Cardiac-Gated Neuromodulation Increased Baroreflex Sensitivity and Reduced Pain Sensitivity in Female Fibromyalgia Patients
Abstract
:1. Introduction
2. Material and Method
2.1. Participants
2.2. Procedure
2.2.1. Clinical Assessment
2.2.2. Stimulation Protocol Rationale
- (1)
- Persistent increases in BP or hypertension are associated with reduced heart rate variability (HRV), BP variability, BRS, and chronic pain consistent with Dworkin’s theory of learned hypertension (15).
- (2)
- Arterial baroreceptors modulate processing of nociceptive input dynamically during BP changes within the cardiac cycle. Electrocortical activity and sensory perception vary with cardiovascular events that alter baroreceptor activity in individuals with the predisposition of hypertension (18, 19, 49).
- (3)
- Cardioinhibitory mechanisms regulate rapid changes in BP primarily by decreasing sympathetic activity and HR. This integrated process provides cardiac protection in response to rapid increases in BP by decreasing sympathetic outflow from the vasomotor center of the brainstem, and by increasing parasympathetic outflow from the nucleus ambiguus, and dorsal motor nucleus of the vagus nerve.
- (1)
- Phasic elevations in BP may engage endogenous coping mechanisms. Elevations in BP are usually a healthy and effective response to stress and pain. However, in chronic pain patients, the hypertensive response may persist in cases in which stress remains elevated, operantly conditioning elevated BP. To decondition this BP-mediated effect, the experimental protocol adjusts electrical stimulation current to evoke both painful and non-painful sensations during diastolic and systolic BP within the cardiac cycle. Varying stimulus intensities produces variable changes in BP values, and BRS increases [17,34].
- (2)
- Given that cortical activity is decreased during the systolic phase of the cardiac cycle, electrical stimuli should be synchronized with the cardiac cycle [17].
- (3)
- To induce cardio-inhibitory effects and to increase BRS, the electrical stimuli should be delivered immediately after the systolic and diastolic BP peaks in randomized order to prevent habituation.
- (4)
- Electrical stimuli are ideal because they can be precisely controlled and delivered during specific cardiac phases and can activate the BRS and induce cardio-inhibitory effects.
- (5)
- Before and after the stimulation, individual pain threshold and tolerance are re-evaluated and adjusted as necessary to (a) maintain meaningful painful and non-painful intensities and (b) to provide feedback to the participant with respect to reduced pain perception that positively reinforces the desensitization of pain perception.
2.2.3. Stimulation Protocols
2.2.4. Psychophysiological Assessment
2.2.5. Psychophysiological Recordings
2.3. Data Analysis
3. Results
- 1.
- Changes in Thresholds
- 2.
- Changes in clinical pain
- 3.
- Changes in BRS
- 4.
- Baseline and changes in HRV
