Intramuscular Electrical Stimulation to Trigger Points: Insights into Mechanisms and Clinical Applications—A Scoping Review
Abstract
:1. Introduction
2. Methods
2.1. Scoping Review
2.2. Search Strategy
2.3. Study Selection
2.4. Data Mapping
3. Results
3.1. Search Results
3.2. Study Population
3.3. Effects of Interventions
3.4. Trigger Point Diagnostic Criteria
3.5. Intramuscular Electrical Stimulation Parameters
3.6. Mechanisms of Intramuscular Electrical Stimulation
4. Discussion
4.1. Electrophysiological Mechanisms
4.2. Blood Flow Mechanisms
4.3. Supraspinal Mechanisms
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fleckenstein, J.; Zaps, D.; Rüger, L.J.; Lehmeyer, L.; Freiberg, F.; Lang, P.M.; Irnich, D. Discrepancy between prevalence and perceived effectiveness of treatment methods in myofascial pain syndrome: Results of a cross-sectional, nationwide survey. BMC Musculoskelet. Disord. 2010, 11, 32. [Google Scholar] [CrossRef] [Green Version]
- Bron, C.; Dommerholt, J. Etiology of myofascial trigger points. Curr. Pain Headache Rep. 2012, 16, 439–444. [Google Scholar] [CrossRef] [Green Version]
- Chiarotto, A.; Clijsen, R.; Fernandez-de-Las-Penas, C.; Barbero, M. The Prevalence of Myofascial Trigger Points in Spinal Disorders: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2015, 97, 316–337. [Google Scholar] [CrossRef]
- Cerezo-Tellez, E.; Torres-Lacomba, M.; Mayoral-Del Moral, O.; Sanchez-Sanchez, B.; Dommerholt, J.; Gutierrez-Ortega, C. Prevalence of Myofascial Pain Syndrome in Chronic Non-Specific Neck Pain: A Population-Based Cross-Sectional Descriptive Study. Pain Med. 2016, 17, 2369–2377. [Google Scholar] [CrossRef] [Green Version]
- Lluch, E.; Nijs, J.; De Kooning, M.; Van Dyck, D.; Vanderstraeten, R.; Struyf, F.; Roussel, N.A. Prevalence, Incidence, Localization, and Pathophysiology of Myofascial Trigger Points in Patients with Spinal Pain: A Systematic Literature Review. J. Manip. Physiol. Ther. 2015, 38, 587–600. [Google Scholar] [CrossRef]
- Bron, C.; Dommerholt, J.; Stegenga, B.; Wensing, M.; Oostendorp, R.A. High prevalence of shoulder girdle muscles with myofascial trigger points in patients with shoulder pain. BMC Musculoskelet. Disord. 2011, 12, 139. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, D.C.; Belgrave, A.; Naden, A.; Fang, H.; Matthews, P.; Parshottam, S. The prevalence of myofascial trigger points in neck and shoulder-related disorders: A systematic review of the literature. BMC Musculoskelet. Disord. 2018, 19, 252. [Google Scholar] [CrossRef]
- Sanchez Romero, E.A.; Fernandez Carnero, J.; Villafane, J.H.; Calvo-Lobo, C.; Ochoa Saez, V.; Burgos Caballero, V.; Laguarta Val, S.; Pedersini, P.; Pecos Martin, D. Prevalence of Myofascial Trigger Points in Patients with Mild to Moderate Painful Knee Osteoarthritis: A Secondary Analysis. J. Clin. Med. 2020, 9, 2561. [Google Scholar] [CrossRef] [PubMed]
- Kordi Yoosefinejad, A.; Samani, M.; Jabarifard, F.; Setooni, M.; Mirsalari, R.; Kaviani, F.; Jazayeri Shooshtari, S.M. Comparison of the prevalence of myofascial trigger points of muscles acting on knee between patients with moderate degree of knee osteoarthritis and healthy matched people. J. Bodyw. Mov. Ther. 2021, 25, 113–118. [Google Scholar] [CrossRef]
- Zuil-Escobar, J.C.; Martínez-Cepa, C.B.; Martín-Urrialde, J.A.; Gómez-Conesa, A. Prevalence of myofascial trigger points and diagnostic criteria of different muscles in function of the medial longitudinal arch. Arch. Phys. Med. Rehabil. 2015, 96, 1123–1130. [Google Scholar] [CrossRef]
- Do, T.P.; Heldarskard, G.F.; Kolding, L.T.; Hvedstrup, J.; Schytz, H.W. Myofascial trigger points in migraine and tension-type headache. J. Headache Pain 2018, 19, 84. [Google Scholar] [CrossRef] [Green Version]
