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Abstract: Rationale: Therapy response evaluation by 18F-fluorodeoxyglucose PET/CT (FDG PET)
has become a powerful tool for the discrimination of responders from non-responders in pediatric
Hodgkin lymphoma (HL). Recently, volumetric analyses have been regarded as a valuable tool for
disease prognostication and biological characterization in cancer. Given the multitude of methods
available for volumetric analysis in HL, the AIEOP Hodgkin Lymphoma Study Group has designed
a prospective analysis of the Italian cohort enrolled in the EuroNet-PHL-C2 trial. Methods: Primarily,
the study aimed to compare the different segmentation techniques used for volumetric assessment in
HL patients at baseline (PET1) and during therapy: early (PET2) and late assessment (PET3). Overall,
50 patients and 150 scans were investigated for the current analysis. A dedicated software was
used to semi-automatically delineate contours of the lesions by using different threshold methods.
More specifically, four methods were applied: (1) fixed 41% threshold of the maximum standard-
ized uptake value (SUVmax) within the respective lymphoma site (V41%), (2) fixed absolute SUV
threshold of 2.5 (V2.5); (3) SUVmax(lesion)/SUVmean liver >1.5 (Vliver); (4) adaptive method (AM).
All parameters obtained from the different methods were analyzed with respect to response. Results:
Among the different methods investigated, the strongest correlation was observed between AM and
Vliver (rho > 0.9; p < 0.001 for SUVmean, MTV and TLG at all scan timing), along with V2.5 and AM
or Vliver (rho 0.98, p < 0.001 for TLG at baseline; rho > 0.9; p < 0.001 for SUVmean, MTV and TLG
at PET2 and PET3, respectively). To determine the best segmentation method, we applied logistic
regression and correlated different results with Deauville scores at late evaluation. Logistic regression
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demonstrated that MTV (metabolic tumor volume) and TLG (total lesion glycolysis) computation ac-
cording to V2.5 and Vliver significantly correlated to response to treatment (p = 0.01 and 0.04 for MTV
and 0.03 and 0.04 for TLG, respectively). SUVmean also resulted in significant correlation as absolute
value or variation. Conclusions: The best correlation for volumetric analysis was documented for AM
and Vliver, followed by V2.5. The volumetric analyses obtained from V2.5 and Vliver significantly
correlated to response to therapy, proving to be preferred thresholds in our pediatric HL cohort.

Keywords: FDG PET; Hodgkin’s lymphoma; pediatric; volumetric analysis; response assessment;
interim evaluation; method comparison

1. Introduction

Hodgkin lymphoma (HL) is one of the most frequent yet curable hematological
malignancies in children [1]. Therefore, it appears to be of paramount importance to
optimize therapeutic effect and minimize subsequent long-term risks while maintaining
high cure rates. For this reason, it appears necessary to customize therapy for each patient
based on the pre-treatment prognostic factors and intermediate assessments of disease
response. Over the past few decades, 18F-fluorodeoxyglucose PET/CT (FDG PET) has
played an increasingly central role for staging, management and follow-up of various
pediatric malignancies [2–7]. In pediatric HL, therapy response evaluation by means of
[18F]FDG PET has become a powerful tool for the discrimination of adequate responders
from inadequate responders [8–10]. According to international standards, the Deauville
five-point scale is considered the visual method of choice for discriminating responses in
patients with lymphoma [11–14]. In order to extend the Deauville score to a continuous
scale and limit visual misinterpretation, the German pediatric HL group proposed the use
of qPET in 2014 [15–17]. This quantitative method was applied in the current EuroNet-
PHL-C2 clinical study, in which therapy was adapted based on the FDG PET result after
two cycles of chemotherapy [18,19].

Nevertheless, most of the studies were conducted in adolescent patients, and although
PET appears to have similar diagnostic performance in the pediatric population, studies in
the pediatric cohort are limited. Therefore, the criteria for the definition of adequate or
inadequate response in children with HL are still being discussed [16].

Recently, volumetric analyses have been regarded as a valuable tool for disease prog-
nostication and biological characterization in cancer. Effectively, in addition to semi-
quantitative parameters (i.e., SUVmax, SUVmean, SUVpeak), [18F]FDG PET provides
three-dimensional disease volume measurements and metabolic activity, such as metabolic
tumor volume (MTV) and total lesion glycolysis (TLG). These functional measurements of
tumor volume provide additional prognostic information beyond the classical risk factors
that include a unidimensional measurement of tumor bulk [20]. A high total-body tumor
burden, defined by these parameters, is associated with poorer prognosis in adults with
various lymphomas, including HL [20–33].

