Relationship between Testosterone and Sarcopenia in Older-Adult Men: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Sarcopenia: Definition and Etiology
4. Testosterone and Sarcopenia
4.1. Testosterone and Muscle Metabolism
4.2. Clinical Effects of Testosterone for Muscle
4.3. Evidence of Testosterone Decrease in Frailty/Sarcopenia
5. Efficacy of Testosterone Replacement Therapy for Sarcopenia
5.1. Indication of Testosterone Replacement Therapy
5.2. Efficacy of Testosterone Replacement Therapy for Sarcopenia
5.3. Other Systemic Effects of Testosterone Replacement Therapy
5.4. Adverse Effects and Risks of Testosterone Replacement Therapy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bassil, N.; Alkaade, S.; Morley, J.E. The benefits and risks of testosterone replacement therapy: A review. Ther. Clin. Risk Manag. 2009, 5, 427–448. [Google Scholar] [PubMed] [Green Version]
- Harman, S.M.; Metter, E.J.; Tobin, J.D.; Pearson, J.; Blackman, M.R. Baltimore Longitudinal Study of Aging Baltimore longitudinal study of aging: Longitudinal effects of aging on serum total and free testosterone levels in healthy men: Baltimore longitudinal study of aging. J. Clin. Endocrinol. Metab. 2001, 86, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Lunenfeld, B.; Mskhalaya, G.; Zitzmann, M.; Arver, S.; Kalinchenko, S.; Tishova, Y.; Morgentaler, A. Recommendations on the diagnosis, treatment and monitoring of hypogonadism in men. Aging Male 2015, 18, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Lunenfeld, B.; Arver, S.; Moncada, I.; Rees, D.A.; Schulte, H.M. How to help the aging male? Current approaches to hypogonadism in primary care. Aging Male 2012, 15, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Delmonico, M.J.; Harris, T.B.; Lee, J.S.; Visser, M.; Nevitt, M.; Kritchevsky, S.B.; Tylavsky, F.A.; Newman, A.B. Health, Aging and Body Composition Study. Alternative definitions of sarcopenia, lower extremity performance, and functional impairment with aging in older men and women. J. Am. Geriatr. Soc. 2007, 55, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.L.; Bandeen-Roche, K.; Varadhan, R.; Zhou, J.; Fried, L.P. Initial manifestations of frailty criteria and the development of frailty phenotype in the Women’s Health and Aging Study II. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 984–990. [Google Scholar] [CrossRef] [Green Version]
- Hida, T.; Harada, A.; Imagama, S.; Ishiguro, N. Managing sarcopenia and its related-fractures to improve quality of life in geriatric populations. Aging Dis. 2014, 5, 226–237. [Google Scholar] [CrossRef]
- Kitamura, A.; Seino, S.; Abe, T.; Nofuji, Y.; Yokoyama, Y.; Amano, H.; Nishi, M.; Taniguchi, Y.; Narita, M.; Fujiwara, Y.; et al. Sarcopenia: Prevalence, associated factors, and the risk of mortality and disability in Japanese older adults. J. Cachexia Sarcopenia Muscle 2021, 12, 30–38. [Google Scholar] [CrossRef]
- Petermann-Rocha, F.; Balntzi, V.; Gray, S.R.; Lara, J.; Ho, F.K.; Pell, J.P.; Celis-Morales, C. Global prevalence of sarcopenia and severe sarcopenia: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle 2022, 13, 86–99. [Google Scholar] [CrossRef]
- Papadopoulou, S.K. Sarcopenia: A contemporary health problem among older adult populations. Nutrients 2020, 12, 1293. [Google Scholar] [CrossRef]
- Rosenberg, I.H. Sarcopenia: Origins and clinical relevance. J. Nutr. 1997, 127, 990S–991S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wannamethee, S.G.; Atkins, J.L. Muscle loss and obesity: The health implications of sarcopenia and sarcopenic obesity. Proc. Nutr. Soc. 2015, 74, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, R.N.; Koehler, K.M.; Gallagher, D.; Romero, L.; Heymsfield, S.B.; Ross, R.R.; Garry, P.J.; Lindeman, R.D. Epidemiology of sarcopenia among the elderly in New Mexico. Am. J. Epidemiol. 1998, 147, 755–763. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. European Working Group on Sarcopenia in Older People Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The FNIH sarcopenia project: Rationale, study description, conference recommendations, and final estimates. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.K.; Liu, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Bahyah, K.S.; Chou, M.Y.; Chen, L.Y.; Hsu, P.S.; Krairit, O.; et al. Sarcopenia in Asia: Consensus report of the Asian working group for sarcopenia. J. Am. Med. Dir. Assoc. 2014, 15, 95–101. [Google Scholar] [CrossRef]