- Villafañe, J.H.; Lopez-Royo, M.P.; Herrero, P.; Valdes, K.; Cantero-Téllez, R.; Pedersini, P.; Negrini, S. Prevalence of Myofascial Trigger Points in Poststroke Patients With Painful Shoulders: A Cross-Sectional Study. PM&R 2019, 11, 1077–1082. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Blanco, C.; Fernández-de-las-Peñas, C.; Fernández-Mayoralas, D.M.; de-la-Llave-Rincón, A.I.; Pareja, J.A.; Svensson, P. Prevalence and anatomical localization of muscle referred pain from active trigger points in head and neck musculature in adults and children with chronic tension-type headache. Pain Med. 2011, 12, 1453–1463. [Google Scholar] [CrossRef]
- De Groef, A.; Van Kampen, M.; Dieltjens, E.; De Geyter, S.; Vos, L.; De Vrieze, T.; Geraerts, I.; Devoogdt, N. Identification of Myofascial Trigger Points in Breast Cancer Survivors with Upper Limb Pain: Interrater Reliability. Pain Med. 2018, 19, 1650–1656. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Lao, C.; Cantarero-Villanueva, I.; Fernández-de-Las-Peñas, C.; Del-Moral-Ávila, R.; Menjón-Beltrán, S.; Arroyo-Morales, M. Development of active myofascial trigger points in neck and shoulder musculature is similar after lumpectomy or mastectomy surgery for breast cancer. J. Bodyw. Mov. Ther. 2012, 16, 183–190. [Google Scholar] [CrossRef]
- Sikdar, S.; Shah, J.P.; Gebreab, T.; Yen, R.H.; Gilliams, E.; Danoff, J.; Gerber, L.H. Novel applications of ultrasound technology to visualize and characterize myofascial trigger points and surrounding soft tissue. Arch. Phys. Med. Rehabil. 2009, 90, 1829–1838. [Google Scholar] [CrossRef] [Green Version]
- Ballyns, J.J.; Shah, J.P.; Hammond, J.; Gebreab, T.; Gerber, L.H.; Sikdar, S. Objective sonographic measures for characterizing myofascial trigger points associated with cervical pain. J. Ultrasound Med. 2011, 30, 1331–1340. [Google Scholar] [CrossRef] [Green Version]
- Brückle, W.; Suckfüll, M.; Fleckenstein, W.; Weiss, C.; Müller, W. Tissue pO2 measurement in taut back musculature (m. erector spinae). Z. Rheumatol. 1990, 49, 208–216. [Google Scholar]
- Gerwin, R.D.; Cagnie, B.; Petrovic, M.; Van Dorpe, J.; Calders, P.; De Meulemeester, K. Foci of Segmentally Contracted Sarcomeres in Trapezius Muscle Biopsy Specimens in Myalgic and Nonmyalgic Human Subjects: Preliminary Results. Pain Med. 2020, 21, 2348–2356. [Google Scholar] [CrossRef] [Green Version]
- Ball, A.; Perreault, T.; Fernández-de-Las-Peñas, C.; Agnone, M.; Spennato, J. Ultrasound Confirmation of the Multiple Loci Hypothesis of the Myofascial Trigger Point and the Diagnostic Importance of Specificity in the Elicitation of the Local Twitch Response. Diagnostics 2022, 12, 321. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.P.; Phillips, T.M.; Danoff, J.V.; Gerber, L.H. An in vivo microanalytical technique for measuring the local biochemical milieu of human skeletal muscle. J. Appl. Physiol. 2005, 99, 1977–1984. [Google Scholar] [CrossRef]
- Shah, J.P.; Danoff, J.V.; Desai, M.J.; Parikh, S.; Nakamura, L.Y.; Phillips, T.M.; Gerber, L.H. Biochemicals associated with pain and inflammation are elevated in sites near to and remote from active myofascial trigger points. Arch. Phys. Med. Rehabil. 2008, 89, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Shah, J.P.; Gilliams, E.A. Uncovering the biochemical milieu of myofascial trigger points using in vivo microdialysis: An application of muscle pain concepts to myofascial pain syndrome. J. Bodyw. Mov. Ther. 2008, 12, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Cagnie, B.; Barbe, T.; De Ridder, E.; Van Oosterwijck, J.; Cools, A.; Danneels, L. The influence of dry needling of the trapezius muscle on muscle blood flow and oxygenation. J. Manip. Physiol. Ther. 2012, 35, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Segura-Pérez, M.; Hernández-Criado, M.T.; Calvo-Lobo, C.; Vega-Piris, L.; Fernández-Martín, R.; Rodríguez-Sanz, D. A Multimodal Approach for Myofascial Pain Syndrome: A Prospective Study. J. Manip. Physiol. Ther. 