Given the multitude of methods available for volumetric analysis in HL, the AIEOP
Hodgkin Lymphoma Study Group has designed a prospective analysis of the Italian cohort
enrolled in the EuroNet-PHL-C2 trial. The aim of this study is to investigate different
segmentation techniques used for volumetric assessment in HL patients at baseline and
during the course of therapy and to compare the parameters obtained by the different
methods, relating them to the response.

2. Materials and Methods
2.1. Study Population

The population analyzed in the current study was obtained from the Italian cohort of
patients treated according to the EuroNet-PHL-C2 trial [34] and enrolled in the prospec-
tive parallel study promoted by the AIEOP Hodgkin Lymphoma Study Group following
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Amendment Nr. 04, dated July 31, 2017 [34]. The study was approved by AIFA (Agenzia
Italiana del Farmaco) on March 9, 2018. Written informed consent was obtained from all sub-
jects or their legal representatives before inclusion. In accordance with the EuroNet-PHL-C2
trial, the study population comprised pediatric patients with histologically confirmed clas-
sical HL in intermediate and advanced treatment level, evaluated with FDG PET at baseline
(PET1), after two cycles of induction therapy (PET2) and after the end of chemotherapy
(PET3), in case of PET2 positivity [34]. Primarily, the present study aimed to compare
the different segmentation techniques used for volumetric assessment in HL patients at
baseline and during the course of therapy. Therefore, an overall population of 50 patients
(150 scans) were investigated across 17 Italian AIEOP Centers.

Principal characteristics of the study population are shown in Table 1.

Table 1. Principal characteristics of the study population.

Characteristics Number (%)

Sex
Male 31 (62%)

Female 19 (38%)
Age (years) 14.4

Range 7–25
Stage

II 20 (40%)
III 8 (16%)
IV 22 (44%)

Bulky masses 30 (60%)
B symptoms 25 (50%)

Treatment levels (TLs) *
TL-1 0 (0%)
TL-2 21 (42%)
TL-3 29 (58%)

* Patients are stratified at baseline into treatment levels according to stage and risk factors, confirmed by central
review: TL-1, TL-2 and TL-3 for low, intermediate and advanced HL, respectively.

2.2. Volumetric Assessment

Imaging protocol for FDG PET scans was compliant with the requirements of the
EuroNet-PHL-C2 trial, which were in accordance with the EANM guidelines for patient
preparation, data acquisition and image reconstruction [35] to avoid discrepancies between
the different PET tomographs used in the various AIEOP Centers involved in the study. For
the semi-quantitative and volumetric analyses of the FDG PET scans, the Local Image Features
Extraction (LIFEx) freeware (http://www.lifexsoft.org) was used to semi-automatically
delineate contours of the lesions by using different threshold methods (Figure 1). More
specifically, we utilized four methods for volumetric assessment of pediatric HL [36]:
(1) fixed 41% threshold of SUVmax within the respective lymphoma site (V41%), (2) fixed
absolute SUV threshold of 2.5 (V2.5), (3) SUVmax(lesion)/SUVmean liver > 1.5 (Vliver) and
(4) adaptive method (AM) [35]. This was computed as [0.15× I(mean)] + I(background),
where I(mean) is calculated as the mean intensity of all pixels surrounded by the 70% Imax
isocontour within the tumor while I(background) is defined as SUVmean of the liver. [36].
The semi-quantitative parameters retrieved from the different analyses comprised metabolic
tumor volume (MTV) and total lesion glycolysis (TLG = MTV × SUVmean) at baseline and
during the course of therapy, as well as SUVmax, determined as the pixel with the highest
uptake value; SUVmean, as the mean value of uptake; and SUVpeak, corresponding to the
average value of uptake in a VOI (volume of interest) of 1ml that surrounds the pixel with
the highest activity.

http://www.lifexsoft.org
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Figure 1. MIP (maximal intensity projection) image illustration of the four segmentation tech-
niques applied in our study. From left to right: fixed 41% threshold (V41%), fixed absolute SUV
threshold of 2.5 (V2.5), SUVmax(lesion)/SUVmean liver >1.5 (Vliver) and adaptive method (AM).
Corresponding MTV (metabolic tumor volumes) at baseline are shown beneath each MIP image. The
areas highlighted in red in the figures indicate the contours of the malignant lesions delineated by
each segmentation technique.

