The UA Doppler Index, Plasma HCY, and Cys C in Pregnancies Complicated by Congenital Heart Disease of the Fetus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Fetal Echocardiogram
2.3. The UA Doppler Index at 22–24 Weeks of Pregnancy
2.4. Blood Sampling and Biochemical Characteristics at 12–14 Weeks of Pregnancy
2.5. Statistical Analysis
3. Results
3.1. The Comparison of the UA Doppler Indices at 22–24 Weeks of Pregnancy between the CHD and Control Groups
3.2. The Comparison of Maternal Plasma HCY and Cys C Levels at 12–14 Weeks of Pregnancy
3.3. Correlation between the Plasma Biochemical Indicators and the UA Doppler Indices
3.4. Analysis of the Influencing Factors of Fetal Congenital Heart Disease
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoffman, J.I.; Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 2002, 39, 1890–1900. [Google Scholar] [CrossRef] [Green Version]
- Kapusta, L.; Haagmans, M.L.; Steegers, E.A.; Cuypers, M.H.; Blom, H.J.; Eskes, T.K. Congenital heart defects and maternal derangement of homocysteine metabolism. J. Pediatr. 1999, 135, 773–774. [Google Scholar] [CrossRef]
- Verkleij-Hagoort, A.C.; Verlinde, M.; Ursem, N.T.C.; Lindemans, J.; Helbing, W.A.; Ottenkamp, J.; Siebel, F.M.H.; Gittenberger-de Groot, A.C.; De Jonge, R.; Bartelings, M.M.; et al. Maternal hyperhomocysteinaemia is a risk factor for congenital heart disease. Bjog 2006, 113, 1412–1418. [Google Scholar] [CrossRef] [PubMed]
- Elizabeth, K.E.; Praveen, S.L.; Preethi, N.R.; Jissa, V.T.; Pillai, M.R. Folate, vitamin B12, homocysteine and polymorphisms in folate metabo-lizing genes in children with congenital heart disease and their mothers. Eur. J. Clin. Nutr. 2017, 71, 1437–1441. [Google Scholar] [CrossRef]
- He, L.; Li, J.; Zhan, J.; Yi, F.; Fan, X.; Wei, Y.; Zhang, W. The value of serum cystatin C in early evaluation of renal insufficiency in patients undergoing chemotherapy: A systematic review and meta-analysis. Cancer Chemother. Pharmacol. 2019, 83, 561–571. [Google Scholar] [CrossRef]
- Loew, M.; Hoffmann, M.M.; Koenig, W.; Brenner, H.; Rothenbacher, D. Genotype and plasma concentration of cystatin C in patients with coronary heart disease and risk for secondary cardiovascular events. Arterioscler. Thromb Vasc. Biol. 2005, 25, 1470–1474. [Google Scholar] [CrossRef] [Green Version]
- Marelli, A.J.; Mackie, A.S.; Ionescu-Ittu, R.; Rahme, E.; Pilote, L. Congenital heart disease in the general population: Changing prevalence and age distribution. Circulation 2007, 115, 163–172. [Google Scholar] [CrossRef]
- Matthiesen, N.B.; Henriksen, T.B.; Agergaard, P.; Gaynor, J.W.; Bach, C.C.; Hjortdal, V.E.; Østergaard, J.R. Congenital Heart Defects and Indices of Placental and Fetal Growth in a Nationwide Study of 924 422 Liveborn Infants. Circulation 2016, 134, 1546–1556. [Google Scholar] [CrossRef]