2017, 40, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Fernández-de-Las-Peñas, C.; Nijs, J. Trigger point dry needling for the treatment of myofascial pain syndrome: Current perspectives within a pain neuroscience paradigm. J. Pain Res. 2019, 12, 1899–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otadi, K.; Sarafraz, H.; Jalaie, S.; Rasouli, O. Combining Patient Education with Dry Needling and Ischemic Compression for Treating Myofascial Trigger Points in Office Workers with Neck Pain: A Single-Blinded, Randomized Trial. J. Chiropr. Med. 2020, 19, 222–229. [Google Scholar] [CrossRef]
- Gallego-Sendarrubias, G.M.; Rodríguez-Sanz, D.; Calvo-Lobo, C.; Martín, J.L. Efficacy of dry needling as an adjunct to manual therapy for patients with chronic mechanical neck pain: A randomised clinical trial. Acupunct. Med. 2020, 38, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Barbero, M.; Schneebeli, A.; Koetsier, E.; Maino, P. Myofascial pain syndrome and trigger points: Evaluation and treatment in patients with musculoskeletal pain. Curr. Opin. Support. Palliat. Care 2019, 13, 270–276. [Google Scholar] [CrossRef]
- Mata Diz, J.B.; de Souza, J.R.; Leopoldino, A.A.; Oliveira, V.C. Exercise, especially combined stretching and strengthening exercise, reduces myofascial pain: A systematic review. J. Physiother. 2017, 63, 17–22. [Google Scholar] [CrossRef]
- Ahmed, S.; Khattab, S.; Haddad, C.; Babineau, J.; Furlan, A.; Kumbhare, D. Effect of aerobic exercise in the treatment of myofascial pain: A systematic review. J. Exerc. Rehabil. 2018, 14, 902–910. [Google Scholar] [CrossRef]
- Ahmed, S.; Haddad, C.; Subramaniam, S.; Khattab, S.; Kumbhare, D. The Effect of Electric Stimulation Techniques on Pain and Tenderness at the Myofascial Trigger Point: A Systematic Review. Pain Med. 2019, 20, 1774–1788. [Google Scholar] [CrossRef]
- Sánchez-Infante, J.; Navarro-Santana, M.J.; Bravo-Sánchez, A.; Jiménez-Diaz, F.; Abián-Vicén, J. Is Dry Needling Applied by Physical Therapists Effective for Pain in Musculoskeletal Conditions? A Systematic Review and Meta-Analysis. Phys. Ther. 2021, 101, pzab070. [Google Scholar] [CrossRef]
- Li, X.; Wang, R.; Xing, X.; Shi, X.; Tian, J.; Zhang, J.; Ge, L.; Zhang, J.; Li, L.; Yang, K. Acupuncture for Myofascial Pain Syndrome: A Network Meta-Analysis of 33 Randomized Controlled Trials. Pain Physician 2017, 20, E883–E902. [Google Scholar]
- Galasso, A.; Urits, I.; An, D.; Nguyen, D.; Borchart, M.; Yazdi, C.; Manchikanti, L.; Kaye, R.J.; Kaye, A.D.; Mancuso, K.F.; et al. A Comprehensive Review of the Treatment and Management of Myofascial Pain Syndrome. Curr. Pain Headache Rep. 2020, 24, 43. [Google Scholar] [CrossRef]
- Garcia-de-Miguel, S.; Pecos-Martin, D.; Larroca-Sanz, T.; Sanz-de-Vicente, B.; Garcia-Montes, L.; Fernandez-Matias, R.; Gallego-Izquierdo, T. Short-Term Effects of PENS versus Dry Needling in Subjects with Unilateral Mechanical Neck Pain and Active Myofascial Trigger Points in Levator Scapulae Muscle: A Randomized Controlled Trial. J. Clin. Med. 2020, 9, 1665. [Google Scholar] [CrossRef]
- Bozchelooee, A.B.; Tajali, S.B.; Fakhari, Z.; Hadizadeh, M. Immediate Effects of Electro Acupuncture versus Laser Acupuncture on Pain and Dysfunction Following Chronic Myofascial Neck Pain. J. Mod. Rehabil. 2022, 16, 271–279. [Google Scholar]
- Aranha, M.F.; Müller, C.E.; Gavião, M.B. Pain intensity and cervical range of motion in women with myofascial pain treated with acupuncture and electroacupuncture: A double-blinded, randomized clinical trial. Braz. J. Phys. Ther. 2015, 19, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, J.V.L.; Calvo-Lobo, C.; Zugasti, A.M.; Fernandez-Carnero, J.; Beltran Alacreu, H. Effectiveness of Dry Needling with Percutaneous Electrical Nerve Stimulation of High Frequency Versus Low Frequency in Patients with Myofascial Neck Pain. Pain Physician 2021, 24, 135–143. [Google Scholar]