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Hauser, W.; Katz, R.L.; Mease, P.J.; Russell, A.S.; Russell, I.J.; Walitt, B. 2016 Revisions to the 2010/2011 fibromyalgia diagnostic criteria. Semin. Arthritis Rheum. 2016, 46, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Giesecke, T.; Gracely, R.H.; Grant, M.A.; Nachemson, A.; Petzke, F.; Williams, D.A.; Clauw, D.J. Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis Rheum. 2004, 50, 613–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thieme, K.; Turk, D.C. Heterogeneity of psychophysiological stress responses in fibromyalgia syndrome patients. Arthritis Res. Ther. 2006, 8, R9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turk, D.C.; Okifuji, A.; Sinclair, J.D.; Starz, T.W. Pain, disability, and physical functioning in subgroups of patients with fibromyalgia. J. Rheumatol. 1996, 23, 1255–1262. [Google Scholar] [PubMed]
- Thieme, K.; Turk, D.C.; Gracely, R.H.; Maixner, W.; Flor, H. The relationship among psychological and psychophysiological characteristics of fibromyalgia patients. J. Pain 2015, 16, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Dworkin, B.R.; Elbert, T.; Rau, H.; Birbaumer, N.; Pauli, P.; Droste, C.; Brunia, C.H. Central effects of baroreceptor activation in humans: Attenuation of skeletal reflexes and pain perception. Proc. Natl. Acad. Sci. USA 1994, 91, 6329–6333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maixner, W.; Sigurdsson, A.; Fillingim, R.B.; Lundeen, T.; Booker, D.K. Regulation of acute and chronic orofacial pain. In Orofacial Pain and Temporomandibular Disorders; Fricton, J.R., Dubner, R., Eds.; Raven Press: New York, NY, USA, 1995. [Google Scholar]
- Tang, X.; Dworkin, B.R. Baroreflexes of the rat. VI. Sleep and responses to aortic nerve stimulation in the dmNTS. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 298, R1428–R1434. [Google Scholar] [CrossRef] [Green Version]
- Gerdle, B.; Leinhard, O.D.; Lund, E.; Bengtsson, A.; Lundberg, P.; Ghafouri, B.; Forsgren, M.F. Fibromyalgia: Associations Between Fat Infiltration, Physical Capacity, and Clinical Variables. J. Pain Res. 2022, 15, 2517–2535. [Google Scholar] [CrossRef]
- Scaroli, R.; Montemurro, N.; Ferrara, E.; Corsalini, M.; Converti, I.; Rapone, B. Temporomandibular Disorders and Fibromyalgia: A Narrative Review. Open Access Maced. J. Med. Sci. 2021, 9, 106–112. [Google Scholar] [CrossRef]
- Koganezawa, T.; Shimomura, Y.; Terui, N. The role of the RVLM neurons in the viscero-sympathetic reflex: A mini review. Auton. Neurosci. 2008, 142, 17–29. [Google Scholar] [CrossRef]
- Bornhovd, K.; Quante, M.; Glauche, V.; Bromm, B.; Weiller, C.; Buchel, C. Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: A single-trial fMRI study. Brain 2002, 125, 1326–1336. [Google Scholar] [CrossRef] [Green Version]
- Gracely, R.H.; Petzke, F.; Wolf, J.M.; Clauw, D.J. Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis Rheum. 2002, 46, 1333–1343. [Google Scholar] [CrossRef]
- Imbe, H.; Dubner, R.; Ren, K. Masseteric inflammation-induced Fos protein expression in the trigeminal interpolaris/caudalis transition zone: Contribution of somatosensory-vagal-adrenal integration. Brain Res. 1999, 845, 164–175. [Google Scholar] [CrossRef]
- Maquet, P.; Péters, J.; Aerts, J.; Delfiore, G.; Degueldre, C.; Luxen, A.; Franck, G. Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 1996, 12, 163–166. [Google Scholar] [CrossRef]
