A Bibliometric and Visual Analysis of Exercise Intervention Publications for Alzheimer’s Disease (1998–2021)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Search Strategies
2.2. Bibliometric Analysis
3. Results
3.1. Publication Output Analysis
3.2. Source Analysis of Periodicals
3.3. Highly Cited Literature Analysis
3.4. Analysis of Main Countries/Regions and Institutions
3.5. Analysis of Main Authors
3.6. Thematic Focus and Evolution Trend of the Exercise Field of AD
3.6.1. Keyword Analysis
3.6.2. Theme Evolution
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations. World Population Prospects 2019: Highlights (ST/ESA/SER.A/423); United Nations: New York, NY, USA, 2019. [Google Scholar]
- Taudorf, L.; Nørgaard, A.; Waldemar, G.; Laursen, T.M. Mortality in Dementia from 1996 to 2015: A National Registry-Based Cohort Study. J. Alzheimers Dis. 2021, 79, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Cummings, J.; Lee, G.; Zhong, K.; Fonseca, J.; Taghva, K. Alzheimer’s Disease Drug Development Pipeline: 2021. Alzheimers Dement. Transl. Res. Clin. Interv. 2021, 7, e12179. [Google Scholar] [CrossRef] [PubMed]
- Alzheimer’s Association. 2020 Alzheimer’s Disease Facts and Figures. Alzheimers Dement. 2020, 16, 391–460. [Google Scholar] [CrossRef] [PubMed]
- Joe, E.; Ringman, J.M. Cognitive Symptoms of Alzheimer’s Disease: Clinical Management and Prevention. BMJ 2019, 367, 16217. [Google Scholar] [CrossRef] [Green Version]
- Scheltens, P.; Blennow, K.; Breteler, M.M.; de Strooper, B.; Frisoni, G.B.; Salloway, S.; Van der Flier, W.M. Alzheimer’s Disease. Lancet 2016, 388, 505–517. [Google Scholar] [CrossRef]
- Schultz, C.; Del Tredici, K.; Braak, H. Neuropathology of Alzheimer’s Disease. In Alzheimer’s Disease; Springer: Berlin/Heidelberg, Germany, 2004; pp. 21–31. [Google Scholar]
- Du, Z.; Li, Y.; Li, J.; Zhou, C.; Li, F.; Yang, X. Physical Activity Can Improve Cognition in Patients with Alzheimer’s Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Interv. Aging 2018, 13, 1593. [Google Scholar] [CrossRef] [Green Version]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia Prevention, Intervention, and Care: 2020 Report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Gallaway, P.J.; Miyake, H.; Buchowski, M.S.; Shimada, M.; Yoshitake, Y.; Kim, A.S.; Hongu, N. Physical Activity: A Viable Way to Reduce the Risks of Mild Cognitive Impairment, Alzheimer’s Disease, and Vascular Dementia in Older Adults. Brain Sci. 2017, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Calderón-Larrañaga, A.; Vetrano, D.L.; Ferrucci, L.; Mercer, S.W.; Marengoni, A.; Onder, G.; Eriksdotter, M.; Fratiglioni, L. Multimorbidity and Functional Impairment–Bidirectional Interplay, Synergistic Effects and Common Pathways. J. Intern. Med. 2019, 285, 255–271. [Google Scholar] [CrossRef] [Green Version]
- Mandolesi, L.; Polverino, A.; Montuori, S.; Foti, F.; Ferraioli, G.; Sorrentino, P.; Sorrentino, G. Effects of Physical Exercise on Cognitive Functioning and Wellbeing: Biological and Psychological Benefits. Front. Psychol. 2018, 9, 509. [Google Scholar] [CrossRef] [Green Version]
- Lourenco, M.V.; Frozza, R.L.; de Freitas, G.B.; Zhang, H.; Kincheski, G.C.; Ribeiro, F.C.; Gonçalves, R.A.; Clarke, J.R.; Beckman, D.; Staniszewski, A. Exercise-Linked FNDC5/Irisin Rescues Synaptic Plasticity and Memory Defects in Alzheimer’s Models. Nat. Med. 2019, 25, 165–175. [Google Scholar] [CrossRef]