- Lin, T.; Gargya, A.; Singh, H.; Sivanesan, E.; Gulati, A. Mechanism of Peripheral Nerve Stimulation in Chronic Pain. Pain Med. 2020, 21, S6–S12. [Google Scholar] [CrossRef]
- Napadow, V. When a white horse is a horse: Embracing the (obvious?) overlap between acupuncture and neuromodulation. J. Altern. Complement. Med. 2018, 24, 621–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadizadeh, M.; Bashardoust Tajali, S.; Attarbashi Moghadam, B.; Jalaie, S.; Bazzaz, M. Effects of Intramuscular Electrical Stimulation on Symptoms Following Trigger Points; A Controlled Pilot Study. J. Mod. Rehabil. 2017, 11, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Langevin, H.M.; Schnyer, R.; MacPherson, H.; Davis, R.; Harris, R.E.; Napadow, V.; Wayne, P.M.; Milley, R.J.; Lao, L.; Stener-Victorin, E.; et al. Manual and electrical needle stimulation in acupuncture research: Pitfalls and challenges of heterogeneity. J. Altern. Complement. Med. 2015, 21, 113–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumen, A.; Sarsan, A.; Alkan, H.; Yildiz, N.; Ardic, F. Efficacy of low level laser therapy and intramuscular electrical stimulation on myofascial pain syndrome. J. Back. Musculoskelet. Rehabil. 2015, 28, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Brennan, K.; Elifritz, K.M.; Comire, M.M.; Jupiter, D.C. Rate and maintenance of improvement of myofascial pain with dry needling alone vs. dry needling with intramuscular electrical stimulation: A randomized controlled trial. J. Man. Manip. Ther. 2021, 29, 216–226. [Google Scholar] [CrossRef] [PubMed]
- Aranha, M.F.; Alves, M.C.; Bérzin, F.; Gavião, M.B. Efficacy of electroacupuncture for myofascial pain in the upper trapezius muscle: A case series. Braz. J. Phys. Ther. 2011, 15, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Hadizadeh, M.; Rahimi, A.; Javaherian, M.; Velayati, M.; Dommerholt, J. The efficacy of intramuscular electrical stimulation in the management of patients with myofascial pain syndrome: A systematic review. Chiropr. Man. Therap. 2021, 29, 40. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Chen, C.C.; Lee, C.S.; Lin, T.C.; Chan, R.C. Effects of needle electrical intramuscular stimulation on shoulder and cervical myofascial pain syndrome and microcirculation. J. Chin. Med. Assoc. 2008, 71, 200–206. [Google Scholar] [CrossRef]
- Müller, C.E.; Aranha, M.F.; Gavião, M.B. Two-dimensional ultrasound and ultrasound elastography imaging of trigger points in women with myofascial pain syndrome treated by acupuncture and electroacupuncture: A double-blinded randomized controlled pilot study. Ultrason. Imaging 2015, 37, 152–167. [Google Scholar] [CrossRef]
- Niddam, D.M.; Chan, R.C.; Lee, S.H.; Yeh, T.C.; Hsieh, J.C. Central modulation of pain evoked from myofascial trigger point. Clin. J. Pain. 2007, 23, 440–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margalef, R.; Bosque, M.; Monclus, P.; Flores, P.; Minaya-Munoz, F.; Valera-Garrido, F.; Santafe, M.M. Percutaneous Application of Galvanic Current in Rodents Reverses Signs of Myofascial Trigger Points. Evid. Based Complement. Altern. Med. 2020, 2020, 4173218. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.Y.; Fernandez-de-Las-Penas, C.; Yue, S.W. Myofascial trigger points: Spontaneous electrical activity and its consequences for pain induction and propagation. Chin. Med. 2011, 6, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerwin, R.D. The taut band and other mysteries of the trigger point: An examination of the mechanisms relevant to the development and maintenance of the trigger point. J. Musculoskelet. Pain 2008, 16, 115–121. [Google Scholar] [CrossRef]
