Computed Tomography Imaging in ILD: New Trends for the Clinician
Funding
Conflicts of Interest
Abbreviations
CALIPER | Computer-Aided Lung Informatics for Pathology Evaluation and Rating |
CT | computed tomography |
CXR | chest X-ray |
DLCO | diffusion capacity of the lung for carbon monoxide uptake |
ILD | interstitial lung disease |
References
- Raghu, G.; Remy-Jardin, M.; Richeldi, L.; Thomson, C.C.; Inoue, Y.; Johkoh, T.; Kreuter, M.; Lynch, D.A.; Maher, T.M.; Martinez, F.J.; et al. Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2022, 205, e18–e47. [Google Scholar] [CrossRef]
- Ohkubo, H.; Nakagawa, H.; Niimi, A. Computer-based quantitative computed tomography image analysis in idiopathic pulmonary fibrosis: A mini review. Respir. Investig. 2018, 56, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Karwoski, R.A.; Gierada, D.S.; Bartholmai, B.J.; Koo, C.W. Quantitative CT Analysis of Diffuse Lung Disease. Radiographics 2020, 40, 28–43. [Google Scholar] [CrossRef]
- Iwasawa, T.; Ogura, T.; Sakai, F.; Kanauchi, T.; Komagata, T.; Baba, T.; Gotoh, T.; Morita, S.; Yazawa, T.; Inoue, T. CT analysis of the effect of pirfenidone in patients with idiopathic pulmonary fibrosis. Eur. J. Radiol. 2014, 83, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Sumikawa, H.; Johkoh, T.; Colby, T.V.; Ichikado, K.; Suga, M.; Taniguchi, H.; Kondoh, Y.; Ogura, T.; Arakawa, H.; Fujimoto, K.; et al. Computed tomography findings in pathological usual interstitial pneumonia: Relationship to survival. Am. J. Respir. Crit. Care Med. 2008, 177, 433–439. [Google Scholar] [CrossRef]
- Tominaga, J.; Bankier, A.A.; Lee, K.S.; Leung, A.N.; Remy-Jardin, M.; Akira, M.; Arakawa, H.; Boiselle, P.M.; Franquet, T.; Fujimoto, K.; et al. Inter-observer agreement in identifying traction bronchiectasis on computed tomography: Its improvement with the use of the additional criteria for chronic fibrosing interstitial pneumonia. Jpn. J. Radiol. 2019, 37, 773–780. [Google Scholar] [CrossRef]
- Kitaguchi, Y.; Fujimoto, K.; Droma, Y.; Yasuo, M.; Wada, Y.; Ueno, F.; Kinjo, T.; Kawakami, S.; Fukushima, K.; Hanaoka, M. Automated Diseased Lung Volume Percentage Calculation in Quantitative CT Evaluation of Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. J. Comput. Assist. Tomogr. 2021, 45, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.; Bartholmai, B.J.; Rajagopalan, S.; Kokosi, M.; Nair, A.; Karwoski, R.; Raghunath, S.M.; Walsh, S.L.; Wells, A.U.; Hansell, D.M. Automated Quantitative Computed Tomography Versus Visual Computed Tomography Scoring in Idiopathic Pulmonary Fibrosis: Validation Against Pulmonary Function. J. Thorac. Imaging 2016, 31, 304–311. [Google Scholar] [CrossRef] [Green Version]
- Jacob, J.; Bartholmai, B.J.; Rajagopalan, S.; Kokosi, M.; Nair, A.; Karwoski, R.; Walsh, S.L.; Wells, A.U.; Hansell, D.M. Mortality prediction in idiopathic pulmonary fibrosis: Evaluation of computer-based CT analysis with conventional severity measures. Eur. Respir. J. 2017, 49, 1601011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watadani, T.; Sakai, F.; Johkoh, T.; Noma, S.; Akira, M.; Fujimoto, K.; Bankier, A.A.; Lee, K.S.; Muller, N.L.; Song, J.W.; et al. Interobserver variability in the CT assessment of honeycombing in the lungs. Radiology 2013, 266, 936–944. [Google Scholar] [CrossRef] [Green Version]
- Hansell, D.M.; Goldin, J.G.; King, T.E., Jr.; Lynch, D.A.; Richeldi, L.; Wells, A.U. CT staging and monitoring of fibrotic interstitial lung diseases in clinical practice and treatment trials: A position paper from the Fleischner Society. Lancet Respir. Med. 2015, 3, 483–496. [Google Scholar] [CrossRef]
- Chung, J.H.; Adegunsoye, A.; Cannon, B.; Vij, R.; Oldham, J.M.; King, C.; Montner, S.M.; Thirkateh, P.; Barnett, S.; Karwoski, R.; et al. Differentiation of Idiopathic Pulmonary Fibrosis from Connective Tissue Disease-Related Interstitial Lung Disease Using Quantitative Imaging. J. Clin. Med. 2021, 10, 2663. [Google Scholar] [CrossRef]
- Bartholmai, B.J.; Raghunath, S.; Karwoski, R.A.; Moua, T.; Rajagopalan, S.; Maldonado, F.; Decker, P.A.; Robb, R.A. Quantitative computed tomography imaging of interstitial lung diseases. J. Thorac. Imaging 2013, 28, 298–307. [Google Scholar] [CrossRef] [Green Version]