2.3. Response Classification

According to the EuroNet-PHL-C2 trial, patients are classified into Adequate Re-
sponse (AR) and Inadequate Response (IR). In the current study, we subdivided treatment
response based on the Deauville-5-points-scale (DS) into the following: DS 1 = no uptake;
DS 2 = uptake ≤ mediastinum; DS 3 = uptake > mediastinum but ≤ liver; DS 4 = uptake
moderately more than liver uptake, at any site; DS 5 = markedly increased uptake at any site
and new sites of disease [37]. The percentage variation of all semiquantitative parameters
(i.e., SUVmax, SUVmean, SUVpeak, MTV and TLG) from baseline (PET1) to early (PET2)
and late assessment (PET3) was computed. Since the aim of the present study was not
to provide treatment outcomes from the EuroNet-PHL-C2 trial but rather select the best
threshold method for volumetric assessment, we did not display the responses obtained
from the Italian cohort and used the dichotomization according to DS only to validate the
robustness of each method under investigation.

2.4. Statistical Analysis

Descriptive statistics comprised conventional metrics (mean, median, range). The
different threshold methods used to outline lymphoma lesions were compared by the
Pearson correlation coefficient, linear regression, Bland–Altman and logistic regression.
Linear regression was applied to determine the relationship between response to treatment
at early (PET2) and late evaluation (PET3), defined according to Deauville score (classified
into DS 2, DS 3, DS 4 and DS 5) and all other variables classified with the different volu-
metric thresholds (i.e., V41%, V2.5, Vliver and AM). Statistical significance was set for a
p value < 0.05.
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3. Results
3.1. Semi-Quantitative and Volumetric Analyses

The semi-quantitative and volumetric analyses obtained from the different threshold
methods at baseline showed the following results for SUVmean, with regards to median
values: V2.5 (5.2), V41% (8.5), Vliver (2) and AM (5 4.75), respectively. The corresponding
MTV values resulted as follows: V2.5 (334.2), V41% (82.9), Vliver (423.2) and AM (433.5),
respectively. The TLG median values were V2.5 (1639.8), V41% (570), Vliver (1745.75) and
AM (1782.2), respectively. The values obtained at PET2 assessment for SUVmean resulted
in V2.5 (3.1), V41% (2.7), Vliver (2) and AM (2.9), respectively. The corresponding PET2
MTV values resulted in V2.5 (2.15), V41% (5.95), Vliver (1.9) and AM (6.5), respectively.
The PET2 TLG median values were V2.5 (9.45), V41% (19.85), Vliver (7.9) and AM (20.6),
respectively. Lastly, the median values obtained at PET3 for SUVmean, MTV and TLG were
all cleared to zero.

3.2. Comparison of the Parameters according to the Different Methods

The linear regression allowed us to compare the semi-quantitative and volumetric pa-
rameters for the different threshold methods at different timing as absolute values (Table 2)
as well as variation from PET1 to PET2 and PET3 (Table 3). The scatter plots for the linear
regression analyses and the Bland–Altman plots for baseline SUVmean, MTV and TLG val-
ues related to the different segmentation techniques used are also displayed (Figures 2–4).
Among the different methods investigated, the strongest correlation was observed between
AM and Vliver (rho > 0.9; p < 0.001 for SUVmean, MTV and TLG at all scan timing), along
with V2.5 and AM or Vliver (rho 0.98, p < 0.001 for TLG at baseline; rho > 0.9; p < 0.001 for
SUVmean, MTV and TLG at PET2 and PET3).

Table 2. Comparison of different absolute threshold values by means of linear regression.

PET1 PET2 PET3

Thresholds SUVmean MTV TLG SUVmean MTV TLG SUVmean MTV TLG
rho p rho p rho p rho p rho p rho p rho p rho p rho p

2.5 vs. 41% 0.83 <0.001 0.36 0.011 0.88 <0.001 0.97 <0.001 0.31 0.037 0.42 0.009 0.88 <0.001 0.90 <0.001 0.96 <0.001
2.5 vs. AM 0.79 <0.001 0.47 0.001 0.98 <0.001 0.93 <0.001 0.91 <0.001 0.96 <0.001 0.99 <0.001 0.98 <0.001 1 <0.001
2.5 vs. liver 0.81 <0.001 0.48 <0.001 0.98 <0.001 0.87 <0.001 0.91 <0.001 0.95 <0.001 0.98 <0.001 0.99 <0.001 1 <0.001
AM vs. liver 0.90 <0.001 0.94 <0.001 0.98 <0.001 0.92 <0.001 0.95 <0.001 0.97 <0.001 0.99 <0.001 0.99 <0.001 1 <0.001
41% vs. AM 0.80 <0.001 0.65 <0.001 0.86 <0.001 0.93 <0.001 0.45 0.001 0.5 0.001 0.88 <0.001 0.95 <0.001 0.97 <0.001
41% vs. liver 0.77 <0.001 0.70 <0.001 0.89 <0.001 0.87 <0.001 0.39 0.006 0.47 0.002 0.91 <0.001 0.92 <0.001 0.96 <0.001

Table 3. Comparison of different delta threshold values by means of linear regression.