- Huang, Q.M.; Lv, J.J.; Ruanshi, Q.M.; Liu, L. Spontaneous electrical activities at myofascial trigger points at different stages of recovery from injury in a rat model. Acupunct. Med. 2015, 33, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Kuan, T.S.; Hsieh, Y.L.; Chen, S.M.; Chen, J.T.; Yen, W.C.; Hong, C.Z. The myofascial trigger point region: Correlation between the degree of irritability and the prevalence of endplate noise. Am. J. Phys. Med. Rehabil. 2007, 86, 183–189. [Google Scholar] [CrossRef]
- Kuan, T.-S.; Hong, C.-Z.; Chen, S.-M.; Tsai, C.-T.; Yen, W.-C.; Chen, J.-T.; Feng, C.-Y. Myofascial Pain Syndrome: Correlation between the Irritability of Trigger Points and the Prevalence of Local Twitch Responses during Trigger Point Injection. J. Musculoskelet. Pain 2012, 20, 250–256. [Google Scholar] [CrossRef]
- Liu, Q.-G.; Liu, L.; Huang, Q.-M.; Nguyen, T.-T.; Ma, Y.-T.; Zhao, J.-M. Decreased spontaneous electrical activity and acetylcholine at myofascial trigger spots after dry needling treatment: A pilot study. Evid.-Based Complement. Altern. Med. 2017, 2017, 3938191. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Huang, Q.; Liu, L.; Nguyen, T.T. Efficacy of Dry Needling Under EMG Guidance for Myofascial Neck and Shoulder Pain: A Randomized Clinical Trial. J. Pain Res. 2022, 15, 2293–2302. [Google Scholar] [CrossRef]
- Bosque, M.; Margalef, R.; Carvajal, O.; Alvarez, D.; Santafe, M.M. Dry Needling Produces Mild Injuries Irrespective to Muscle Stiffness and Tension in Ex Vivo Mice Muscles. Pain Res. Manag. 2022, 2022, 8920252. [Google Scholar] [CrossRef]
- Domingo, A.; Mayoral, O.; Monterde, S.; Santafe, M.M. Neuromuscular damage and repair after dry needling in mice. Evid. Based Complement. Altern. Med. 2013, 2013, 260806. [Google Scholar] [CrossRef] [PubMed]
- Martín-Pintado-Zugasti, A.; Mayoral Del Moral, O.; Gerwin, R.D.; Fernández-Carnero, J. Post-needling soreness after myofascial trigger point dry needling: Current status and future research. J. Bodyw. Mov. Ther. 2018, 22, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Martin-Pintado-Zugasti, A.; Fernandez-Carnero, J.; Leon-Hernandez, J.V.; Calvo-Lobo, C.; Beltran-Alacreu, H.; Alguacil-Diego, I.; Gallego-Izquierdo, T.; Pecos-Martin, D. Postneedling Soreness and Tenderness After Different Dosages of Dry Needling of an Active Myofascial Trigger Point in Patients With Neck Pain: A Randomized Controlled Trial. PM&R 2018, 10, 1311–1320. [Google Scholar] [CrossRef]
- Noguchi, E.; Ohsawa, H.; Kobayashi, S.; Shimura, M.; Uchida, S.; Sato, Y. The effect of electro-acupuncture stimulation on the muscle blood flow of the hindlimb in anesthetized rats. J. Auton. Nerv. Syst. 1999, 75, 78–86. [Google Scholar] [CrossRef]
- Kubota, T.; Mori, H.; Morisawa, T.; Hanyu, K.; Kuge, H.; Watanabe, M.; Tanaka, T.H. Influence of electroacupuncture stimulation on skin temperature, skin blood flow, muscle blood volume and pupil diameter. Acupunct. Med. 2020, 38, 86–92. [Google Scholar] [CrossRef]
- Mori, H.; Kuge, H.; Tanaka, T.H.; Taniwaki, E. Influence of different durations of electroacupuncture stimulation on skin blood flow and muscle blood volume. Acupunct. Med. 2014, 32, 167–171. [Google Scholar] [CrossRef]
- Kimura, K.; Ryujin, T.; Uno, M.; Wakayama, I. The effect of electroacupuncture with different frequencies on muscle oxygenation in humans. Evid. Based Complement. Altern. Med. 2015, 2015, 620785. [Google Scholar] [CrossRef] [PubMed]
- Loaiza, L.A.; Yamaguchi, S.; Ito, M.; Ohshima, N. Electro-acupuncture stimulation to muscle afferents in anesthetized rats modulates the blood flow to the knee joint through autonomic reflexes and nitric oxide. Auton. Neurosci. 2002, 97, 103–109. [Google Scholar] [CrossRef]
- Sato, A.; Sato, Y.; Shimura, M.; Uchida, S. Calcitonin gene-related peptide produces skeletal muscle vasodilation following antidromic stimulation of unmyelinated afferents in the dorsal root in rats. Neurosci. Lett. 2000, 283, 137–140. [Google Scholar] [CrossRef]