- Yamada, M.; Nishiguchi, S.; Fukutani, N.; Tanigawa, T.; Yukutake, T.; Kayama, H.; Aoyama, T.; Arai, H. Prevalence of sarcopenia in community-dwelling Japanese older adults. J. Am. Med. Dir. Assoc. 2013, 14, 911–915. [Google Scholar] [CrossRef]
- Lin, C.C.; Lin, W.Y.; Meng, N.H.; Li, C.I.; Liu, C.S.; Lin, C.H.; Chang, C.K.; Lee, Y.D.; Lee, C.C.; Li, T.C. Sarcopenia prevalence and associated factors in an elderly Taiwanese metropolitan population. J. Am. Geriatr. Soc. 2013, 61, 459–462. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Landi, F.; Schneider, S.M.; Zúñiga, C.; Arai, H.; Boirie, Y.; Chen, L.K.; Fielding, R.A.; Martin, F.C.; Michel, J.P.; et al. Prevalence of and interventions for sarcopenia in ageing adults: A systematic review. Report of the international sarcopenia initiative (EWGSOP and IWGS). Age Ageing 2014, 43, 748–759. [Google Scholar] [CrossRef]
- Papadopoulou, S.K.; Tsintavis, P.; Potsaki, P.; Papandreou, D. Differences in the prevalence of sarcopenia in community-dwelling, nursing home and hospitalized individuals. A systematic review and meta-analysis. J. Nutr. Health Aging 2020, 24, 83–90. [Google Scholar] [CrossRef]
- Vellas, B.; Guigoz, Y.; Garry, P.J.; Nourhashemi, F.; Bennahum, D.; Lauque, S.; Albarede, J.L. The Mini Nutritional Assessment (MNA) and its use in grading the nutritional state of elderly patients. Nutrition 1999, 15, 116–122. [Google Scholar] [CrossRef]
- Walston, J.D. Sarcopenia in older adults. Curr. Opin. Rheumatol. 2012, 24, 623–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buvat, J.; Maggi, M.; Guay, A.; Torres, L.O. Testosterone deficiency in men: Systematic review and standard operating procedures for diagnosis and treatment. J. Sex. Med. 2013, 10, 245–284. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, J.M.; Vermeulen, A. The decline of androgen levels in elderly men and its clinical and therapeutic implications. Endocr. Rev. 2005, 26, 833–876. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, N.L.; Driver, E.D.; Miesfeld, R.L. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res. 1994, 22, 3181–3186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Shin, J.H.; Park, K.P.; Kim, I.J.; Kim, C.M.; Lim, J.G.; Choi, Y.C.; Kim, D.S. Phenotypic variability in Kennedy’s disease: Implication of the early diagnostic features. Acta. Neurol. Scand. 2005, 112, 57–63. [Google Scholar] [CrossRef]
- Dubois, V.; Laurent, M.; Boonen, S.; Vanderschueren, D.G.; Claessens, F. Androgens and skeletal muscle: Cellular and molecular action mechanisms underlying the anabolic actions. Cell. Mol. Life Sci. 2012, 69, 1651–1667. [Google Scholar] [CrossRef]
- Powers, M.L.; Florini, J.R. A direct effect of testosterone on muscle cells in tissue culture. Endocrinology 1975, 97, 1043–1047. [Google Scholar] [CrossRef]
- Kadi, F. Cellular and molecular mechanisms responsible for the action of testosterone on human skeletal muscle. A basis for illegal performance enhancement. Br. J. Pharmacol. 2008, 154, 522–528. [Google Scholar] [CrossRef] [Green Version]
- Demling, R.H.; Orgill, D.P. The anticatabolic and wound healing effects of the testosterone analog oxandrolone after severe burn injury. J. Crit. Care 2000, 15, 12–17. [Google Scholar] [CrossRef]
- Mauras, N.; Hayes, V.; Welch, S.; Rini, A.; Helgeson, K.; Dokler, M.; Veldhuis, J.D.; Urban, R.J. Testosterone deficiency in young men: Marked alterations in whole body protein kinetics, strength, and adiposity. J. Clin. Endocrinol. Metab. 1998, 83, 1886–1892. [Google Scholar] [CrossRef] [PubMed]