- Crews, M.S.; Bartholmai, B.J.; Adegunsoye, A.; Oldham, J.M.; Montner, S.M.; Karwoski, R.A.; Husain, A.N.; Vij, R.; Noth, I.; Strek, M.E.; et al. Automated CT Analysis of Major Forms of Interstitial Lung Disease. J. Clin. Med. 2020, 9, 3776. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, F.; Bech, M.; Bunk, O.; Kraft, P.; Eikenberry, E.F.; Bronnimann, C.; Grunzweig, C.; David, C. Hard-X-ray dark-field imaging using a grating interferometer. Nat. Mater. 2008, 7, 134–137. [Google Scholar] [CrossRef]
- Bech, M.; Tapfer, A.; Velroyen, A.; Yaroshenko, A.; Pauwels, B.; Hostens, J.; Bruyndonckx, P.; Sasov, A.; Pfeiffer, F. In-vivo dark-field and phase-contrast x-ray imaging. Sci. Rep. 2013, 3, 3209. [Google Scholar] [CrossRef] [Green Version]
- Yaroshenko, A.; Hellbach, K.; Yildirim, A.O.; Conlon, T.M.; Fernandez, I.E.; Bech, M.; Velroyen, A.; Meinel, F.G.; Auweter, S.; Reiser, M.; et al. Improved In vivo Assessment of Pulmonary Fibrosis in Mice using X-Ray Dark-Field Radiography. Sci. Rep. 2015, 5, 17492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willer, K.; Fingerle, A.A.; Noichl, W.; De Marco, F.; Frank, M.; Urban, T.; Schick, R.; Gustschin, A.; Gleich, B.; Herzen, J.; et al. X-ray dark-field chest imaging for detection and quantification of emphysema in patients with chronic obstructive pulmonary disease: A diagnostic accuracy study. Lancet Digit. Health 2021, 3, e733–e744. [Google Scholar] [CrossRef]
- Zimmermann, G.S.; Fingerle, A.A.; Renger, B.; Laugwitz, K.L.; Hautmann, H.; Sauter, A.; Meurer, F.; Gassert, F.T.; Bodden, J.; Muller-Leisse, C.; et al. Dark-field chest x-ray imaging: First experience in patients with alpha1-antitrypsin deficiency. Eur. Radiol. Exp. 2022, 6, 9. [Google Scholar] [CrossRef] [PubMed]
- Urban, T.; Gassert, F.T.; Frank, M.; Willer, K.; Noichl, W.; Buchberger, P.; Schick, R.C.; Koehler, T.; Bodden, J.H.; Fingerle, A.A.; et al. Qualitative and Quantitative Assessment of Emphysema Using Dark-Field Chest Radiography. Radiology 2022, 303, 119–127. [Google Scholar] [CrossRef]
- Gassert, F.T.; Burkhardt, R.; Gora, T.; Pfeiffer, D.; Fingerle, A.A.; Sauter, A.P.; Schilling, D.; Rummeny, E.J.; Schmid, T.E.; Combs, S.E.; et al. X-ray Dark-Field CT for Early Detection of Radiation-induced Lung Injury in a Murine Model. Radiology 2022, 303, 696–698. [Google Scholar] [CrossRef] [PubMed]
- Gassert, F.T.; Urban, T.; Pfeiffer, D.; Pfeiffer, F. Dark-Field Chest Radiography of Combined Pulmonary Fibrosis and Emphysema. Radiol. Cardiothorac. Imaging 2022, 4, e220085. [Google Scholar] [CrossRef]
- Gassert, F.T.; Pfeiffer, F. X-ray Dark-field Chest Radiography of Lymphangioleiomyomatosis. Radiology 2022, 303, 499–500. [Google Scholar] [CrossRef] [PubMed]
- Burkhardt, R.; Gora, T.; Fingerle, A.A.; Sauter, A.P.; Meurer, F.; Gassert, F.T.; Dobiasch, S.; Schilling, D.; Feuchtinger, A.; Walch, A.K.; et al. In-vivo X-ray dark-field computed tomography for the detection of radiation-induced lung damage in mice. Phys. Imaging Radiat. Oncol. 2021, 20, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Viermetz, M.; Gustschin, N.; Schmid, C.; Haeusele, J.; von Teuffenbach, M.; Meyer, P.; Bergner, F.; Lasser, T.; Proksa, R.; Koehler, T.; et al. Dark-field computed tomography reaches the human scale. Proc. Natl. Acad. Sci. USA 2022, 119, e2118799119. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimmermann, G.S. Computed Tomography Imaging in ILD: New Trends for the Clinician. J. Clin. Med. 2022, 11, 5952. https://doi.org/10.3390/jcm11195952
Zimmermann GS. Computed Tomography Imaging in ILD: New Trends for the Clinician. Journal of Clinical Medicine. 2022; 11(19):5952. https://doi.org/10.3390/jcm11195952
Chicago/Turabian StyleZimmermann, Gregor S. 2022. "Computed Tomography Imaging in ILD: New Trends for the Clinician" Journal of Clinical Medicine 11, no. 19: 5952. https://doi.org/10.3390/jcm11195952
APA StyleZimmermann, G. S. (2022). Computed Tomography Imaging in ILD: New Trends for the Clinician. Journal of Clinical Medicine, 11(19), 5952. https://doi.org/10.3390/jcm11195952