, non-inferiority trial. Lancet 2016, 387, 760–769. [Google Scholar] [CrossRef]
- Schmitt-Hoffmann, A.; Desai, A.; Kowalski, D.; Pearlman, H.; Yamazaki, T.; Townsend, R. Isavuconazole absorption following oral administration in healthy subjects is comparable to intravenous dosing, and is not affected by food, or drugs that alter stomach pH. Int. J. Clin. Pharmacol. Ther. 2016, 54, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Schmitt-Hoffmann, A.; Roos, B.; Maares, J.; Heep, M.; Spickerman, J.; Weidekamm, E.; Brown, T.; Roehrle, M. Multiple-Dose Pharmacokinetics and Safety of the New Antifungal Triazole BAL4815 after Intravenous Infusion and Oral Administration of Its Prodrug, BAL8557, in Healthy Volunteers. Antimicrob. Agents Chemother. 2006, 50, 286–293. [Google Scholar] [CrossRef]
- Jović, Z.; Janković, S.M.; Ružić Zečević, D.; Milovanović, D.; Stefanović, S.; Folić, M.; Milovanović, J.; Kostić, M. Clinical Pharmacokinetics of Second-Generation Triazoles for the Treatment of Invasive Aspergillosis and Candidiasis. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 139–157. [Google Scholar] [CrossRef] [PubMed]
- Ullmann, A.J.; Aguado, J.M.; Arikan-Akdagli, S.; Denning, D.W.; Groll, A.H.; Lagrou, K.; Lass-Flörl, C.; Lewis, R.E.; Munoz, P.; Verweij, P.E.; et al. Diagnosis and management of Aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. 2018, 24 (Suppl. S1), e1–e38. [Google Scholar] [CrossRef]
- Tissot, F.; Agrawal, S.; Pagano, L.; Petrikkos, G.; Groll, A.H.; Skiada, A.; Lass-Flörl, C.; Calandra, T.; Viscoli, C.; Herbrecht, R. ECIL-6 guidelines for the treatment of invasive candidiasis, aspergillosis and mucormycosis in leukemia and hematopoietic stem cell transplant patients. Haematologica 2016, 102, 433–444. [Google Scholar] [CrossRef]
- Kaindl, T.; Andes, D.; Engelhardt, M.; Saulay, M.; Larger, P.; Groll, A.H. Variability and exposure–response relationships of isavuconazole plasma concentrations in the Phase 3 SECURE trial of patients with invasive mould diseases. J. Antimicrob. Chemother. 2018, 74, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Clancy, C.J.; Rivosecchi, R.M.; Zhao, W.; Shields, R.K.; Marini, R.V.; Venkataramanan, R.; Nguyen, M.H. Pharmacokinetics of Intravenous Isavuconazole in Solid-Organ Transplant Recipients. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef]
- Furfaro, E.; Signori, A.; Di Grazia, C.; Dominietto, A.; Raiola, A.M.; Aquino, S.; Ghiggi, C.; Ghiso, A.; Ungaro, R.; Angelucci, E.; et al. Serial monitoring of isavuconazole blood levels during prolonged antifungal therapy. J. Antimicrob. Chemother. 2019, 74, 2341–2346. [Google Scholar] [CrossRef]
- Kosmidis, C.; Otu, A.; Moore, C.B.; Richardson, M.D.; Rautemaa-Richardson, R. Isavuconazole Therapeutic Drug Monitoring during Long-Term Treatment for Chronic Pulmonary Aspergillosis. Antimicrob. Agents Chemother. 2020, 65. [Google Scholar] [CrossRef]
- Andes, D.; Kovanda, L.; Desai, A.; Kitt, T.; Zhao, M.; Walsh, T.J. Isavuconazole Concentration in Real-World Practice: Consistency with Results from Clinical Trials. Antimicrob. Agents Chemother. 2018, 62, e00585-18. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.; Kovanda, L.; Kowalski, D.; Lu, Q.; Townsend, R.; Bonate, P.L. Population Pharmacokinetics of Isavuconazole from Phase 1 and Phase 3 (SECURE) Trials in Adults and Target Attainment in Patients with Invasive Infections Due to Aspergillus and Other Filamentous Fungi. Antimicrob. Agents Chemother. 2016, 60, 5483–5491. [Google Scholar] [CrossRef] [PubMed]