- Sinha-Hikim, I.; Cornford, M.; Gaytan, H.; Lee, M.L.; Bhasin, S. Effects of testosterone supplementation on skeletal muscle fiber hypertrophy and satellite cells in community-dwelling older men. J. Clin. Endocrinol. Metab. 2006, 91, 3024–3033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sculthorpe, N.; Solomon, A.M.; Sinanan, A.C.; Bouloux, P.M.; Grace, F.; Lewis, M.P. Androgens affect myogenesis in vitro and increase local IGF-1 expression. Med. Sci. Sports Exerc. 2012, 44, 610–615. [Google Scholar] [CrossRef] [PubMed]
- Bhasin, S.; Woodhouse, L.; Casaburi, R.; Singh, A.B.; Bhasin, D.; Berman, N.; Chen, X.; Yarasheski, K.E.; Magliano, L.; Dzekov, C.; et al. Testosterone dose-response relationships in healthy young men. Am. J. Physiol. Endocrinol. Metab. 2001, 281, E1172–E1181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Bhasin, S.; Braga, M.; Artaza, J.N.; Pervin, S.; Taylor, W.E.; Krishnan, V.; Sinha, S.K.; Rajavashisth, T.B.; Jasuja, R. Regulation of myogenic differentiation by androgens: Cross talk between androgen receptor/beta-catenin and follistatin/transforming growth factor-beta signaling pathways. Endocrinology 2009, 150, 1259–1268. [Google Scholar] [CrossRef] [Green Version]
- Qin, W.; Pan, J.; Wu, Y.; Bauman, W.A.; Cardozo, C. Protection against dexamethasone-induced muscle atrophy is related to modulation by testosterone of FOXO1 and PGC-1alpha. Biochem. Biophys. Res. Commun. 2010, 403, 473–478. [Google Scholar] [CrossRef]
- Wu, Y.; Bauman, W.A.; Blitzer, R.D.; Cardozo, C. Testosterone-induced hypertrophy of L6 myoblasts is dependent upon Erk and mTOR. Biochem. Biophys. Res. Commun. 2010, 400, 679–683. [Google Scholar] [CrossRef]
- Pires-Oliveira, M.; Maragno, A.L.; Parreiras-e-Silva, L.T.; Chiavegatti, T.; Gomes, M.D.; Godinho, R.O. Testosterone represses ubiquitin ligases atrogin-1 and Murf-1 expression in an androgen-sensitive rat skeletal muscle in vivo. J. Appl. Physiol. 2010, 108, 266–273. [Google Scholar] [CrossRef] [Green Version]
- Morley, J.E.; Baumgartner, R.N.; Roubenoff, R.; Mayer, J.; Nair, K.S. Sarcopenia. J. Lab. Clin. Med. 2001, 137, 231–243. [Google Scholar] [CrossRef]
- Smith, M.R. Changes in fat and lean body mass during androgen-deprivation therapy for prostate cancer. Urology 2004, 63, 742–745. [Google Scholar] [CrossRef]
- Chang, D.; Joseph, D.J.; Ebert, M.A.; Galvão, D.A.; Taaffe, D.R.; Denham, J.W.; Newton, R.U.; Spry, N.A. Effect of androgen deprivation therapy on muscle attenuation in men with prostate cancer. J. Med. Imaging Radiat. Oncol. 2014, 58, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Mitsuzuka, K.; Arai, Y. Metabolic changes in patients with prostate cancer during androgen deprivation therapy. Int. J. Urol. 2018, 25, 45–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgartner, R.N.; Waters, D.L.; Gallagher, D.; Morley, J.E.; Garry, P.J. Predictors of skeletal muscle mass in elderly men and women. Mech. Ageing Dev. 1999, 107, 123–136. [Google Scholar] [CrossRef]
- van den Beld, A.; Huhtaniemi, I.T.; Pettersson, K.S.; Pols, H.A.; Grobbee, D.E.; de Jong, F.H.; Lamberts, S.W. Luteinizing hormone and different genetic variants, as indicators of frailty in healthy elderly men. J. Clin. Endocrinol. Metab. 1999, 84, 1334–1339. [Google Scholar] [CrossRef]
- Szulc, P.; Duboeuf, F.; Marchand, F.; Delmas, P.D. Hormonal and lifestyle determinants of appendicular skeletal muscle mass in men: The MINOS study. Am. J. Clin. Nutr. 2004, 80, 496–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouser, J.G.; Loprinzi, P.D.; Loenneke, J.P. The association between physiologic testosterone levels, lean mass, and fat mass in a nationally representative sample of men in the United States. Steroids 2016, 115, 62–66. [Google Scholar] [CrossRef]
- Kong, S.H.; Kim, J.H.; Lee, J.H.; Hong, A.R.; Shin, C.S.; Cho, N.H. Dehydroepiandrosterone sulfate and free testosterone but not estradiol are related to muscle strength and bone microarchitecture in older adults. Calcif. Tissue Int. 2019, 105, 285–293. [Google Scholar] [CrossRef]
- Ye, J.; Zhai, X.; Yang, J.; Zhu, Z. Association between serum testosterone levels and body composition among men 20–59 years of age. Int. J. Endocrinol. 2021, 2021, 7523996. [Google Scholar] [CrossRef]
- Laurent, M.R.; Dedeyne, L.; Dupont, J.; Mellaerts, B.; Dejaeger, M.; Gielen, E. Age-related bone loss and sarcopenia in men. Maturitas 2019, 122, 51–56. [Google Scholar] [CrossRef]