- Ogoh, S. Relationship between Cognitive Function and Regulation of Cerebral Blood Flow. J. Physiol. Sci. 2017, 67, 345–351. [Google Scholar] [CrossRef]
- Koen, J.D.; Rugg, M.D. Neural Dedifferentiation in the Aging Brain. Trends Cogn. Sci. 2019, 23, 547–559. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Al-Jabi, S.W. Mapping the Situation of Research on Coronavirus Disease-19 (COVID-19): A Preliminary Bibliometric Analysis during the Early Stage of the Outbreak. BMC Infect. Dis. 2020, 20, 561. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Du, Y.-H.; Yang, R.-Y.; Wang, Q.; Wang, L.-Y.; Liang, L.-C.; Zhu, L.; Sun, Y.; Cai, M. Bibliometric Analysis Study on the Mechanisms of Brain Energy Metabolism Disorders in Alzheimer’s Disease From 2000 to 2020. Front. Neurol. 2021, 12, 670220. [Google Scholar] [CrossRef]
- Dong, R.; Wang, H.; Ye, J.; Wang, M.; Bi, Y. Publication Trends for Alzheimer’s Disease Worldwide and in China: A 30-Year Bibliometric Analysis. Front. Hum. Neurosci. 2019, 13, 259. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Pozo, A.; Aldridge, G.M.; Zhang, Q. Four Decades of Research in Alzheimer’s Disease (1975–2014): A Bibliometric and Scientometric Analysis. J. Alzheimers Dis. 2017, 59, 763–783. [Google Scholar] [CrossRef]
- Chen, H.; Wan, Y.; Jiang, S.; Cheng, Y. Alzheimer’s Disease Research in the Future: Bibliometric Analysis of Cholinesterase Inhibitors from 1993 to 2012. Scientometrics 2014, 98, 1865–1877. [Google Scholar] [CrossRef]
- Schilder, I.; Veening-Griffioen, D.H.; Ferreira, G.S.; Van Meer, P.J.K.; Wied, C.C.; Schellekens, H.; Boon, W.P.C.; Moors, E.H.M. Pathways in the Drug Development for Alzheimer’s Disease (1906–2016): A Bibliometric Study. J. Scientometr. Res. 2020, 9, 277–292. [Google Scholar] [CrossRef]
- Sampietro, A.; Pérez-Areales, F.J.; Martínez, P.; Arce, E.M.; Galdeano, C.; Muñoz-Torrero, D. Unveiling the Multitarget Anti-Alzheimer Drug Discovery Landscape: A Bibliometric Analysis. Pharmaceuticals 2022, 15, 545. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, K.; Wei, H.; Liang, T.; Xu, Y.; Song, X. Bibliometric Analysis of Gene Research in Alzheimer’s Disease. China Biotechnol. 2020, 40, 112–121. [Google Scholar] [CrossRef]
- Xu, X.; Mishra, G.D.; Jones, M. Mapping the Global Research Landscape and Knowledge Gaps on Multimorbidity: A Bibliometric Study. J. Glob. Health 2017, 7, 010414. [Google Scholar] [CrossRef]
- Andrade, A.; Siqueira, T.C.; D’Oliveira, A.; Dominski, F.H. Effects of Exercise in the Treatment of Alzheimer’s Disease: An Umbrella Review of Systematic Reviews and Meta-Analyses. J. Aging Phys. Act. 2021, 30, 535–551. [Google Scholar] [CrossRef]
- Memon, A.R.; Vandelanotte, C.; Olds, T.; Duncan, M.J.; Vincent, G.E. Research Combining Physical Activity and Sleep: A Bibliometric Analysis. Percept. Mot. Ski. 2020, 127, 154–181. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. Science Mapping Software Tools: Review, Analysis, and Cooperative Study among Tools. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 1382–1402. [Google Scholar] [CrossRef]
- Bradford, S.C. Sources of Information on Specific Subjects. Engineering 1934, 137, 85–86. [Google Scholar]