∆ PET2 ∆ PET3

Thresholds ∆SUVmean ∆MTV ∆TLG ∆SUVmean ∆MTV ∆TLG
rho p rho p rho p rho p rho p rho p

2.5 vs. 41% 0.83 <0.001 0.19 0.198 0.37 0.008 0.90 <0.001 0.92 <0.001 0.91 <0.001
2.5 vs. AM 0.88 <0.001 0.93 <0.001 0.97 <0.001 0.96 <0.001 0.94 <0.001 0.98 <0.001
2.5 vs. liver 0.88 <0.001 0.94 <0.001 0.97 <0.001 0.93 <0.001 0.98 <0.001 0.98 <0.001
AM vs. liver 0.94 <0.001 0.95 <0.001 0.97 <0.001 0.94 <0.001 0.93 <0.001 0.97 <0.001
41% vs. AM 0.89 <0.001 0.29 0.040 0.45 0.001 0.90 <0.001 0.82 <0.001 0.91 <0.001
41% vs. liver 0.88 <0.001 0.14 0.345 0.37 0.008 0.89 <0.001 0.96 <0.001 0.97 <0.001
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revealing some outliners in all methods. The closer the data with respect to the mean lines and the 

Figure 2. Scatter plots for linear regression with corresponding correlation coefficient (rho) and
p-values related to the different segmentation techniques used (left columns); Bland-Altman plots
(right columns) for baseline SUVmean values showing mean and standard deviations (SD) lines,
revealing some outliners in all methods. The closer the data with respect to the mean lines and the
lower the variation between SD, the high the comparability of the methods. Herein, the calculated
limits of agreement are substantial especially for the V41% method.
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Figure 3. Scatter plots for linear regression with corresponding correlation coefficient (rho) and
p-values related to the different segmentation techniques used (left columns); Bland-Altman plots
(right columns) for baseline MTV values showing mean and standard deviations (SD) lines, revealing
some outliners in all methods. The closer the data with respect to the mean lines and the lower the
variation between SD, the high the comparability of the methods. Herein, the calculated limits of
agreement are substantial especially for the V41% method.
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Figure 4. Scatter plots for linear regression with corresponding correlation coefficient (rho) and
p-values related to the different segmentation techniques used (left columns); Bland-Altman plots
(right columns) for baseline TLG values showing mean and standard deviations (SD) lines, revealing
some outliners in all methods. The closer the data with respect to the mean lines and the lower the
variation between SD, the high the comparability of the methods. Herein, the calculated limits of
agreement are substantial especially for the V41% method.

The standard deviations (SD) according to Bland–Altman plots for baseline SUVmean
resulted in favor of the AM and Vliver methods (−1.6 and 1.4), followed by V2.5 and AM
or Vliver (Figure 2). The widest range in SD was observed in V41%, with respect to all
other methods used.

Similar results were obtained for baseline MTV and TLG (Figures 3 and 4) as well as for
all semi-quantitative and volumetric analyses considered at different timing (Supplementary
Tables S1 and S2).

To determine the best segmentation method, we applied logistic regression and cor-
related different results with various Deauville scores obtained at late evaluation (PET3).
The results are illustrated as absolute values (Table 4) as well as variations from baseline
(Table 5).
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Table 4. Logistic regression of different baseline threshold values with respect to post-treatment
Deauville score.