- Townsend, R.; Dietz, A.; Hale, C.; Akhtar, S.; Kowalski, D.; Lademacher, C.; Lasseter, K.; Pearlman, H.; Rammelsberg, D.; Schmitt-Hoffmann, A.; et al. Pharmacokinetic Evaluation of CYP3A4-Mediated Drug-Drug Interactions of Isavuconazole With Rifampin, Ketoconazole, Midazolam, and Ethinyl Estradiol/Norethindrone in Healthy Adults. Clin. Pharmacol. Drug Dev. 2016, 6, 44–53. [Google Scholar] [CrossRef]
- Naito, T.; Yamada, T.; Mino, Y.; Kawakami, J. Impact of inflammation and concomitant glucocorticoid administration on plasma concentration of triazole antifungals in immunocompromised patients. Clin. Chim. Acta 2015, 441, 127–132. [Google Scholar] [CrossRef]
- Veringa, A.; Ter Avest, M.; Span, L.; Heuvel, E.R.V.D.; Touw, D.J.; Zijlstra, J.G.; Kosterink, J.G.W.; van der Werf, T.; Alffenaar, J.-W.C. Voriconazole metabolism is influenced by severe inflammation: A prospective study. J. Antimicrob. Chemother. 2016, 72, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Gautier-Veyret, E.; Thiebaut-Bertrand, A.; Roustit, M.; Bolcato, L.; Depeisses, J.; Schacherer, M.; Schummer, G.; Fonrose, X.; Stanke-Labesque, F. Optimization of voriconazole therapy for treatment of invasive aspergillosis: Pharmacogenomics and inflammatory status need to be evaluated. Br. J. Clin. Pharmacol. 2020, 87, 2534–2541. [Google Scholar] [CrossRef] [PubMed]
- Bolcato, L.; Khouri, C.; Veringa, A.; Alffenaar, J.; Yamada, T.; Naito, T.; Lamoureux, F.; Fonrose, X.; Stanke-Labesque, F.; Gautier-Veyret, E. Combined Impact of Inflammation and Pharmacogenomic Variants on Voriconazole Trough Concentrations: A Meta-Analysis of Individual Data. J. Clin. Med. 2021, 10, 2089. [Google Scholar] [CrossRef] [PubMed]
- Jourdil, J.F.; Tonini, J.; Stanke-Labesque, F. Simultaneous quantitation of azole antifungals, antibiotics, imatinib, and raltegravir in human plasma by two-dimensional high-performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 919–920, 1–9. [Google Scholar] [CrossRef]
- Willeman, T.; Tonini, J.; Garnaud, C.; Bailly, S.; Gandia, P.; Stanke-Labesque, F.; Maubon, D.; Gautier-Veyret, E. Refining the therapeutic range of posaconazole and isavuconazole for efficient therapeutic drug monitoring using a bioassay approach. Fundam. Clin. Pharmacol. 2019, 34, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Segal, B.H.; Herbrecht, R.; Stevens, D.A.; Ostrosky-Zeichner, L.; Sobel, J.; Viscoli, C.; Walsh, T.J.; Maertens, J.; Patterson, T.F.; Perfect, J.R.; et al. Defining Responses to Therapy and Study Outcomes in Clinical Trials of Invasive Fungal Diseases: Mycoses Study Group and European Organization for Research and Treatment of Cancer Consensus Criteria. Clin. Infect. Dis. 2008, 47, 674–683. [Google Scholar] [CrossRef]
- The Jamovi Project. jamovi (Version 1.6) [Computer Software]. 2021. Available online: https://www.jamovi.org (accessed on 8 August 2022).
- Risum, M.; Vestergaard, M.-B.; Weinreich, U.; Helleberg, M.; Vissing, N.; Jørgensen, R. Therapeutic Drug Monitoring of Isavuconazole: Serum Concentration Variability and Success Rates for Reaching Target in Comparison with Voriconazole. Antibiotics 2021, 10, 487. [Google Scholar] [CrossRef] [PubMed]
- Borman, A.; Hughes, J.M.; Oliver, D.; Fraser, M.; Sunderland, J.; Noel, A.R.; Johnson, E.M. Lessons from isavuconazole therapeutic drug monitoring at a United Kingdom Reference Center. Med Mycol. 2020, 58. [Google Scholar] [CrossRef] [PubMed]