- Rodríguez Jiménez, C.; Sanz Prieto, M.; Alonso García, S. Technology and Higher Education: A Bibliometric Analysis. Educ. Sci. 2019, 9, 169. [Google Scholar] [CrossRef] [Green Version]
- Adlard, P.A.; Perreau, V.M.; Pop, V.; Cotman, C.W. Voluntary Exercise Decreases Amyloid Load in a Transgenic Model of Alzheimer’s Disease. J. Neurosci. 2005, 25, 4217–4221. [Google Scholar] [CrossRef] [Green Version]
- Teri, L.; Gibbons, L.E.; McCurry, S.M.; Logsdon, R.G.; Buchner, D.M.; Barlow, W.E.; Kukull, W.A.; LaCroix, A.Z.; McCormick, W.; Larson, E.B. Exercise plus Behavioral Management in Patients with Alzheimer Disease: A Randomized Controlled Trial. JAMA 2003, 290, 2015–2022. [Google Scholar] [CrossRef]
- Rolland, Y.; Pillard, F.; Klapouszczak, A.; Reynish, E.; Thomas, D.; Andrieu, S.; Rivière, D.; Vellas, B. Exercise Program for Nursing Home Residents with Alzheimer’s Disease: A 1-year Randomized, Controlled Trial. J. Am. Geriatr. Soc. 2007, 55, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Bylykbashi, E.; Chatila, Z.K.; Lee, S.W.; Pulli, B.; Clemenson, G.D.; Kim, E.; Rompala, A.; Oram, M.K.; Asselin, C. Combined Adult Neurogenesis and BDNF Mimic Exercise Effects on Cognition in an Alzheimer’s Mouse Model. Science 2018, 361, eaan8821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radak, Z.; Hart, N.; Sarga, L.; Koltai, E.; Atalay, M.; Ohno, H.; Boldogh, I. Exercise Plays a Preventive Role against Alzheimer’s Disease. J. Alzheimers Dis. 2010, 20, 777–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paillard, T.; Rolland, Y.; de Souto Barreto, P. Protective Effects of Physical Exercise in Alzheimer’s Disease and Parkinson’s Disease: A Narrative Review. J. Clin. Neurol. 2015, 11, 212–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Intlekofer, K.A.; Cotman, C.W. Exercise Counteracts Declining Hippocampal Function in Aging and Alzheimer’s Disease. Neurobiol. Dis. 2013, 57, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Liang, K.Y.; Mintun, M.A.; Fagan, A.M.; Goate, A.M.; Bugg, J.M.; Holtzman, D.M.; Morris, J.C.; Head, D. Exercise and Alzheimer’s Disease Biomarkers in Cognitively Normal Older Adults. Ann. Neurol. 2010, 68, 311–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuede, C.M.; Zimmerman, S.D.; Dong, H.; Kling, M.J.; Bero, A.W.; Holtzman, D.M.; Timson, B.F.; Csernansky, J.G. Effects of Voluntary and Forced Exercise on Plaque Deposition, Hippocampal Volume, and Behavior in the Tg2576 Mouse Model of Alzheimer’s Disease. Neurobiol. Dis. 2009, 35, 426–432. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, M.; Kumar, S.; Sonker, S.K.; Babbar, P. Occurrence of Author Keywords and Keywords plus in Social Sciences and Humanities Research: A Preliminary Study. COLLNET J. Scientometr. Inf. Manag. 2018, 12, 215–232. [Google Scholar] [CrossRef]
- Li, H.; An, H.; Wang, Y.; Huang, J.; Gao, X. Evolutionary Features of Academic Articles Co-Keyword Network and Keywords Co-Occurrence Network: Based on Two-Mode Affiliation Network. Phys. A Stat. Mech. Appl. 2016, 450, 657–669. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An Approach for Detecting, Quantifying, and Visualizing the Evolution of a Research Field: A Practical Application to the Fuzzy Sets Theory Field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Teri, L.; McCurry, S.M.; Buchner, D.M.; Logsdon, R.G.; La Croix, A.Z.; Kukull, W.A.; Barlow, W.E.; Larson, E.B. Exercise and Activity Level in Alzheimer’s Disease: A Potential Treatment Focus. J. Rehabil. Res. Dev. 1998, 35, 411–419. [Google Scholar]