- Ioachim, G.; Warren, H.J.M.; Powers, J.M.; Staud, R.; Pukall, C.F.; Stroman, P.W. Altered Pain in the Brainstem and Spinal Cord of Fibromyalgia Patients during the Anticipation and Experience of Experimental Pain. Front. Neurol. 2022, 13, 862976. [Google Scholar] [CrossRef]
- Rau, H.; Pauli, P.; Brody, S.; Elbert, T.; Birbaumer, N. Baroreceptor stimulation alters cortical activity. Psychophysiology 1993, 30, 322–325. [Google Scholar] [CrossRef] [Green Version]
- Bruehl, S.; Chung, O.Y. Interactions between the cardiovascular and pain regulatory systems: An updated review of mechanisms and possible alterations in chronic pain. Neurosci. Biobehav. Rev. 2004, 28, 395–414. [Google Scholar] [CrossRef]
- Rau, H.; Elbert, T. Psychophysiology of arterial baroreceptors and the etiology of hypertension. Biol. Psychiatry 2001, 57, 179–201. [Google Scholar] [CrossRef] [Green Version]
- Rau, H.; Brody, S.; Larbig, W.; Pauli, P.; Vohringer, M.; Harsh, B.; Kroling, P.; Birbaumer, N. Effects of PRES baroreceptor stimulation on thermal and mechanical pain thresholds in borderline hypertensives and normotensives. Psychophysiology 1994, 31, 480–485. [Google Scholar] [CrossRef]
- Sandkuhler, J. Learning and memory in pain pathways. Pain 2000, 88, 113–118. [Google Scholar] [CrossRef]
- Myers, C.D.; Robinson, M.E.; Riley, J.L., III; Sheffield, D. Sex, gender, and blood pressure: Contributions to experimental pain report. Psychosom. Med. 2001, 63, 500–545. [Google Scholar] [CrossRef] [PubMed]
- Carnevali, L.; Sgoifo, A. Vagal modulation of resting heart rate in rats: The role of stress, psychosocial factors, and physical exercise. Front. Physiol. 2014, 5, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elbert, T.; Dworkin, B.R.; Rau, H.; Pauli, P.; Birbaumer, N.; Droste, C.; Brunia, C.H. Sensory effects of baroreceptor activation and perceived stress together predict long-term blood pressure elevations. Int. J. Behav. Med. 1994, 1, 128–215. [Google Scholar] [CrossRef] [Green Version]
- Maixner, W.; Fillingim, R.; Kincaid, S.; Sigurdsson, A.; Harris, M.B. Relationship between pain sensitivity and resting arterial blood pressure in patients with painful temporomandibular disorders. Psychosom. Med. 1997, 59, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Elbert, T.; Rockstroh, B.; Lutzenberger, W.; Kessler, M.; Pietrowsky, R. Baroreceptor stimulation alters pain sensation depending on tonic blood pressure. Psychophysiology 1988, 25, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Randich, A.; Maixner, W. Interactions between cardiovascular and pain regulatory systems. Neurosci. Biobehav. Rev. 1984, 8, 343–367. [Google Scholar] [CrossRef]
- Sandkuehler, J.; Maisch, B.; Zimmermann, M. The use of local anaesthetic microinjections to identify central pathways: A quantitative evaluation of the time course and extent of the neuronal block. Exp. Brain Res. 1987, 68, 168–178. [Google Scholar]
- Turk, D.C.; Okifuji, A.; Starz, T.W.; Sinclair, J.D. Effects of type of symptom onset on psychological distress and disability in fibromyalgia syndrome patients. Pain 1996, 68, 423–430. [Google Scholar] [CrossRef]
- Haynes, S. Muscle-Contraction headache: Psycho-physiological perspective in etiology and treatment. In Psychosomatic Disorders: A Psychophysiological Approach to Etiology and Treatment; Haynes. S.N. and Gammon, L., Ed.; Gardner Press: New York, NY, USA, 1980. [Google Scholar]