- Shinbara, H.; Okubo, M.; Kimura, K.; Mizunuma, K.; Sumiya, E. Participation of calcitonin gene related peptide released via axon reflex in the local increase in muscle blood flow following manual acupuncture. Acupunct. Med. 2013, 31, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, T.; Yu, K.; Xie, H.; Bai, Y.; Zhang, L.; Wu, Y.; Wang, N. Neuroprotective effect of electroacupuncture and upregulation of hypoxia-inducible factor-1α during acute ischaemic stroke in rats. Acupunct. Med. 2017, 35, 360–365. [Google Scholar] [CrossRef]
- Hsieh, Y.L.; Yang, S.A.; Yang, C.C.; Chou, L.W. Dry needling at myofascial trigger spots of rabbit skeletal muscles modulates the biochemicals associated with pain, inflammation, and hypoxia. Evid. Based Complement. Altern. Med. 2012, 2012, 342165. [Google Scholar] [CrossRef] [Green Version]
- Botelho, L.; Angoleri, L.; Zortea, M.; Deitos, A.; Brietzke, A.; Torres, I.L.S.; Fregni, F.; Caumo, W. Insights about the Neuroplasticity State on the Effect of Intramuscular Electrical Stimulation in Pain and Disability Associated with Chronic Myofascial Pain Syndrome (MPS): A Double-Blind, Randomized, Sham-Controlled Trial. Front. Hum. Neurosci. 2018, 12, 388. [Google Scholar] [CrossRef] [Green Version]
- Niddam, D.M.; Lee, S.H.; Su, Y.T.; Chan, R.C. Brain structural changes in patients with chronic myofascial pain. Eur. J. Pain 2017, 21, 148–158. [Google Scholar] [CrossRef]
- Xie, P.; Qin, B.; Song, G.; Zhang, Y.; Cao, S.; Yu, J.; Wu, J.; Wang, J.; Zhang, T.; Zhang, X.; et al. Microstructural Abnormalities Were Found in Brain Gray Matter from Patients with Chronic Myofascial Pain. Front. Neuroanat. 2016, 10, 122. [Google Scholar] [CrossRef] [Green Version]
- Kregel, J.; Coppieters, I.; DePauw, R.; Malfliet, A.; Danneels, L.; Nijs, J.; Cagnie, B.; Meeus, M. Does Conservative Treatment Change the Brain in Patients with Chronic Musculoskeletal Pain? A Systematic Review. Pain Physician 2017, 20, 139–154. [Google Scholar] [PubMed]
- Botelho, L.M.; Morales-Quezada, L.; Rozisky, J.R.; Brietzke, A.P.; Torres, I.L.; Deitos, A.; Fregni, F.; Caumo, W. A Framework for Understanding the Relationship between Descending Pain Modulation, Motor Corticospinal, and Neuroplasticity Regulation Systems in Chronic Myofascial Pain. Front. Hum. Neurosci. 2016, 10, 308. [Google Scholar] [CrossRef] [Green Version]
- Cashin, A.G.; McAuley, J.H. Clinimetrics: Physiotherapy Evidence Database (PEDro) Scale. J. Physiother. 2020, 66, 59. [Google Scholar] [CrossRef] [PubMed]
Database | Search Strategy | Studies Located |
---|---|---|
PubMed/ Medline | (“Electrical Stimulation”[Title/Abstract] OR electroacupuncture[Title/Abstract] OR “electroacupuncture”[Title/Abstract] OR electric*[Title/Abstract]) AND (Intramuscular[Title/Abstract] OR percutaneous [Title/Abstract] OR “dry needling”[Title/Abstract] OR Acupuncture[Title/Abstract] OR needling[Title/Abstract]) AND (myofascial[Title/Abstract] OR “trigger point”[Title/Abstract] OR “Trigger spot”[Title/Abstract] OR “contracture knot”[Title/Abstract] OR contraction knot[Title/Abstract] OR Muscular[Title/Abstract] OR muscle[Title/Abstract] OR nerve[Title/Abstract]) | 2323 |
CINAHL | TI ((“Electrical Stimulation” OR electroacupuncture OR “electro acupuncture” OR electric*)) OR AB ((“Electrical Stimulation” OR electroacupuncture OR “electro acupuncture” OR electric*)) AND TI ((Intramuscular OR percutaneous OR “dry needling” OR Acupuncture OR needling)) OR AB ((Intramuscular OR percutaneous OR “dry needling” OR Acupuncture OR needling)) AND TI ((myofascial OR “trigger point” OR “Trigger spot” OR Muscular OR muscle OR nerve)) OR AB ((myofascial OR “trigger point” OR “Trigger spot” OR Muscular OR muscle OR nerve)) | 736 |