- Williams, C.L.; Tappen, R.M. Exercise Training for Depressed Older Adults with Alzheimer’s Disease. Aging Ment. Health 2008, 12, 72–80. [Google Scholar] [CrossRef]
- Vreugdenhil, A.; Cannell, J.; Davies, A.; Razay, G. A Community-based Exercise Programme to Improve Functional Ability in People with Alzheimer’s Disease: A Randomized Controlled Trial. Scand. J. Caring Sci. 2012, 26, 12–19. [Google Scholar] [CrossRef]
- Farina, N.; Rusted, J.; Tabet, N. The Effect of Exercise Interventions on Cognitive Outcome in Alzheimer’s Disease: A Systematic Review. Int. Psychogeriatr. 2014, 26, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Vock, D.M.; Zhang, L.; Salisbury, D.; Nelson, N.W.; Chow, L.S.; Smith, G.; Barclay, T.R.; Dysken, M.; Wyman, J.F. Cognitive Effects of Aerobic Exercise in Alzheimer’s Disease: A Pilot Randomized Controlled Trial. J. Alzheimers Dis. 2021, 80, 233–244. [Google Scholar] [CrossRef]
- Padala, K.P.; Padala, P.R.; Lensing, S.Y.; Dennis, R.A.; Bopp, M.M.; Roberson, P.K.; Sullivan, D.H. Home-Based Exercise Program Improves Balance and Fear of Falling in Community-Dwelling Older Adults with Mild Alzheimer’s Disease: A Pilot Study. J. Alzheimers Dis. 2017, 59, 565–574. [Google Scholar] [CrossRef]
- Vidoni, E.D.; Perales, J.; Alshehri, M.; Giles, A.-M.; Siengsukon, C.F.; Burns, J.M. Aerobic Exercise Sustains Performance of Instrumental Activities of Daily Living in Early-Stage Alzheimer’s Disease. J. Geriatr. Phys. Ther. 2019, 42, E129–E134. [Google Scholar] [CrossRef]
- Valenzuela, P.L.; Castillo-Garcia, A.; Morales, J.S.; de la Villa, P.; Hampel, H.; Emanuele, E.; Lista, S.; Lucia, A. Exercise Benefits on Alzheimer’s Disease: State-of-the-Science. Ageing Res. Rev. 2020, 62, 101108. [Google Scholar] [CrossRef]
- Nichol, K.E.; Poon, W.W.; Parachikova, A.I.; Cribbs, D.H.; Glabe, C.G.; Cotman, C.W. Exercise Alters the Immune Profile in Tg2576 Alzheimer Mice toward a Response Coincident with Improved Cognitive Performance and Decreased Amyloid. J. Neuroinflamm. 2008, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Souza, L.C.; Goes, A.T.R.; Del Fabbro, L.; de Gomes, M.G.; Savegnago, L.; Oliveira, M.S.; Jesse, C.R. Neuroprotective Effect of Physical Exercise in a Mouse Model of Alzheimer’s Disease Induced by β-Amyloid1–40 Peptide. Neurotox. Res. 2013, 24, 148–163. [Google Scholar] [CrossRef]
- García-Mesa, Y.; López-Ramos, J.C.; Giménez-Llort, L.; Revilla, S.; Guerra, R.; Gruart, A.; LaFerla, F.M.; Cristòfol, R.; Delgado-García, J.M.; Sanfeliu, C. Physical Exercise Protects against Alzheimer’s Disease in 3xTg-AD Mice. J. Alzheimers Dis. 2011, 24, 421–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, D.-H.; Kwon, K.-C.; Hwang, D.-J.; Koo, J.-H.; Um, H.-S.; Song, H.-S.; Kim, J.-S.; Jang, Y.; Cho, J.-Y. Treadmill Exercise Alleviates Brain Iron Dyshomeostasis Accelerating Neuronal Amyloid-β Production, Neuronal Cell Death, and Cognitive Impairment in Transgenic Mice Model of Alzheimer’s Disease. Mol. Neurobiol. 2021, 58, 3208–3223. [Google Scholar] [CrossRef] [PubMed]