- Heesch, C. Reflexes that control cardiovascular function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1999, 277, 234–243. [Google Scholar] [CrossRef]
- Tang, X.; Dworkin, B.R. The dmNTS is not the source of increased blood pressure variability in baroreflex denervated rats. Auton. Neurosci. 2009, 148, 21–27. [Google Scholar] [CrossRef] [Green Version]
- del Paso, G.A.R.; Garrido, S.; Pulgar, A.; Duschek, S. Autonomic cardiovascular control and responses to experimental pain stimulation in fibromyalgia syndrome. J. Psychosom. Res. 2011, 70, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Millan, M.J. Descending control of pain. Progress. Neurobiol. 2002, 66, 355–474. [Google Scholar] [CrossRef]
- Jennings, R.; Berg, W.K.; Hutcheson, J.S.; Obrist, P.; Porges, S.; Turpin, G. Committee report. Publication guidelines for heart rate studies in man. Psychophysiology 1981, 18, 226–231. [Google Scholar] [CrossRef]
- Wiertelak, E.P.; Roemer, B.; Maier, S.F.; Watkins, L.R. Comparison of the effects of nucleus tractus solitarius and ventral medial medulla lesions on illness-induced and subcutaneous formalin-induced hyperalgesia. Brain Res. 1997, 748, 143–150. [Google Scholar] [CrossRef]
- Berntson, G.G.; Bigger, J.T.J.; Eckberg, D.L.; Grossman, P.; Kaufmann, P.G.; Malik, M.; Nagaraja, H.N.; Porges, S.W.; Saul, J.P.; Stone, P.H.; et al. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology 1997, 34, 623–648. [Google Scholar] [CrossRef]
- Quidé, Y.; Witteveen, A.B.; El-Hage, W.; Veltman, D.J.; Olff, M. Differences between effects of psychological versus pharmacological treatments on functional and morphological brain alterations in anxiety disorders and major depressive disorder: A systematic review. Neurosci. Biobehav. Rev. 2012, 36, 626–644. [Google Scholar] [CrossRef]
- Staud, R.; Bovee, C.E.; Robinson, M.E.; Price, D.D. Cutaneous C-fiber pain abnormalities of fibromyalgia patients are specifically related to temporal summation. Pain 2008, 139, 315–323. [Google Scholar] [CrossRef] [Green Version]
- Vaschillo, E.; Lehrer, P.; Rishe, N.; Konstantinov, M. Heart rate variability biofeedback as a method for assessing baroreflex function: A preliminary study of resonance in the cardiovascular system. Appl. Psychophysiol. Biofeedback 2002, 27, 1–27. [Google Scholar] [CrossRef]
- Watkinson, L.L.; Blumenthal, J.A.; Carney, R.M. Association of anxiety with reduced baroreflex cardiac control in patients after acute myocardial infarction. Am. Heart J. 2002, 143, 460–466. [Google Scholar] [CrossRef]
- Sandkuehler, J. The organization and function of endogenous antinociceptive systems. Prog. Neurobiol. 1996, 50, 49–81. [Google Scholar] [CrossRef]
- Albaghdadi, M. Baroreflex control of long-term arterial pressure. Rev. Bras. Hipertens. 2008, 14, 13. [Google Scholar]
- France, C.R. Decreased pain perception and risk for hypertension: Considering a common physiological mechanism. Psychophysiology 1999, 36, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Aicher, S.A.; Randich, A. Antinociception and cardiovascular responses produced by electrical stimulation in the nucleus tractus solitarius, nucleus reticularis ventralis, and the caudal medulla. Pain 1990, 42, 103–119. [Google Scholar] [CrossRef]