AMED | TI ((“Electrical Stimulation” OR electroacupuncture OR “electro acupuncture” OR electric*)) OR AB ((“Electrical Stimulation” OR electroacupuncture OR “electro acupuncture” OR electric*)) AND TI ((Intramuscular OR percutaneous OR “dry needling” OR Acupuncture OR needling)) OR AB ((Intramuscular OR percutaneous OR “dry needling” OR Acupuncture OR needling)) AND TI ((myofascial OR “trigger point” OR “Trigger spot” OR Muscular OR muscle OR nerve)) OR AB ((myofascial OR “trigger point” OR “Trigger spot” OR Muscular OR muscle OR nerve)) | 298 |
Scopus | ((TITLE ((“Electrical stimulation” OR electroacupuncture OR “electro acupuncture” OR electric*)) OR ABS ((“Electrical Stimulation” OR electroacupuncture OR “electroacupuncture” OR electric*)))) AND ((TITLE ((intramuscular OR percutaneous OR “dry needling” OR acupuncture OR needling)) OR ABS ((intramuscular OR percutaneous OR “dryneedling” OR acupuncture OR needling)))) AND ((TITLE ((myofascial OR “trigger point” OR “Trigger spot” OR muscular OR muscle OR nerve)) OR ABS ((myofascial OR “trigger point” OR “Trigger spot” OR muscular OR muscle OR nerve)))) AND (LIMIT-TO (DOCTYPE, “ar”) OR LIMIT-TO (DOCTYPE, “re”) OR LIMIT-TO (DOCTYPE, “cp”)) | 1884 |
Cochrane Central Register of Controlled Trials | TI ((“Electrical Stimulation” OR electroacupuncture OR “electro acupuncture” OR electric*)) OR AB ((“Electrical Stimulation” OR electroacupuncture OR “electro acupuncture” OR electric*)) AND TI ((Intramuscular OR percutaneous OR “dry needling” OR Acupuncture OR needling)) OR AB ((Intramuscular OR percutaneous OR “dry needling” OR Acupuncture OR needling)) AND TI ((myofascial OR “trigger point” OR “Trigger spot” OR Muscular OR muscle OR nerve)) OR AB ((myofascial OR “trigger point” OR “Trigger spot” OR Muscular OR muscle OR nerve)) | 908 |
Inclusion Criteria | Exclusion Criteria | |
---|---|---|
Study design | Experimental or quasi-experimental studies randomized controlled trials, cohort studies, case series, case studies and animal studies | Systematic reviews, meta-analyses, scoping or narrative reviews, poster presentations |
Interventions | Needle based electrotherapeutic modalities administered to the TrP region; Intramuscular Electrical Stimulation (IMES), Percutaneous Electrical Nerve Stimulation (PENS), Electroacupuncture (EA) or Electrical Dry Needling (DN) | Studies that did not administer electrical needle stimulation to an identified Trigger Point (TrP). Studies using Transcutaneous Electrical Nerve Stimulation (TENS), Neuromuscular Electrical Stimulation or only surface level electrical stimulation |
Study population | Human or animal subjects with one or more TrPs diagnosed using consensus based-criteria and/or ultrasound, Electromyography (EMG), Magnetic Resonance Imaging (MRI), Magnetic Resonance Elastography (MRE) or other validated imaging to identify TrPs | Studies that did not report identifying the TrP location or that did not accurately locate the TrP according to inclusion criteria |
Mechanisms evaluated | Studies assessing structural, biochemical, neurophysiological or brain change/function effects during or following needle based electrotherapeutic modalities administered to the TrP region. Mechanisms outcomes included, but were not limited to, microdialysis, electromyography, ultrasound, MRI/MRE, Functional Magnetic Resonance Imaging (fMRI), tissue biopsy, neuroanatomical tracing and intracellular recording. | Mechanisms not assessed or assessed but electrotherapeutic modalities administered to the TrP region |
Language | English | Not English |
Year of publication | No limits | No limits |
Study | Subjects | TrP Diagnosis | Clinical Findings |
---|---|---|---|
Lee et al. (2008) [49] | 35 healthy females and 5 healthy males aged 33–51 with Myofascial Pain Syndrome (MPS) | Investigator identified most tender TrP and marked area. | Visual analog scale (VAS) and pressure pain thresholds (PPT) significantly improved immediately after each treatment. Immediate and mid-term positive effects on cervical and shoulder range of motion (ROM). Overall negative correlation between epidermal blood flow and VAS score before the first treatment. |