- Carvalho, J.S.; Allan, L.D.; Chaoui, R.; Copel, J.A.; DeVore, G.R.; Hecher, K.; Lee, W.; Munoz, H.; Paladini, D.; Tutschek, B.; et al. ISUOG Practice Guidelines (updated): Sonographic screening examination of the fetal heart. Ultrasound Obstet. Gynecol. 2013, 41, 348. [Google Scholar] [CrossRef]
- Llurba, E.; Sánchez, O.; Ferrer, Q.; Nicolaides, K.H.; Ruíz, A.; Domínguez, C.; Sánchez-de-Toledo, J.; García-García, B.; Soro, G.; Arévalo, S.; et al. Maternal and foetal angiogenic imbalance in congenital heart defects. Eur. Heart J. 2014, 35, 701–707. [Google Scholar] [CrossRef]
- Llurba, E.; Syngelaki, A.; Sánchez, O.; Carreras, E.; Cabero, L.; Nicolaides, K.H. Maternal serum placental growth factor at 11–13 weeks’ gestation and fetal cardiac defects. Ultrasound Obstet. Gynecol. 2013, 42, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Fantasia, I.; Kasapoglu, D.; Kasapoglu, T.; Syngelaki, A.; Akolekar, R.; Nicolaides, K.H. Fetal major cardiac defects and placental dysfunction at 11–13 weeks’ gestation. Ultrasound Obstet. Gynecol. 2018, 51, 194–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, Y.; Khoo, N.S.; Brooks, P.A.; Savard, W.; Hirose, A.; Hornberger, L.K. Severe left heart obstruction with retrograde arch flow influences fetal cer-ebral and placental blood flow. Ultrasound Obstet. Gynecol. 2013, 42, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, A.; Cruz-Lemini, M.; Masoller, N.; Sanz-Cortés, M.; Ferrer, Q.; Ribera, I.; Martínez, J.M.; Crispi, F.; Arévalo, S.; Gómez, O.; et al. Longitudinal changes in fetal biometry and cerebroplacental hemodynamics in fetuses with congenital heart disease. Ultrasound Obstet. Gynecol. 2017, 49, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Dubiel, M.; Gunnarsson, G.O.; Gudmundsson, S. Blood redistribution in the fetal brain during chronic hypoxia. Ultrasound Obstet. Gynecol. 2002, 20, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Kalisch-Smith, J.I.; Ved, N.; Sparrow, D.B. Environmental Risk Factors for Congenital Heart Disease. Cold Spring Harb. Perspect. Biol. 2020, 12, a037234. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, C.A.; James, S.J.; Jernigan, S.; Melnyk, S.; Lu, Y.; Malik, S.; Cleves, M.A. Congenital heart defects, maternal homocysteine, smoking, and the 677 C > T polymorphism in the methylenetetrahydrofolate reductase gene: Evaluating gene-environment interactions. Am. J. Obstet. Gynecol. 2006, 194, 218–224. [Google Scholar] [CrossRef]
- Hobbs, C.A.; Malik, S.; Zhao, W.; James, S.J.; Melnyk, S.; Cleves, M.A. Maternal homocysteine and congenital heart defects. J. Am. Coll. Cardiol. 2006, 47, 683–685. [Google Scholar] [CrossRef] [Green Version]
- Huhta, J.C.; Hernandez-Robles, J.A. Homocysteine, folate, and congenital heart defects. Fetal Pediatr. Pathol. 2005, 24, 71–79. [Google Scholar] [CrossRef]