- Gautier-Veyret, E.; Fonrose, X.; Tonini, J.; Thiebaut-Bertrand, A.; Bartoli, M.; Quesada, J.-L.; Bulabois, C.-E.; Cahn, J.-Y.; Stanke-Labesque, F. Variability of Voriconazole Plasma Concentrations after Allogeneic Hematopoietic Stem Cell Transplantation: Impact of Cytochrome P450 Polymorphisms and Comedications on Initial and Subsequent Trough Levels. Antimicrob. Agents Chemother. 2015, 59, 2305–2314. [Google Scholar] [CrossRef] [PubMed]
- Gautier-Veyret, E.; Bolcato, L.; Roustit, M.; Weiss, S.; Tonini, J.; Brenier-Pinchart, M.-P.; Cornet, M.; Thiebaut-Bertrand, A.; Stanke-Labesque, F. Treatment by Posaconazole Tablets, Compared to Posaconazole Suspension, Does Not Reduce Variability of Posaconazole Trough Concentrations. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef]
- Huang, H.; Xie, H.; Chaphekar, N.; Xu, R.; Venkataramanan, R.; Wu, X. A Physiologically Based Pharmacokinetic Analysis To Predict the Pharmacokinetics of Intravenous Isavuconazole in Patients with or without Hepatic Impairment. Antimicrob. Agents Chemother. 2021, 65. [Google Scholar] [CrossRef]
- Schmitt-Hoffmann, A.; Roos, B.; Spickermann, J.; Heep, M.; Peterfaí, E.; Edwards, D.J.; Stoeckel, K. Effect of mild and moderate liver disease on the pharmacokinetics of isavuconazole after intravenous and oral administration of a single dose of the prodrug BAL8557. Antimicrob. Agents Chemother. 2009, 53, 4885–4890. [Google Scholar] [CrossRef] [PubMed]
- Stanke-Labesque, F.; Gautier-Veyret, E.; Chhun, S.; Guilhaumou, R.; French Society of Pharmacology and Therapeutics. Inflammation is a major regulator of drug metabolizing enzymes and transporters: Consequences for the personalization of drug treatment. Pharmacol. Ther. 2020, 215, 107627. [Google Scholar] [CrossRef]
- Schießer, S.; Hitzenbichler, F.; Kees, M.G.; Kratzer, A.; Lubnow, M.; Salzberger, B.; Kees, F.; Dorn, C. Measurement of Free Plasma Concentrations of Beta-Lactam Antibiotics: An Applicability Study in Intensive Care Unit Patients. Ther. Drug Monit. 2020, 43, 264–270. [Google Scholar] [CrossRef]
- Jager, N.G.L.; Van Hest, R.M.; Xie, J.; Wong, G.; Ulldemolins, M.; Brüggemann, R.J.M.; Lipman, J.; A Roberts, J. Optimization of flucloxacillin dosing regimens in critically ill patients using population pharmacokinetic modelling of total and unbound concentrations. J. Antimicrob. Chemother. 2020, 75, 2641–2649. [Google Scholar] [CrossRef]
Parameter | Value a |
---|---|
Characteristic | |
Demographics | |
Age, years | 60 [7–63] |
Male | 21 (63.6) |
Weight, kg/m2 | 61.6 [53.8–77.3] |
Underlying disease | |
Hematological malignancy | 27 (81.8) |
Solid organ transplant | 4 (12.1) |
Others b | 2 (6.1) |
Biological variables | |
C-reactive protein (mg/L) | 6.5 [4.0–28.3] |
Aspartate aminotransferase (U/L) | 29 [21–45] |
Alanine aminotransferase (U/L) | 45.5 [26–81] |
Gamma glutamyltransferase (U/L) | 264 [110–586] |
Alkaline phosphatase (U/L) | 143 [95.8–286] |
Total bilirubin (µmol/L) | 8.0 [5.0–11.0] |
Creatinine (µmol/L) | 78 [62–96] |
Lactate dehydrogenase (U/L) | 226 [182–279] |
Protein (g/L) | 62 [57–68] |
Albumin (g/L) | 35 [31–39] |
About ISA treatment | |
ISA indication | |
Curative treatment | |
Invasive aspergillosis | 29 c (87.9) |
Mucormycosis | 4 c (9.1) |
Prophylactic treatment | 1 (3.0) |
Treatment line | |
First line | 14 (42.4) |
Second line | 16 (48.5) |
Third line | 3 (9.1) |
Daily ISA maintenance dose (mg/day) | 200 [200–200] |
Route of administration | |
Oral | 277 (91.1) |
Intravenous | 27 (8.9) |
Duration of treatment (days) | 95 [14–160] |
ISA Cmin (mg/L) | 2.8 [2.0–3.7] |
Number of ISA Cmin measurement per patient | 7 [2–16] |