Margalef et al. (2020) [52] | 35 deceased young adult (45–50 days postnatal) male Swiss mice and 6 deceased young adult (60–70 days postnatal) Sprague Dawley rats | Levator auris longus was injected with neostigmine to promote ACh release and mimic TrPs in this region. | Applications of a higher intensity current (3 mA and 1.5 mA) proved most effective in reversing the action of neostigmine at both 3 h and 24 h. Application of percutaneous currents produced both an increase in the number and speed of local twitch responses compared with dry needling. |
Muller et al. (2015) [50] | 24 women with BMI 18–27.5 and regular menstrual cycle aged 20–40 with MPS | Blinded, experienced PT conducted palpation protocol and used 5 diagnostic criteria. Categorized into active or latent TrPs. | Significant decrease of intensity in general, right, and left trapezius pain VAS (0–10 cm) in the electroacupuncture group. |
Niddam et al. (2007) [51] | 13 healthy females and 8 healthy males with an average age of 35 and MPS | Palpable, painful band was identified and local twitches were evoked by needle manipulation. | 48% of patients had a significant increase in pain threshold after IMES. 57% of patients had a significant increase in PPT. |
Study | Muscles Treated | Frequency (Hz) Intensity (mA) Pulse Width | Number of Needles Sessions Duration (Mins) | Mechanisms Studied |
---|---|---|---|---|
Lee et al. (2008) [49] | Upper Trapezius or Levator Scapulae | 2 Hz 0–20 mA based on visible contraction 1 ms | 1 4 sessions 3 min | Regional blood flow significantly increased immediately but temporarily after each treatment. |
Margalef et al. (2020) [52] | Levator auris longus and gastrocnemius | Protocol 1: 0.4 mA for 5 s Protocol 2: 1.5 mA for 5 s Protocol 3: 3 mA for 3 s Microcurrent stimulation: 10−6 mA at 10 Hz | 3 per muscle 4 sessions in protocol 1, 3 sessions in protocol 2, and 3 sessions in protocol 3 10 min | Significant reduction of endplate noise in TrP areas following Intramuscular Electrical Stimulation (IMES). Total number and speed of LTRs increased by 144% and 230%, respectively, with IMES |
Muller et al. (2015) [50] | Upper trapezius | Alternated between 2 Hz/700 µs/5 s and 100 Hz/500 µs/5 s | 4 8 30 min | Decreased TrP area and strain ratio in both right and left trapezius post-treatment. |
Niddam et al. (2007) [51] | Upper left trapezius | 2 Hz 3.3–6.1 mA 1 ms | 1 2 sessions in group 1, 3 sessions in group 2 3 min | IMES modulated PAG activity to painful stimuli more in patients that responded |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perreault, T.; Ball, A.; Dommerholt, J.; Theiss, R.; Fernández-de-las-Peñas, C.; Butts, R. Intramuscular Electrical Stimulation to Trigger Points: Insights into Mechanisms and Clinical Applications—A Scoping Review. J. Clin. Med. 2022, 11, 6039. https://doi.org/10.3390/jcm11206039
Perreault T, Ball A, Dommerholt J, Theiss R, Fernández-de-las-Peñas C, Butts R. Intramuscular Electrical Stimulation to Trigger Points: Insights into Mechanisms and Clinical Applications—A Scoping Review. Journal of Clinical Medicine. 2022; 11(20):6039. https://doi.org/10.3390/jcm11206039
Chicago/Turabian StylePerreault, Thomas, Andrew Ball, Jan Dommerholt, Robert Theiss, César Fernández-de-las-Peñas, and Raymond Butts. 2022. "Intramuscular Electrical Stimulation to Trigger Points: Insights into Mechanisms and Clinical Applications—A Scoping Review" Journal of Clinical Medicine 11, no. 20: 6039. https://doi.org/10.3390/jcm11206039
APA StylePerreault, T., Ball, A., Dommerholt, J., Theiss, R., Fernández-de-las-Peñas, C., & Butts, R. (2022). Intramuscular Electrical Stimulation to Trigger Points: Insights into Mechanisms and Clinical Applications—A Scoping Review. Journal of Clinical Medicine, 11(20), 6039. https://doi.org/10.3390/jcm11206039