- Kenny, A.M.; Kleppinger, A.; Annis, K.; Rathier, M.; Browner, B.; Judge, J.O.; McGee, D. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels, low bone mass, and physical frailty. J. Am. Geriatr. Soc. 2010, 58, 1134–1143. [Google Scholar] [CrossRef]
- Wittert, G.A.; Chapman, I.M.; Haren, M.T.; Mackintosh, S.; Coates, P.; Morley, J.E. Oral testosterone supplementation increases muscle and decreases fat mass in healthy elderly males with low-normal gonadal status. J. Gerontol. A Biol. Sci. Med. Sci. 2003, 58, 618–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohr, B.A.; Bhasin, S.; Kupelian, V.; Araujo, A.B.; O’Donnell, A.B.; McKinlay, J.B. Testosterone, sex hormone binding globulin, and frailty in older men. J. Am. Geriatr. Soc. 2007, 55, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Carcaillon, L.; Blanco, C.; Alonso-Bouzón, C.; Alfaro-Acha, A.; Garcia-García, F.J.; Rodriguez-Mañas, L. Sex differences in the association between serum levels of testosterone and frailty in an elderly population: The Toledo Study for Healthy Aging. PLoS ONE 2012, 7, e32401. [Google Scholar] [CrossRef] [Green Version]
- Schaap, L.A.; Pluijm, S.M.F.; Smit, J.H.; van Schoor, N.M.; Visser, M.; Gooren, L.J.G.; Lips, P. The association of sex hormonelevels with poor mobility, low muscle strength and incidence of falls amongolder men and women. Clin. Endocrinol. 2005, 63, 152–160. [Google Scholar] [CrossRef] [Green Version]
- Eichholzer, M.; Barbir, A.; Basaria, S.; Dobs, A.S.; Feinleib, M.; Guallar, E.; Menke, A.; Nelson, W.G.; Rifai, N.; Platz, E.A.; et al. Serum sex steroid hormones and frailty in older American men of the Third National Health and Nutrition Examination Survey (NHANES III). Aging Male 2012, 15, 208–215. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Hou, L.; Zhao, Y.; Lin, T.; Wang, H.; Gao, L.; Yue, J. Frailty and testosterone level in older adults: A systematic review and meta-analysis. Eur. Geriatr. Med. 2022, 13, 663–673. [Google Scholar] [CrossRef] [PubMed]
- Yuki, A.; Otsuka, R.; Kozakai, R.; Kitamura, I.; Okura, T.; Ando, F.; Shimokata, H. Relationship between low free testosterone levels and loss of muscle mass. Sci. Rep. Sci. Rep. 2013, 3, 1818. [Google Scholar] [CrossRef] [Green Version]
- Krasnoff, J.B.; Basaria, S.; Pencina, M.J.; Jasuja, G.K.; Vasan, R.S.; Ulloor, J.; Zhang, A.; Coviello, A.; Kelly-Hayes, M.; D’Agostino, R.B.; et al. Free testosterone levels are associated with mobility limitation and physical performance in community-dwelling men: The Framingham Offspring Study. J. Clin. Endocrinol. Metab. 2010, 95, 2790–2799. [Google Scholar] [CrossRef]
- Schaap, L.A.; Pluijm, S.M.F.; Deeg, D.J.H.; Penninx, B.W.; Nicklas, B.J.; Lips, P.; Harris, T.B.; Newman, A.B.; Kritchevsky, S.B.; Cauley, J.A.; et al. Health ABC study. Low testosterone levels and decline in physical performance and muscle strength in older men: Findings from two prospective cohort studies. Clin. Endocrinol. 2008, 68, 42–50. [Google Scholar] [CrossRef]
- Shin, Y.S.; Park, J.K. The Optimal Indication for Testosterone Replacement Therapy in Late Onset Hypogonadism. J. Clin. Med. 2019, 8, 209. [Google Scholar] [CrossRef]
- Mulhall, J.P.; Trost, L.W.; Brannigan, R.E.; Kurtz, E.G.; Redmon, J.B.; Chiles, K.A.; Lightner, D.J.; Miner, M.M.; Murad, M.H.; Nelson, C.J.; et al. Evaluation and Management of Testosterone Deficiency: AUA Guideline. J. Urol. 2018, 200, 423–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieschlag, E.; Swerdloff, R.; Behre, H.M.; Gooren, L.J.; Kaufman, J.M.; Legros, J.J.; Lunenfeld, B.; Morley, J.E.; Schulman, C.; Wang, C.; et al. Investigation, treatment, and monitoring of late-onset hypogonadism in males: ISA, ISSAM, and EAU recommendations. J. Androl. 2006, 27, 135–137. [Google Scholar] [CrossRef] [PubMed]
- Dean, J.D.; McMahon, C.G.; Guay, A.T.; Morgentaler, A.; Althof, S.E.; Becher, E.F.; Bivalacqua, T.J.; Burnett, A.L.; Buvat, J.; El Meliegy, A.; et al. The International Society for Sexual Medicine’ s Process of Care for the Assessment and Management of Testosterone Deficiency in Adult Men. J. Sex. Med. 2015, 12, 1660–1686. [Google Scholar] [CrossRef] [PubMed]