- Hashiguchi, D.; Campos, H.C.; Wuo-Silva, R.; Faber, J.; Gomes da Silva, S.; Coppi, A.A.; Arida, R.M.; Longo, B.M. Resistance Exercise Decreases Amyloid Load and Modulates Inflammatory Responses in the APP/PS1 Mouse Model for Alzheimer’s Disease. J. Alzheimers Dis. 2020, 73, 1525–1539. [Google Scholar] [CrossRef] [PubMed]
- Prince, M.J.; Wimo, A.; Guerchet, M.M.; Ali, G.C.; Wu, Y.-T.; Prina, M. World Alzheimer Report 2015-The Global Impact of Dementia: An Analysis of Prevalence, Incidence, Cost and Trends; Alzheimer’s Disease International: London, UK, 2015. [Google Scholar]
- Feng, X.-W.; Hadizadeh, M.; Cheong, J.P.G. Global Trends in Physical-Activity Research of Autism: Bibliometric Analysis Based on the Web of Science Database (1980–2021). Int. J. Environ. Res. Public Health 2022, 19, 7278. [Google Scholar] [CrossRef] [PubMed]
- Uleman, J.F.; Melis, R.J.F.; Quax, R.; van der Zee, E.A.; Thijssen, D.; Dresler, M.; van de Rest, O.; van der Velpen, I.F.; Adams, H.H.H.; Schmand, B. Mapping the Multicausality of Alzheimer’s Disease through Group Model Building. GeroScience 2021, 43, 829–843. [Google Scholar] [CrossRef] [PubMed]
- Bajwa, E.; Pointer, C.B.; Klegeris, A. Modifiable Risk Factors of Alzheimer’s Disease and Neuroinflammation: What Are the Links? Future Neurol. 2016, 11, 237–244. [Google Scholar] [CrossRef]
- Stephen, R.; Hongisto, K.; Solomon, A.; Lönnroos, E. Physical Activity and Alzheimer’s Disease: A Systematic Review. J. Gerontol. Ser. A 2017, 72, 733–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, F.G.d.M.; Vital, T.M.; Stein, A.M.; Arantes, F.J.; Rueda, A.V.; Camarini, R.; Teodorov, E.; Santos-Galduroz, R.F. Acute Aerobic Exercise Increases Brain-Derived Neurotrophic Factor Levels in Elderly with Alzheimer’s Disease. J. Alzheimers Dis. 2014, 39, 401–408. [Google Scholar] [CrossRef]
- Alkadhi, K.A. Exercise as a Positive Modulator of Brain Function. Mol. Neurobiol. 2018, 55, 3112–3130. [Google Scholar] [CrossRef]
- Vecchio, L.M.; Meng, Y.; Xhima, K.; Lipsman, N.; Hamani, C.; Aubert, I. The Neuroprotective Effects of Exercise: Maintaining a Healthy Brain throughout Aging. Brain Plast. 2018, 4, 17–52. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, C.V.L.; de Rezende, T.J.R.; Weiler, M.; Magalhães, T.N.C.; Carletti-Cassani, A.F.M.K.; Silva, T.Q.A.C.; Joaquim, H.P.G.; Talib, L.L.; Forlenza, O.V.; Franco, M.P. Cognitive and Structural Cerebral Changes in Amnestic Mild Cognitive Impairment Due to Alzheimer’s Disease after Multicomponent Training. Alzheimers Dement. Transl. Res. Clin. Interv. 2018, 4, 473–480. [Google Scholar] [CrossRef]
- Wiley, J. Alzheimer’s Disease Facts and Figures. Alzheimers Dement. 2021, 17, 327–406. [Google Scholar]
- Tolppanen, A.-M.; Taipale, H.; Koponen, M.; Lavikainen, P.; Tanskanen, A.; Tiihonen, J.; Hartikainen, S. Use of Existing Data Sources in Clinical Epidemiology: Finnish Health Care Registers in Alzheimer’s Disease Research—The Medication Use among Persons with Alzheimer’s Disease (MEDALZ-2005) Study. Clin. Epidemiol. 2013, 5, 277–285. [Google Scholar] [CrossRef]
- World Health Rankings. Alzheimers & Dementia. Available online: https://www.worldlifeexpectancy.com/cause-of-death/alzheimers-dementia/by-country/ (accessed on 3 June 2022).