- Gebhart, G.F.; Sandkühler, J.; Thalhammer, J.G.; Zimmermann, M. Inhibition of spinal nociceptive information by stimulation in midbrain of the cat is blocked by lidocaine microinjected in nucleus raphe magnus and medullary reticular formation. J. Neurophysiol. 1983, 50, 446–459. [Google Scholar] [CrossRef]
- Schloer, K.H.; Stumpf, H.; Stock, G. Baroreceptor reflex during arousal induced by electrical stimulation of the amygdala or by natural stimuli. J. Autonom. Nerv. Syst. 1984, 10, 157–165. [Google Scholar] [CrossRef]
- Saha, S.; Batten, T.F.C.; Henderson, Z. A GABAergic projection from the central nucleus of the amygdala to the nucleus of the solitary tract: A combined anterograde tracing and electron microscopic. Neuroscience 2000, 99, 613–626. [Google Scholar] [CrossRef]
- Seminowicz, D.A.; Mikulis, D.J.; Davis, K.D. Cognitive modulation of pain-related brain responses depends on behavioral strategy. Pain 2004, 112, 48–58. [Google Scholar] [CrossRef]
- Edwards, L.; Inui, K.; Ring, C.; Wang, X.; Kakigi, R. Pain-related evoked potentials are modulated across the cardiac cycle. Pain 2008, 137, 488–494. [Google Scholar] [CrossRef] [Green Version]
- Mendelowitz, D.; Scher, M.A. Pulsatile pressure can prevent rapid baroreflex resetting. Am. J. Physiol. 1990, 258, H92–H100. [Google Scholar] [CrossRef]
- Swenne, C.A. Baroreflex sensitivity: Mechanisms and measurement. Neth. Heart J. 2013, 21, 58–60. [Google Scholar] [CrossRef] [Green Version]
- Burgmer, M.; Pfleiderer, B.; Maihoefner, C.; Gaubitz, M.; Wessoleck, H.; Heuft, G.; Pogatzki-Zahn, E. Cerebral mechanisms of experimental hyperalgesia in fibromyalgia. Eur. J. Pain 2012, 16, 636–647. [Google Scholar] [CrossRef]
- Graven-Nielsen, T.; Kendall, S.A.; Henriksson, K.G.; Bengtsson, M.; Sörensen, J.; Johnson, A.; Gerdle, B.; Arendt-Nielsen, L. Ketamine reduces muscle pain, temporal summation, and referred pain in fibromyalgia patients. Pain 2000, 85, 483–491. [Google Scholar] [CrossRef]
- Woolf, C.J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain 2011, 152, S2–S15. [Google Scholar] [CrossRef]
- Flor, H.; Birbaumer, N. Acquisition of chronic pain: Psychophysiological mechanisms. Am. Pain Soc. J. 1994, 3, 119–127. [Google Scholar]
- Jensen, K.B.; Kosek, E.; Wicksell, R.; Kemani, M.; Olsson, G.; Merle, J.V.; Kadetoff, D.; Ingvar, M. Cognitive Behavioral Therapy increases pain-evoked activation of the prefrontal cortex in patients with fibromyalgia. Pain 2012, 153, 1495–1503. [Google Scholar] [CrossRef]
- Staud, R.; Price, D.D.; Robinson, M.E.; Mauderli, A.P.; Vierck, C.J. Maintenance of windup of second pain requires less frequent stimulation in fibromyalgia patients compared to normal controls. Pain 2004, 110, 689–696. [Google Scholar] [CrossRef]
- Julien, N.; Goffaux, P.; Arsenault, P.; Marchand, S. Widespread pain in fibromyalgia is related to a deficit of endogenous pain inhibition. Pain 2005, 114, 295–302. [Google Scholar] [CrossRef]
- McIntyre, D.; Edwards, L.; Ring, C.; Parvin, B.; Carroll, D. Systolic inhibition of nociceptive responding is moderated by arousal. Psychophysiology 2006, 43, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Berrino, L.; Oliva, P.; Rossi, F.; Palazzo, E.; Nobili, B.; Maione, S. Interaction between metabotropic and NMDA glutamate receptors in the periaqueductal grey pain modulation system. Naunyn Schmiedebergs Arch. Pharmacol. 2001, 364, 437–443. [Google Scholar] [PubMed]