- Hackett, G.; Kirby, M.; Edwards, D.; Jones, T.H.; Wylie, K.; Ossei-Gerning, N.; David, J.; Muneer, A. British Society for Sexual Medicine Guidelines on Adult Testosterone Deficiency, with Statements for UK Practice. J. Sex. Med. 2017, 14, 1504–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolind, M.I.; Christensen, L.L.; Caserotti, P.; Andersen, M.S.; Glintborg, D. Muscle function following testosterone replacement in men on opioid therapy for chronic non-cancer pain: A randomized controlled trial. Andrology 2022, 10, 551–559. [Google Scholar] [CrossRef]
- Barnouin, Y.; Armamento-Villareal, R.; Celli, A.; Jiang, B.; Paudyal, A.; Nambi, V.; Bryant, M.S.; Marcelli, M.; Garcia, J.M.; Qualls, C.; et al. Testosterone replacement therapy added to intensive lifestyle intervention in older men with obesity and hypogonadism. J. Clin. Endocrinol. Metab. 2021, 106, e1096–e1110. [Google Scholar] [CrossRef]
- Chasland, L.C.; Yeap, B.B.; Maiorana, A.J.; Chan, Y.X.; Maslen, B.A.; Cooke, B.R.; Dembo, L.; Naylor, L.H.; Green, D.J. Testosterone and exercise: Effects on fitness, body composition, and strength in middle-to-older aged men with low-normal serum testosterone levels. Am. J. Physiol. Heart Circ. Physiol. 2021, 320, H1985–H1998. [Google Scholar] [CrossRef]
- Glintborg, D.; Vaegter, H.B.; Christensen, L.L.; Bendix, E.; Graven-Nielsen, T.; Andersen, P.G.; Andersen, M. Testosterone replacement therapy of opioid-induced male hypogonadism improved body composition but not pain perception: A double-blind, randomized, and placebo-controlled trial. Eur. J. Endocrinol. 2020, 182, 539–548. [Google Scholar] [CrossRef]
- Gagliano-Jucá, T.; Storer, T.W.; Pencina, K.M.; Travison, T.G.; Li, Z.; Huang, G.; Hettwer, S.; Dahinden, P.; Bhasin, S.; Basaria, S. Testosterone does not affect agrin cleavage in mobility-limited older men despite improvement in physical function. Andrology 2018, 6, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Storer, T.W.; Basaria, S.; Traustadottir, T.; Harman, S.M.; Pencina, K.; Li, Z.; Travison, T.G.; Miciek, R.; Tsitouras, P.; Hally, K.; et al. Effects of testosterone supplementation for 3 years on muscle performance and physical function in older men. J. Clin. Endocrinol. Metab. 2017, 102, 583–593. [Google Scholar] [CrossRef]
- Ng Tang Fui, M.; Prendergast, L.A.; Dupuis, P.; Raval, M.; Strauss, B.J.; Zajac, J.D.; Grossmann, M. Effects of testosterone treatment on body fat and lean mass in obese men on a hypocaloric diet: A randomised controlled trial. BMC Med. 2016, 14, 153. [Google Scholar] [CrossRef] [Green Version]
- Dias, J.P.; Melvin, D.; Simonsick, E.M.; Carlson, O.; Shardell, M.D.; Ferrucci, L.; Chia, C.W.; Basaria, S.; Egan, J.M. Effects of aromatase inhibition vs. testosterone in older men with low testosterone: Randomized-controlled trial. Andrology 2016, 4, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Konaka, H.; Sugimoto, K.; Orikasa, H.; Iwamoto, T.; Takamura, T.; Takeda, Y.; Shigehara, K.; Iijima, M.; Koh, E.; Namiki, M.; et al. Effects of long-term androgen replacement therapy on the physical and mental statuses of aging males with late-onset hypogonadism: A multicenter randomized controlled trial in Japan (EARTH Study). Asian J. Androl. 2016, 18, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Magnussen, L.V.; Glintborg, D.; Hermann, P.; Hougaard, D.M.; Højlund, K.; Andersen, M. Effect of testosterone on insulin sensitivity, oxidative metabolism and body composition in aging men with type 2 diabetes on metformin monotherapy. Diabetes Obes. Metab. 2016, 18, 980–989. [Google Scholar] [CrossRef]
- Sinclair, M.; Grossmann, M.; Hoermann, R.; Angus, P.W.; Gow, P.J. Testosterone therapy increases muscle mass in men with cirrhosis and low testosterone: A randomised controlled trial. J. Hepatol. 2016, 65, 906–913. [Google Scholar] [CrossRef]