- Vijay, P.; Lal, B.B.; Sood, V.; Khanna, R.; Alam, S. Cystatin C: Best biomarker for acute kidney injury and estimation of glomerular filtration rate in childhood cirrhosis. Eur. J. Pediatrics 2021, 180, 3287–3295. [Google Scholar] [CrossRef]
- Levey, A.S.; Inker, L.A. Assessment of Glomerular Filtration Rate in Health and Disease: A State of the Art Review. Clin. Pharmacol. Ther. 2017, 102, 405–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballew, S.; Matsushita, K. Cardiovascular Risk Prediction in CKD. Semin. Nephrol. 2018, 38, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Herbert, C.; Patel, M.; Nugent, A.; Dimas, V.V.; Guleserian, K.J.; Quigley, R.; Modem, V. Serum Cystatin C as an Early Marker of Neutrophil Gelatinase-associated Lipocalin-positive Acute Kidney Injury Resulting from Cardiopulmonary Bypass in Infants with Congenital Heart Disease. Congenit. Heart Dis. 2015, 10, E180–E188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Eynde, J.; Salaets, T.; Louw, J.J.; Herman, J.; Breysem, L.; Vlasselaers, D.; Desmet, L.; Meyns, B.; Budts, W.; Gewillig, M.; et al. Persistent Markers of Kidney Injury in Children Who Developed Acute Kidney Injury After Pediatric Cardiac Surgery: A Prospective Cohort Study. J. Am. Heart Assoc. 2022, 11, e024266. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Yang, X.; Shen, M.; Xue, H.; Qian, G.; Cao, F.; Guo, J.; Dong, W.; Chen, Y. Prognostic ability of cystatin C and homocysteine plasma levels for long-term outcomes in very old acute myocardial infarction patients. Clin. Interv. Aging 2018, 13, 1201–1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawasaki, M.; Arata, N.; Ogawa, Y. Obesity and abnormal glucose tolerance in the offspring of mothers with diabetes. Curr. Opin. Obstet. Gynecol. 2018, 30, 361–368. [Google Scholar] [CrossRef]
Groups | Type of CHD | n |
---|---|---|
Simple CHD group | VSD | 74 |
PS | 3 | |
Complex CHD group | TOF | 29 |
TGA | 16 | |
COA | 14 | |
HLHS | 10 | |
DORV | 9 | |
HRHS | 6 | |
TVD | 6 | |
AVSD | 5 | |
Vascular ring | 4 | |
SV | 6 | |
IAA | 3 | |
PS + VSD | 3 | |
PA | 2 | |
TA | 2 | |
PTA | 2 | |
HCM | 2 | |
Ebstein’s anomaly | 1 | |
Total | 197 |
Characteristics | Simple CHD Group Mean ± SD | Complex CHD Group Mean ± SD | Control Group Mean ± SD | p |
---|---|---|---|---|
Maternal age (y) | 31.96 ± 5.41 | 31.29 ± 4.54 | 31.07 ± 3.70 | >0.05 |
Pregestational BMI | 21.84 ± 3.38 | 21.28 ± 3.01 | 21.31 ± 2.92 | >0.05 |
Groups | n | UA S/D Mean ± SD | UA PI Mean ± SD | UA RI Mean ± SD |
---|---|---|---|---|
CHD group | 197 | 3.40 ± 0.79 | 1.17 ± 0.21 | 0.69 ± 0.06 |
Simple CHD group | 77 | 3.35 ± 0.70 | 1.16 ± 0.24 | 0.69 ± 0.06 |
Complex CHD group | 120 | 3.43 ± 0.84 | 1.18 ± 0.19 | 0.70 ± 0.06 |
Control group | 400 | 3.21 ± 0.57 | 1.12 ± 0.16 | 0.68 ± 0.05 |
p | Simple CHD vs. Complex CHD | 0.826 | 0.517 | 0.262 |
Simple CHD vs. Control group | 0.288 | 0.055 | 0.254 | |