- Pertovaara, A. A neuronal correlate of secondary hyperalgesia in the rat spinal dorsal horn is submodality selective and facilitated by supraspinal influence. Exp. Neurol. 1998, 149, 193–202. [Google Scholar] [CrossRef]
- Randich, A.; Aicher, S.A. Medullary substrates mediating antinociception produced by electrical stimulation of the vagus. Brain Res. 1988, 455, 68–76. [Google Scholar] [CrossRef]
- Ditto, B.; France, C. Carotid baroreflex sensitivity at rest and during psychological stress in offspring of hypertensives and non-twin sibling pairs. Psychosom. Med. 1990, 52, 610–620. [Google Scholar] [CrossRef]
- Lawler, J.E.; Sanders, B.J.; Cox, R.H.; O’Connor, E.F. Baroreflex function in chronically stressed borderline hypertensive rats. Physiol. Behav. 1991, 49, 539–542. [Google Scholar] [CrossRef]
- Brody, S.; Angrilli, A.; Weiss, U.; Birbaumer, N.; Mini, A.; Veit, R.; Rau, H. Somatosensory evoked potentials during baroreceptor stimulation in chronic low back pain patients and normal controls. Int. J. Psychophysiol. 1997, 25, 201–210. [Google Scholar] [CrossRef]
- Duschek, S.; Dietel, A.; Schandry, R.; del Paso, G.A.R. Increased baroreflex sensitivity and reduced cardiovascular reactivity in individuals with chronic low blood pressure. Hypertens. Res. 2008, 31, 1873–1878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diers, M.; Yilmaz, P.; Rance, M.; Thieme, K.; Gracely, R.H.; Rolko, C.; Schley, M.T.; Kiessling, U.; Wang, H.F.H. Treatment-related changes in brain activation in patients with fibromyalgia syndrome. Exp. Brain Res. 2012, 218, 619–628. [Google Scholar] [CrossRef] [PubMed]
- Sleight, P.; La Rovere, M.T.; Mortara, A.; Pinna, G.; Maestri, R.; Leuzzi, S. Physiology and pathophysiology of heart rate and blood pressure variability in humans: Is power spectral analysis largely an index of baroreceptor gain? Clin. Sci. 1995, 88, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Thieme, K.; Meller, T.; Evermann, U.; Malinowski, R.; Mathys, M.; Gracely, R.H.; Maixner, W.; Turk, D.C. Efficacy of Systolic Extinction Training (SET) in Fibromyalgia Patients with elevated Blood Pressure Response to Stress—A Tailored RCT Study. Arthritis Care Res. 2019, 71, 678–688. [Google Scholar] [CrossRef]
Groups | Sign Groups | Sign FM | Sign NC | |||||
---|---|---|---|---|---|---|---|---|
Variable | FM Mean (SD) | NC Mean (SD) | U | p | Chi2 | p | Chi2 | p |
TP | ||||||||
Baseline | 5.31 (1.10) | 6.62 (0.95) | 171 | <0.001 | ||||
EP_1 | 6.48 (0.89) | 6.86 (0.76) | 240 | ns | ||||
EP_2 | 6.58 (0.86) | 6.72 (0.81) | 190 | ns | 24.78 | <0.001 | 2.79 | ns |
CC1_1 | 6.43 (0.77) | 6.82 (0.72) | 153 | 0.021 | ||||
CC1_2 | 6.62 (0.96) | 6.63 (0.67) | 203 | ns | 9.38 | 0.009 | 0.22 | ns |
CC2_1 | 6.40 (0.74) | 6.79 (0.72) | 160 | ns | ||||
CC2_2 | 6.62 (0.79) | 6.82 (0.83) | 183 | ns | 13.85 | 0.001 | 8.07 | 0.018 |
HF | ||||||||
Baseline | 2.08 (0.79) | 3.06 (0.93) | 188 | 0.001 | ||||
EP_1 | 3.08 (1.38) | 3.11 (0.78) | 298 | ns | ||||
EP_2 | 2.98 (1.62) | 2.94 (0.75) | 247 | ns | 9.44 | 0.014 | 2.64 | ns |