- Borst, S.E.; Yarrow, J.F.; Conover, C.F.; Nseyo, U.; Meuleman, J.R.; Lipinska, J.A.; Braith, R.W.; Beck, D.T.; Martin, J.S.; Morrow, M.; et al. Musculoskeletal and prostate effects of combined testosterone and finasteride administration in older hypogonadal men: A randomized, controlled trial. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E433–E442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianatti, E.J.; Dupuis, P.; Hoermann, R.; Strauss, B.J.; Wentworth, J.M.; Zajac, J.D.; Grossmann, M. Effect of testosterone treatment on glucose metabolism in men with type 2 diabetes: A randomized controlled trial. Diabetes Care 2014, 37, 2098–2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stout, M.; Tew, G.A.; Doll, H.; Zwierska, I.; Woodroofe, N.; Channer, K.S.; Saxton, J.M. Testosterone therapy during exercise rehabilitation in male patients with chronic heart failure who have low testosterone status: A double-blind randomized controlled feasibility study. Am. Heart J. 2012, 164, 893–901. [Google Scholar] [CrossRef]
- Behre, H.M.; Tammela, T.L.; Arver, S.; Tolrá, J.R.; Bonifacio, V.; Lamche, M.; Kelly, J.; Hiemeyer, F.; European Testogel® Study Team; Giltay, E.J.; et al. A randomized, double-blind, placebo-controlled trial of testosterone gel on body composition and health-related quality-of-life in men with hypogonadal to low-normal levels of serum testosterone and symptoms of androgen deficiency over 6 months with 12 months open-label follow-up. Aging Male 2012, 15, 198–207. [Google Scholar]
- Travison, T.G.; Basaria, S.; Storer, T.W.; Jette, A.M.; Miciek, R.; Farwell, W.R.; Choong, K.; Lakshman, K.; Mazer, N.A.; Coviello, A.D.; et al. Clinical meaningfulness of the changes in muscle performance and physical function associated with testosterone administration in older men with mobility limitation. J. Gerontol. A Biol. Sci. Med. Sci. 2011, 66, 1090–1099. [Google Scholar] [CrossRef]
- Atkinson, R.A.; Srinivas-Shankar, U.; Roberts, S.A.; Connolly, M.J.; Adams, J.E.; Oldham, J.A.; Wu, F.C.; Seynnes, O.R.; Stewart, C.E.; Maganaris, C.N.; et al. Effects of testosterone on skeletal muscle architecture in intermediate-frail and frail elderly men. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 1215–1219. [Google Scholar] [CrossRef] [PubMed]
- Srinivas-Shankar, U.; Roberts, S.A.; Connolly, M.J.; O’Connell, M.D.; Adams, J.E.; Oldham, J.A.; Wu, F.C. Effects of testosterone on muscle strength, physical function, body composition, and quality of life in intermediate-frail and frail elderly men: A randomized, double-blind, placebo-controlled study. J. Clin. Endocrinol. Metab. 2010, 95, 639–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parahiba, S.M.; Ribeiro, É.C.T.; Corrêa, C.; Bieger, P.; Perry, I.S.; Souza, G.C. Effect of testosterone supplementation on sarcopenic components in middle-aged and elderly men: A systematic review and meta-analysis. Exp. Gerontol. 2020, 142, 111106. [Google Scholar] [CrossRef]
- Shin, M.J.; Jeon, Y.K.; Kim, I.J. Testosterone and sarcopenia. World J. Mens Health 2018, 36, 192–198. [Google Scholar] [CrossRef]
- Fitts, R.H.; Peters, J.R.; Dillon, E.L.; Durham, W.J.; Sheffield-Moore, M.; Urban, R.J. Weekly versus monthly testosterone administration on fast and slow skeletal muscle fibers in older adult males. J. Clin. Endocrinol. Metab. 2015, 100, E223–E231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhasin, S.; Woodhouse, L.; Casaburi, R.; Singh, A.B.; Mac, R.P.; Lee, M.; Yarasheski, K.E.; Sinha-Hikim, I.; Dzekov, C.; Dzekov, J.; et al. Older men are as responsive as young men to the anabolic effects of graded doses of testosterone on the skeletal muscle. J. Clin. Endocrinol. Metab. 2005, 90, 678–688. [Google Scholar] [CrossRef] [Green Version]
- Hisasue, S. Contemporary perspective and management of testosterone deficiency: Modifiable factors and variable management. Int. J. Urol. 2015, 22, 1084–1095. [Google Scholar] [CrossRef] [PubMed]
- Barbonetti, A.; D’Andrea, S.; Francavilla, S. Testosterone replacement therapy. Andrology 2020, 8, 1551–1566. [Google Scholar] [CrossRef] [Green Version]
- Shigehara, K.; Izumi, K.; Kadono, Y.; Mizokami, A. Testosterone and Bone Health in Men: A Narrative Review. J. Clin. Med. 2021, 10, 530. [Google Scholar] [CrossRef]