Complex CHD vs. Control group | 0.022 | 0.001 | 0.003 |
Groups | n | HCY (μmol/L) Mean ± SD | Cys C (mg/L) Mean ± SD |
---|---|---|---|
CHD group | 197 | 4.56 ± 2.04 | 0.55 ± 0.11 |
Simple CHD group | 77 | 4.35 ± 1.66 | 0.56 ± 0.12 |
Complex CHD group | 120 | 4.69 ± 2.24 | 0.54 ± 0.11 |
Control group | 400 | 3.78 ± 1.44 | 0.51 ± 0.10 |
p | Simple CHD vs. Complex CHD | 0.162 | 0.695 |
Simple CHD vs. Control group | 0.005 | 0.007 | |
Complex CHD vs. Control group | <0.001 | 0.032 |
Variable | r | p |
---|---|---|
HCY | 0.157 | <0.001 |
Cys C | 0.131 | 0.001 |
Variable | r | p |
---|---|---|
HCY | 0.088 | 0.031 |
Cys C | 0.118 | 0.004 |
Variable | r | p |
---|---|---|
HCY | 0.066 | 0.108 |
Cys C | 0.118 | 0.004 |
Variable | B | S.E. | Wald | p | OR | 95%CI |
---|---|---|---|---|---|---|
Maternal age | 0.03 | 0.02 | 1.80 | 0.179 | 1.03 | 0.99–1.07 |
Pregestational BMI | 0.02 | 0.03 | 0.53 | 0.469 | 1.02 | 0.97–1.08 |
UA S/D | 0.43 | 0.13 | 10.44 | 0.001 | 1.54 | 1.19–2.00 |
UA PI | 1.61 | 0.49 | 10.97 | 0.001 | 5.01 | 1.93–12.98 |
UA RI | 4.24 | 1.54 | 7.55 | 0.006 | 69.55 | 3.38–1433.25 |
HCY | 0.31 | 0.06 | 26.40 | <0.001 | 1.37 | 1.21–1.54 |
Cys C | 3.21 | 0.46 | 27.42 | <0.001 | 24.75 | 4.75–129.10 |
Variable | Threshold | Sensitivity (%) | Specificity (%) | Area | S.E. | p | 95%CI |
---|---|---|---|---|---|---|---|
UA S/D | 3.265 | 51.8 | 59.2 | 0.565 | 0.03 | 0.010 | 0.52–0.61 |
UA PI | 1.065 | 75.1 | 39.5 | 0.567 | 0.03 | 0.008 | 0.52–0.62 |
UA RI | 0.685 | 57.9 | 52.2 | 0.564 | 0.03 | 0.011 | 0.52–0.61 |
HCY | 3.850 | 63.5 | 56.0 | 0.626 | 0.02 | <0.001 | 0.58–0.67 |
Cys C | 0.515 | 60.4 | 54.5 | 0.589 | 0.03 | <0.001 | 0.54–0.64 |
S/D + PI + RI | 0.307 | 64.5 | 52.5 | 0.574 | 0.03 | 0.003 | 0.53–0.62 |
HCY + Cys C | 0.371 | 45.7 | 78.5 | 0.651 | 0.02 | <0.001 | 0.60–0.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Ye, B.; Li, M.; Xia, Y.; Wu, Y.; Cheng, W. The UA Doppler Index, Plasma HCY, and Cys C in Pregnancies Complicated by Congenital Heart Disease of the Fetus. J. Clin. Med. 2022, 11, 5962. https://doi.org/10.3390/jcm11195962
Xu X, Ye B, Li M, Xia Y, Wu Y, Cheng W. The UA Doppler Index, Plasma HCY, and Cys C in Pregnancies Complicated by Congenital Heart Disease of the Fetus. Journal of Clinical Medicine. 2022; 11(19):5962. https://doi.org/10.3390/jcm11195962
Chicago/Turabian StyleXu, Xiaona, Baoying Ye, Min Li, Yuanqing Xia, Yi Wu, and Weiwei Cheng. 2022. "The UA Doppler Index, Plasma HCY, and Cys C in Pregnancies Complicated by Congenital Heart Disease of the Fetus" Journal of Clinical Medicine 11, no. 19: 5962. https://doi.org/10.3390/jcm11195962
APA StyleXu, X., Ye, B., Li, M., Xia, Y., Wu, Y., & Cheng, W. (2022). The UA Doppler Index, Plasma HCY, and Cys C in Pregnancies Complicated by Congenital Heart Disease of the Fetus. Journal of Clinical Medicine, 11(19), 5962. https://doi.org/10.3390/jcm11195962