- World Health Organization. Global Action Plan on the Public Health Response to Dementia 2017–2025; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Guerchet, M.M.; Mayston, R.; Lloyd-Sherlock, P.; Prince, M.J.; Aboderin, I.; Akinyemi, R.; Paddick, S.-M.; Wimo, A.; Amoakoh-Coleman, M.; Uwakwe, R. Dementia in Sub-Saharan Africa: Challenges and Opportunities; Alzheimer’s Disease International: London, UK, 2017. [Google Scholar]
- World Health Organization. Global Status Report on the Public Health Response to Dementia; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Latunji, O.O.; Akinyemi, O.O. Factors Influencing Health-Seeking Behaviour among Civil Servants in Ibadan, Nigeria. Ann. Ib. Postgrad. Med. 2018, 16, 52–60. [Google Scholar]
- Alzheimer’s Disease International. Dementia Statistics. Available online: https://www.alzint.org/about/dementia-facts-figures/dementia-statistics/ (accessed on 18 May 2022).
- Gauthier, S.; Rosa-Neto, P.; Morais, J.A.; Webster, C. World Alzheimer Report 2021: Journey through the Diagnosis of Dementia; Alzheimer’s Disease International: London, UK, 2021. [Google Scholar]
- Rosenberg, A.; Mangialasche, F.; Ngandu, T.; Solomon, A.; Kivipelto, M. Multidomain Interventions to Prevent Cognitive Impairment, Alzheimer’s Disease, and Dementia: From FINGER to World-Wide FINGERS. J. Prev. Alzheimers Dis. 2020, 7, 29–36. [Google Scholar] [CrossRef]
- De la Rosa, A.; Olaso-Gonzalez, G.; Arc-Chagnaud, C.; Millan, F.; Salvador-Pascual, A.; García-Lucerga, C.; Blasco-Lafarga, C.; Garcia-Dominguez, E.; Carretero, A.; Correas, A.G. Physical Exercise in the Prevention and Treatment of Alzheimer’s Disease. J. Sport Health Sci. 2020, 9, 394–404. [Google Scholar] [CrossRef]
- Ngandu, T.; Lehtisalo, J.; Solomon, A.; Levälahti, E.; Ahtiluoto, S.; Antikainen, R.; Bäckman, L.; Hänninen, T.; Jula, A.; Laatikainen, T. A 2 Year Multidomain Intervention of Diet, Exercise, Cognitive Training, and Vascular Risk Monitoring versus Control to Prevent Cognitive Decline in at-Risk Elderly People (FINGER): A Randomised Controlled Trial. Lancet 2015, 385, 2255–2263. [Google Scholar] [CrossRef]
- Andrieu, S.; Guyonnet, S.; Coley, N.; Cantet, C.; Bonnefoy, M.; Bordes, S.; Bories, L.; Cufi, M.-N.; Dantoine, T.; Dartigues, J.-F. Effect of Long-Term Omega 3 Polyunsaturated Fatty Acid Supplementation with or without Multidomain Intervention on Cognitive Function in Elderly Adults with Memory Complaints (MAPT): A Randomised, Placebo-Controlled Trial. Lancet Neurol. 2017, 16, 377–389. [Google Scholar] [CrossRef]
- Van Charante, E.P.M.; Richard, E.; Eurelings, L.S.; van Dalen, J.-W.; Ligthart, S.A.; Van Bussel, E.F.; Hoevenaar-Blom, M.P.; Vermeulen, M.; van Gool, W.A. Effectiveness of a 6-Year Multidomain Vascular Care Intervention to Prevent Dementia (PreDIVA): A Cluster-Randomised Controlled Trial. Lancet 2016, 388, 797–805. [Google Scholar] [CrossRef]