- Bhasin, S. Testosterone replacement in aging men: An evidence-based patient-centric perspective. J. Clin. Investig. 2021, 131, e146607. [Google Scholar] [CrossRef]
- Francomano, D.; Lenzi, A.; Aversa, A. Effects of five-year treatment with testosterone undecanoate on metabolic and hormonal parameters in ageing men with metabolic syndrome. Int. J. Endocrinol. 2014, 2014, 527470. [Google Scholar] [CrossRef] [PubMed]
- Traish, A.M.; Haider, A.; Doros, G.; Saad, F. Long-term testosterone therapy in hypogonadal men ameliorates elements of the metabolic syndrome: An observational, long-term registry study. Int. J. Clin. Pract. 2014, 68, 314–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hackett, G.; Cole, N.; Mulay, A.; Strange, R.C.; Ramachandran, S. Long-term testosterone therapy in type 2 diabetes is associated with decreasing waist circumference and improving erectile function. World J. Mens. Health. 2020, 38, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Shigehara, K.; Nakashima, K.; Iijima, M.; Kawagushi, S.; Nohara, T.; Izumi, K.; Kadono, Y.; Konaka, H.; Namiki, M.; et al. The five-year effects of testosterone replacement therapy on lipid profile and glucose tolerance among hypogonadal men in Japan: A case control study. Aging Male 2020, 23, 23–28. [Google Scholar] [CrossRef]
- Rodrigues dos Santos, M.; Bhasin, S. Benefits and Risks of Testosterone Treatment in Men with Age-Related Decline in Testosterone. Annu. Rev. Med. 2021, 72, 75–91. [Google Scholar] [CrossRef]
- Shabsigh, R.; Crawford, E.D.; Nehra, A.; Slawin, K.M. Testosterone therapy in hypogonadal men and potential prostate cancer risk: A systematic review. Int. J. Impot. Res. 2009, 21, 9–23. [Google Scholar] [CrossRef] [Green Version]
- Alexander, G.C.; Iyer, G.; Lucas, E.; Lin, D.; Singh, S. Cardiovascular Risks of Exogenous Testosterone Use Among Men: A Systematic Review and Meta-Analysis. Am. J. Med. 2017, 130, 293–305. [Google Scholar] [CrossRef] [Green Version]
- Corona, G.; Rastrelli, G.; Di Pasquale, G.; Sforza, A.; Mannucci, E.; Maggi, M. Testosterone and Cardiovascular Risk: Meta-Analysis of Interventional Studies. J. Sex. Med. 2018, 15, 820–838. [Google Scholar] [CrossRef]
Primary Sarcopenia | |
---|---|
Age-related | No clear causes other than aging |
Secondary Sarcopenia | |
Daily living-related | Bedridden, lack of exercise, ataxia, weight loss |
Nutrition-related | Malabsorption, gastrointestinal disease, appetite loss, lack of energy, low protein intake |
Disease-related | Severe organ failure, inflammatory diseases, malignancies, endocrine diseases |
Author | Year | Subjects | Number | TRT Regimens (Add-on Therapy) | Effects | Ref. | |
---|---|---|---|---|---|---|---|
Kolind (Denmark) | 2022 | Hypogonadal men with opioid-treated chronic pain (TT < 12 nmol/L) | 41 | TRT 20 placebo 21 | TU 1000 mg, intramuscular for 24 weeks | TRT did not improve muscle function (leg-press maximal voluntary contraction, leg extension power and handgrip strength). | [65] |
Barnouin (USA) | 2021 | Hypogonadal men with obesity (TT < 10.4 nmol/L) | 83 | TRT 42 placebo 41 | T gel daily for 6 months (diet + exercise) | TRT might attenuate the weight loss–induced reduction in muscle mass. There was no significant difference in muscle strength between the two groups. | [66] |
Chasland (Australia) | 2021 | Men with obesity and low-normal serum TT (TT 6–14 nmol/L) | 80 | TRT 40 placebo 40 | T gel 100 mg/day for 23 weeks (exercise) | TRT increased total, leg, and arm lean mass but did not affect aerobic capacity (Vo2peak) and muscle strength. | [67] |
Glintborg (Denmark) | 2020 | Men with opioid-induced hypogonadism (TT < 12 nmol/L) | 41 | TRT 20 placebo 21 | TU 1000 mg, intramuscular for 24 weeks | TRT increased lean body mass. | [68] |
Gagliano-Juca (USA) | 2018 | Older men with mobility limitations (TT < 350 ng/dL or FT < 50 pg/mL) | 99 | TRT 46 placebo 53 | T gel 100 mg/day for 6 months | TRT improved muscle strength and physical function (assessed by loaded stair-climbing power). | [69] |