Number of dose adjustment per patient | 0 [0–1] |
Covariate | Available Data (%) | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|---|
Estimate ± SE | p-Value a | Estimate ± SE | p-Value a | ||
Sex (Male/Female) | 100 | 0.178 ± 0.110 | 0.119 | 0.297 ± 0.193 | 0.137 |
Age (years) | 100 | 0.002 ± 0.004 | 0.607 | ||
Weight (kg) | 81.9 | 0.008 ± 0.003 | 0.031 | −0.001 ± 0.005 | 0.781 |
Daily dose (mg/day) | 100 | 0.002 ± 3.53 × 10−4 | <0.001 | 0.004 ± 3.56 × 10−4 | <0.001 |
Route of administration (oral/IV) | 100 | 0.035 ± 0.097 | 0.721 | ||
Treatment duration (days) | 100 | 2.60 × 10−4 ± 3.32 × 10−4 | 0.434 | ||
ASAT (U/L) | 93.4 | 0.001 ± 5.21 × 10−4 | 0.006 | 0.002 ± 5.41 × 10−4 | 0.002 |
ALAT (U/L) | 96.1 | 4.56 × 10−4 ± 2.08 × 10−4 | 0.030 | ||
GGT (U/L) | 96.1 | −5.79 × 10−6 ± 5.08 × 10−5 | 0.909 | ||
ALP (U/L) | 96.1 | −1.65 × 10−5 ± 1.69 × 10−4 | 0.922 | ||
Total bilirubin (µmol/L) | 96.1 | −0.002 ± 0.002 | 0.426 | ||
Creatinine (µmol/L) | 98.7 | 1.80 × 10−4 ± 7.50 × 10−4 | 0.811 | ||
CRP (mg/L) | 93.4 | −6.47 × 10−4 ± 5.64 × 10−4 | 0.252 | ||
Protein (g/L) | 98.4 | 0.014 ± 0.003 | <0.001 | 0.022 ± 0.004 | <0.001 |
Albumin (g/L) | 73.4 | 0.012 ± 0.005 | 0.011 | ||
LDH (U/L) | 85.2 | 5.63 × 10−4 ± 3.60 × 10−4 | 0.120 |
Covariate | Available Data (%) | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|---|
Estimate ± SE | p-Value a | Estimate ± SE | p-Value a | ||
Sex (Male/Female) | 100 | 0.246 ± 0.154 | 0.120 | 0.321 ± 0.228 | 0.176 |
Age (years) | 100 | 0.007 ± 0.006 | 0.238 | ||
Weight (kg) | 81.9 | −0.001 ± 0.005 | 0.764 | ||
Route of administration (oral/IV) | 100 | 0.045 ± 0.103 | 0.665 | ||
Treatment duration (days) | 100 | 0.001 ± 3.31 × 10−4 | <0.001 | 7.29 × 10−4 ± 4.35 × 10−4 | 0.095 |
ASAT (U/L) | 93.4 | 0.001 ± 5.07 × 10−4 | <0.001 | 0.002 ± 5.97 × 10−4 | 0.001 |
ALAT (U/L) | 96.1 | 6.38 × 10−4 ± 2.03 × 10−4 | 0.002 | ||
GGT (U/L) | 96.1 | 1.23 × 10−4 ± 5.22 × 10−5 | 0.019 | ||
ALP (U/L) | 96.1 | 2.99 × 10−4 ± 1.76 × 10−4 | 0.092 | ||
Total bilirubin (µmol/L) | 96.1 | −0.004 ± 0.003 | 0.181 | ||
Creatinine (µmol/L) | 98.7 | −0.001 ± 7.91 × 10−4 | 0.187 | ||
CRP (mg/L) | 93.4 | −0.001 ± 5.54 × 10−4 | 0.070 | 2.84 × 10−4 ± 7.06 × 10−4 | 0.688 |
Protein (g/L) | 98.4 | 0.018 ± 0.004 | <0.001 | ||
Albumin (g/L) | 73.4 | 0.027 ± 0.004 | <0.001 | 0.025 ± 0.006 | <0.001 |
LDH (U/L) | 85.2 | 1.26 × 10−4 ± 3.58 × 10−4 | 0.726 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolcato, L.; Thiebaut-Bertrand, A.; Stanke-Labesque, F.; Gautier-Veyret, E. Variability of Isavuconazole Trough Concentrations during Longitudinal Therapeutic Drug Monitoring. J. Clin. Med. 2022, 11, 5756. https://doi.org/10.3390/jcm11195756
Bolcato L, Thiebaut-Bertrand A, Stanke-Labesque F, Gautier-Veyret E. Variability of Isavuconazole Trough Concentrations during Longitudinal Therapeutic Drug Monitoring. Journal of Clinical Medicine. 2022; 11(19):5756. https://doi.org/10.3390/jcm11195756
Chicago/Turabian StyleBolcato, Léa, Anne Thiebaut-Bertrand, Françoise Stanke-Labesque, and Elodie Gautier-Veyret. 2022. "Variability of Isavuconazole Trough Concentrations during Longitudinal Therapeutic Drug Monitoring" Journal of Clinical Medicine 11, no. 19: 5756. https://doi.org/10.3390/jcm11195756
APA StyleBolcato, L., Thiebaut-Bertrand, A., Stanke-Labesque, F., & Gautier-Veyret, E. (2022). Variability of Isavuconazole Trough Concentrations during Longitudinal Therapeutic Drug Monitoring. Journal of Clinical Medicine, 11(19), 5756. https://doi.org/10.3390/jcm11195756