Journal Name | Articles (%) | IF 2021 | CQ 2021 | JCR Category |
---|---|---|---|---|
Journal of Alzheimer’s Disease | 19 (7.692%) | 4.16 | Q2 | Neurosciences |
American Journal of Alzheimer’s Disease and other Dementias | 6 (2.429%) | 2.632 | Q3 | Clinical Neurology; Geriatrics & Gerontology |
Behavioural Brain Research | 6 (2.429%) | 3.352 | Q2 | Behavioral Sciences; Neurosciences |
Experimental Gerontology | 6 (2.429%) | 4.253 | Q2 | Geriatrics & Gerontology |
Ageing Research Reviews | 5 (2.024%) | 11.788 | Q1 | Cell Biology; Geriatrics & Gerontology |
Current Alzheimer Research | 5 (2.024%) | 3.04 | Q3 | Clinical Neurology; Neurosciences |
Journal of The American Geriatrics Society | 4 (1.619%) | 7.538 | Q1 | Geriatrics & Gerontology; Gerontology |
European Geriatric Medicine | 4 (1.619%) | 3.269 | Q3 | Geriatrics & Gerontology |
Frontiers in Aging Neuroscience | 4 (1.619%) | 5.702 | Q1 | Geriatrics & Gerontology; Neurosciences |
Geriatric Nursing | 4 (1.619%) | 2.525 | Q2 | Geriatrics & Gerontology; Nursing |
International Journal of Geriatric Psychiatry | 4 (1.619%) | 3.85 | Q2 | Geriatrics & Gerontology; Psychiatry |
International Journal of Molecular Sciences | 4 (1.619%) | 6.208 | Q1 | Biochemistry & Molecular Biology; Chemistry, Multidisciplinary |
Molecular Neurobiology | 4 (1.619%) | 5.682 | Q1 | Neurosciences |
Neurobiology of Disease | 4 (1.619%) | 7.046 | Q1 | Neurosciences |
PLoS One | 4 (1.619%) | 3.752 | Q2 | Multidisciplinary Sciences |
TC | Article Title | Journal | Published Year | Country | IF 2021 | CQ 2021 |
---|---|---|---|---|---|---|
559 | Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease [31] | Journal of Neuroscience | 2005 | USA | 6.709 | Q1 |
499 | Exercise plus behavioral management in patients with Alzheimer disease—A randomized controlled trial [32] | JAMA—Journal of the American Medical Association | 2003 | USA | 157.335 | Q1 |
423 | Exercise program for nursing home residents with Alzheimer’s disease: A 1-year randomized, controlled trial [33] | Journal of the American Geriatrics Society | 2007 | USA | 7.538 | Q1 |
294 | Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model [34] | Science | 2018 | USA | 63.714 | Q1 |
273 | Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models [13] | Nature Medicine | 2019 | USA | 87.241 | Q1 |
195 | Exercise Plays a Preventive Role Against Alzheimer’s Disease [35] | Journal of Alzheimer’s Disease | 2010 | NETHERLANDS | 4.16 | Q2 |
189 | Protective Effects of Physical Exercise in Alzheimer’s Disease and Parkinson’s Disease: A Narrative Review [36] | Journal of Clinical Neurology | 2013 | SOUTH KOREA | 2.566 | Q3 |
183 | Exercise counteracts declining hippocampal function in aging and Alzheimer’s disease [37] | Neurobiology of Disease | 2013 | ENGLAND | 7.046 | Q1 |
176 | Exercise and Alzheimer’s Disease Biomarkers in Cognitively Normal Older Adults [38] | Annals of Neurology | 2010 | USA | 11.274 | Q1 |