Storer (USA) | 2017 | Eugonadal and hypogonadal men (TT 100–400 ng/dL or FT < 50 pg/mL) | 256 | TRT 135 placebo 121 | T gel 75 mg/day for 3 years | TRT strengthened chest-press strength and power, and leg-press power. | [70] |
Ng Tang Fui (Australia) | 2016 | Hypogonadal men with obesity (TT < 12 nmol/L) | 100 | TRT 49 placebo 51 | TU 1000 mg intramuscular for 56 weeks (diet) | TRT did not increase muscle volume but did attenuate the reduction in lean mass by diet compared with the controls. | [71] |
Dias (USA) | 2016 | Hypogonadal men (TT < 350 ng/dL) | 39 | TRT 13 placebo 9 other 13 | T gel 50 mg/day for 12 months | TRT improved knee strength and fast gait at 12 months compared with baseline. | [72] |
Konaka (Japan) | 2016 | Hypogonadal men (FT < 10.8 pg/mL) | 334 | TRT 169 control 165 | TE 250 mg/4 weeks for 52 weeks | TRT improved muscle volume and grip power. | [73] |
Magnussen (Denmark) | 2016 | Hypogonadal men with DM (BioT < 7.3 nmol/L) | 43 | TRT 22 placebo 21 | T gel 50 mg/day for 24 weeks | TRT increased lean body mass. | [74] |
Sinclair (Australia) | 2016 | Hypogonadal men with cirrhosis (TT < 12 nmol/L or FT < 230 pmol/L) | 101 | TRT 50 placebo 51 | TU 1000 mg/6–12 weeks intramuscular for 12 months | TRT increased total lean body and appendicular lean muscle mass. | [75] |
Borst (USA) | 2014 | Hypogonadal men (TT ≤ 300 ng/dL) | 60 | TRT 31 placebo 29 | TE 125 mg/weeks I intramuscular for 12 months (finasteride) | TRT increased upper and lower body muscle strength by 8–14% and fat-free mass by 4.04 kg. | [76] |
Giamatti (Australia) | 2014 | Hypogonadal men with type 2 diabetes mellitus (TT ≤ 300 ng/dL or BioT ≤ 70 ng/dL) | 88 | TRT 45 placebo 43 | TU 1000 mg/6–12 weeks intramuscular for 56 weeks | TRT increased lean body mass. | [77] |
Stout (UK) | 2012 | Men with chronic heart failure (TT < 15 nmol/L) | 28 | TRT 15 placebo 13 | Testosterone 100 mg/2 weeks intramuscular for 12 weeks (exercise) | TRT could not improve the shuttle walk test and hand grip strength compared with placebo. | [78] |
Behre (Australia) | 2012 | LOH men (TT < 15 nmol/L or BioT < 6.68 nmol/L) | 362 | TRT 183 placebo 179 | T gel 50–75 mg/day for 6 months | TRT increased lean body mass. | [79] |
Travison (USA) | 2011 | Hypogonadal men with mobility limitation (TT 100–350 ng/dL or FT < 50 pg/mL) | 209 | TRT 106 placebo 103 | T gel 100 mg/day for 6 months | TRT increased leg-press and chest-press strength and stair-climbing power but could not improve walking speed. | [80] |
Atkinson (UK) | 2010 | Hypogonadal frail men (TT < 12 nmol/L) | 30 | TRT 16 placebo 14 | T gel 50 mg/day For 6 months. | TRT helped preserve muscle thickness. There was no significant effect of treatment on fascicle length or pennation angle. | [81] |
Kenny (USA) | 2010 | Hypogonadal frail men (TT < 350 ng/dL) | 131 | TRT 69 placebo 62 | T gel 5 mg/day for 12–24 months | There was an increase in lean mass in the testosterone group but no differences in strength or physical performance. | [50] |
Srinivas-Shankar (UK) | 2010 | Hypogonadal frail men (TT < 12 nmol/L or FT < 250 pmol/L) | 274 | TRT 138 placebo 136 | T gel 50 mg/day for 6 months | Isometric knee extension peak torque was improved, and lean mass was increased in the TRT group. | [82] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shigehara, K.; Kato, Y.; Izumi, K.; Mizokami, A. Relationship between Testosterone and Sarcopenia in Older-Adult Men: A Narrative Review. J. Clin. Med. 2022, 11, 6202. https://doi.org/10.3390/jcm11206202
Shigehara K, Kato Y, Izumi K, Mizokami A. Relationship between Testosterone and Sarcopenia in Older-Adult Men: A Narrative Review. Journal of Clinical Medicine. 2022; 11(20):6202. https://doi.org/10.3390/jcm11206202
Chicago/Turabian StyleShigehara, Kazuyoshi, Yuki Kato, Kouji Izumi, and Atsushi Mizokami. 2022. "Relationship between Testosterone and Sarcopenia in Older-Adult Men: A Narrative Review" Journal of Clinical Medicine 11, no. 20: 6202. https://doi.org/10.3390/jcm11206202
APA StyleShigehara, K., Kato, Y., Izumi, K., & Mizokami, A. (2022). Relationship between Testosterone and Sarcopenia in Older-Adult Men: A Narrative Review. Journal of Clinical Medicine, 11(20), 6202. https://doi.org/10.3390/jcm11206202