CC1_1 | 2.63 (0.56) | 3.33 (1.06) | 177 | ns | ||||
CC1_2 | 2.65 (0.62) | 3.08 (0.89) | 152 | ns | 11.69 | 0.003 | 0.67 | ns |
CC2_1 | 2.62 (0.59) | 3.15 (0.89) | 172 | ns | ||||
CC2_2 | 2.87 (0.83) | 3.21 (1.03) | 161 | ns | 13.86 | 0.001 | 0.67 | ns |
LF | ||||||||
Baseline | 3.91 (1.13) | 5.03 (1.18) | 218 | 0.003 | ||||
EP_1 | 4.96 (0.84) | 4.98 (0.87) | 296 | ns | ||||
EP_2 | 5.18 (1.05) | 5.01 (0.85) | 239 | ns | 14.11 | 0.001 | 0.07 | ns |
CC1_1 | 4.64 (0.85) | 5.02 (0.83) | 161 | ns | ||||
CC1_2 | 4.92 (1.02) | 4.97 (0.84) | 184 | ns | 8.77 | 0.012 | 0.52 | ns |
CC2_1 | 4.66 (1.01) | 5.10 (0.99) | 153 | 0.037 | ||||
CC2_2 | 4.82 (0.92) | 5.09 (1.02) | 186 | ns | 16 | <0.001 | 2 | ns |
VLF | ||||||||
Baseline | 4.93 (0.83) | 6.07 (0.86) | 184 | <0.001 | ||||
EP_1 | 5.64 (0.92) | 6.25 (0.77) | 189 | 0.02 | ||||
EP_2 | 5.81 (0.91) | 6.16 (0.83) | 158 | 0.034 | 8.44 | 0.015 | 2.214 | ns |
CC1_1 | 6.03 (0.80) | 6.15 (0.74) | 209 | ns | ||||
CC1_2 | 5.97 (0.88) | 6.05 (0.71) | 187 | ns | 9.39 | 0.009 | 0.89 | ns |
CC2_1 | 5.90 (0.79) | 6.21 (0.76) | 162 | ns | ||||
CC2_2 | 6.02 (0.86) | 6.24 (0.84) | 181 | ns | 6.14 | ns | 4.52 | ns |
SDNN | ||||||||
Baseline | 2.73 (0.42) | 3.31 (0.47) | 164 | <0.001 | ||||
EP_1 | 3.26 (0.44) | 3.42 (0.37) | 274 | ns | ||||
EP_2 | 3.29 (0.41) | 3.35 (0.39) | 227 | ns | 21.38 | <0.001 | 2 | ns |
CC1_1 | 3.22 (0.38) | 3.41 (0.35) | 175 | ns | ||||
CC1_2 | 3.30 (0.47) | 3.31 (0.34) | 225 | ns | 9.38 | 0.009 | 0.96 | ns |
CC2_1 | 3.22 (0.37) | 3.39 (0.36) | 157 | ns | ||||
CC2_2 | 3.30 (0.39) | 3.41 (0.42) | 185 | ns | 13.29 | 0.001 | 8.29 | 0.016 |
rmSSD | ||||||||
Baseline | 1.68 (0.35) | 2.19 (0.44) | 208 | 0.002 | ||||
EP_1 | 2.31 (0.77) | 2.20 (0.37) | 284 | ns | ||||
EP_2 | 2.39 (0.81) | 2.17 (0.33) | 236 | ns | 16.63 | <0.001 | 1.14 | ns |
CC1_1 | 2.66 (1.71) | 2.34 (0.52) | 184 | ns | ||||
CC1_2 | 2.66 (1.68) | 2.24 (0.45) | 201 | ns | 22.8 | <0.001 | 0.29 | ns |
CC2_1 | 2.65 (1.75) | 2.24 (0.40) | 207 | ns | ||||
CC2_2 | 1.99 (0.34) | 2.29 (0.54) | 152 | 0.035 | 16.13 | <0.001 | 1.185 | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thieme, K.; Jung, K.; Mathys, M.G.; Gracely, R.H.; Turk, D.C. Cardiac-Gated Neuromodulation Increased Baroreflex Sensitivity and Reduced Pain Sensitivity in Female Fibromyalgia Patients. J. Clin. Med. 2022, 11, 6220. https://doi.org/10.3390/jcm11206220
Thieme K, Jung K, Mathys MG, Gracely RH, Turk DC. Cardiac-Gated Neuromodulation Increased Baroreflex Sensitivity and Reduced Pain Sensitivity in Female Fibromyalgia Patients. Journal of Clinical Medicine. 2022; 11(20):6220. https://doi.org/10.3390/jcm11206220
Chicago/Turabian StyleThieme, Kati, Kathrin Jung, Marc G. Mathys, Richard H. Gracely, and Dennis C. Turk. 2022. "Cardiac-Gated Neuromodulation Increased Baroreflex Sensitivity and Reduced Pain Sensitivity in Female Fibromyalgia Patients" Journal of Clinical Medicine 11, no. 20: 6220. https://doi.org/10.3390/jcm11206220
APA StyleThieme, K., Jung, K., Mathys, M. G., Gracely, R. H., & Turk, D. C. (2022). Cardiac-Gated Neuromodulation Increased Baroreflex Sensitivity and Reduced Pain Sensitivity in Female Fibromyalgia Patients. Journal of Clinical Medicine, 11(20), 6220. https://doi.org/10.3390/jcm11206220