174 | Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the Tg2576 mouse model of Alzheimer’s disease [39] | Neurobiology of Disease | 2009 | ENGLAND | 7.046 | Q1 |
Country | Articles | TC | H-Index | CPA | Top Country Institution * | Top Institution Articles (%) |
---|---|---|---|---|---|---|
USA | 96 | 5715 | 34 | 59.53 | University of Minnesota system | 18 (18.750%) |
Brazil | 33 | 964 | 14 | 29.21 | Universidade Estadual Paulista | 10 (30.303%) |
China | 24 | 558 | 13 | 23.25 | Nanjing Medical University; Shanghai University of Traditional Chinese Medicine | 3 (12.500%) |
South Korea | 18 | 610 | 12 | 33.89 | Korea National Sport University | 5 (27.778%) |
Canada | 13 | 424 | 7 | 32.62 | Sunnybrook Health Science Center; Sunnybrook Research Institute; University of Toronto; Western University University of Western Ontario | 3 (23.077%) |
Denmark | 13 | 459 | 12 | 35.31 | University of Copenhagen; Rigshospitalet | 11 (84.615%) |
Finland | 12 | 543 | 9 | 45.25 | University of Helsinki; University of Oulu | 9 (75.00%) |
Spain | 12 | 557 | 8 | 46.42 | European University of Madrid | 4 (33.333%) |
Australia | 11 | 606 | 9 | 55.09 | University of Melbourne | 4 (36.364%) |
Germany | 10 | 394 | 7 | 39.4 | German Center for Neurodegenerative Diseases (DZNE); Helmholtz Association | 3 (30.000%) |
Author | Country | Articles | H-Index | TC |
---|---|---|---|---|
Yu, Fang | USA | 17 | 9 | 268 |
Frederiksen, Kristian S | Denmark | 11 | 10 | 398 |
Hasselbalch, Steen G | Denmark | 11 | 11 | 435 |
Waldemar, G | Denmark | 10 | 9 | 369 |
Hogh, P | Denmark | 9 | 8 | 325 |
Kautiainen, Hannu J | Finland | 9 | 8 | 333 |
Laakkonen, Marja-Liisa | Finland | 9 | 8 | 333 |
Pitkala, Kaisu H | Finland | 9 | 8 | 333 |
Beyer, Nina | Denmark | 8 | 7 | 303 |
Burns, Jeffrey M | USA | 8 | 6 | 213 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, X.-W.; Hadizadeh, M.; Zheng, L.-H.; Li, W.-H. A Bibliometric and Visual Analysis of Exercise Intervention Publications for Alzheimer’s Disease (1998–2021). J. Clin. Med. 2022, 11, 5903. https://doi.org/10.3390/jcm11195903
Feng X-W, Hadizadeh M, Zheng L-H, Li W-H. A Bibliometric and Visual Analysis of Exercise Intervention Publications for Alzheimer’s Disease (1998–2021). Journal of Clinical Medicine. 2022; 11(19):5903. https://doi.org/10.3390/jcm11195903
Chicago/Turabian StyleFeng, Xiao-Wei, Maryam Hadizadeh, Lin-Hong Zheng, and Wei-Han Li. 2022. "A Bibliometric and Visual Analysis of Exercise Intervention Publications for Alzheimer’s Disease (1998–2021)" Journal of Clinical Medicine 11, no. 19: 5903. https://doi.org/10.3390/jcm11195903
APA StyleFeng, X. -W., Hadizadeh, M., Zheng, L. -H., & Li, W. -H. (2022). A Bibliometric and Visual Analysis of Exercise Intervention Publications for Alzheimer’s Disease (1998–2021). Journal of Clinical Medicine, 11(19), 5903. https://doi.org/10.3390/jcm11195903