DS 2 DS 3 DS 4 DS 5

Thresholds p Odds
Ratio 95% CI p Odds

Ratio 95% CI p Odds
Ratio 95% CI p Odds

Ratio 95% CI

2.5
SUVmean 0.37 1.3 0.7–2.3 0.01 1.4 0.9–2 0.01 1.6 1–2.6 0.77 1 0.7–1.7

MTV 0.01 1 0.9–1 0.07 1 0.9–1 0.02 1 0.9–1 0.9 1 0.9–1
TLG 0.03 1 0.9–1 0.2 1 0.9–1 0.08 1 0.9–1 0.7 1 0.9–1

41%
SUVmean 0.03 1.1 0.9–1.5 0.1 1.1 0.9–1.4 0.005 1.3 1–1.6 0.3 1.1 0.9–1.4

MTV 0.14 1 0.9–1 0.8 1 0.9–1 0.7 1 0.9–1 0.6 0.9 0.9–1
TLG 0.13 1 0.9–1 0.4 1 0.9–1 0.25 1 0.9–1 0.7 0.9 0.9–1

Liver
SUVmean 0.3 1.3 0.7–2.3 0.07 1.4 0.9–2.1 0.02 1.6 1–2.4 0.3 1.2 0.8–1.9

MTV 0.04 1 0.9–1 0.4 1 0.9–1 0.2 1 0.9–1 0.5 1 0.9–1
TLG 0.04 1 0.9–1 0.3 1 0.9–1 0.1 1 0.9–1 0.7 1 0.9–1

AM
SUVmean 0.2 1.4 0.8–2.4 0.06 1.4 0.9–2 0.01 1.6 1–2.3 0.1 1.3 0.8–2

MTV 0.08 1 0.9–1 0.7 1 0.9–1 0.4 1 0.9–1 0.8 1 0.9–1
TLG 0.05 1 0.9–1 0.3 1 0.9–1 0.15 1 0.9–1 0.9 1 0.9–1

Table 5. Logistic regression of different delta threshold values with respect to post-treatment
Deauville scores.

DS 2 DS 3 DS 4 DS 5

Thresholds p Odds
Ratio 95% CI p Odds

Ratio 95% CI p Odds
Ratio 95% CI p Odds

Ratio 95% CI

2.5
∆SUVmean <0.0001 0.4 - 0.0004 0.9 0.94–0.98 0.0005 0.9 0.95–0.99 0.009 0.9 0.92–0.99

∆MTV - - - 0.2 0.9 0.9–1 0.09 0.9 0.9–1 0.8 0.9 0.9–1
∆TLG - - - 0.1 0.9 0.9–1 0.07 0.9 0.8–1 0.75 0.9 0.9–1

41%
∆SUVmean - - - 0.0009 0.9 0.92–0.98 0.007 0.9 0.94–0.99 0.008 0.9 0.94–0.99

∆MTV - - - 0.5 0.9 0.9–1 0.3 0.9 0.98–1 0.8 1 0.98–1
∆TLG - - - 0.9 1 0.9–1 0.9 0.9 0.97–1 0.9 0.9 0.97–1

Liver
∆SUVmean - - - 0.004 0.9 0.95–0.99 0.01 0.97 0.95–0.99 0.05 0.97 0.95–1

∆MTV - - - 0.09 0.9 0.8–1 0.04 0.9 0.8–1 0.3 0.97 0.92–1
∆TLG - - - 0.1 0.9 0.8–1 0.06 0.9 0.8 0.4 0.97 0.92–1

AM
∆SUVmean - - - 0.01 0.9 0.95–0.99 0.03 0.9 0.95–0.99 0.07 0.97 0.95–1

∆MTV - - - 0.1 0.9 0.9–1 0.05 0.9 0.9–1 0.6 0.98 0.94–1
∆TLG - - - 0.1 0.9 0.9–1 0.07 0.9 0.8–1 0.7 0.98 0.94–1

Logistic regression demonstrated that MTV and TLG computation according to V2.5
and Vliver significantly correlated to PET3 (p = 0.01 and 0.04 for MTV and 0.03 and
0.04 for TLG, respectively), especially when used as absolute values for both DS 2 and
DS 3 responses.

SUVmean absolute values were also associated with the responses for Vliver and
V41% in the case of DS 2, while as variations, ∆SUVmean correlated to DS 3 for all methods,
with the most statistically significant correlation for DS 2 in the case of the V2.5 threshold
method (Table 5).

4. Discussion

In the last years, several strategies for semi-automatic tumor contouring have been
proposed, including fixed (or relative), adaptive or gradient-based (growth of the adaptive
region) thresholds. A common unified segmentation method is difficult to develop but
necessary in order to improve interinstitutional comparison, find the best reproducibility
between semiquantitative and volumetric parameters and ensure optimal patient manage-
ment within medical centers [38]. However, a consensus on the choice of thresholds has
not been reached and the optimal method for tumor volume segmentation is still debated.
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Therefore, different methodologies have been studied. In their study, Song et al. [21]
enrolled patients with early-stage HL (I-II) and performed their analyses using a threshold
of 2.5 as optimal cut-off, demonstrating a correlation between disease prognosis and MTV
status. Kanoun et al. [39] investigated the influence of software tools and the total metabolic
tumor volume (TMTV) calculation method on prognostic stratification of baseline [18F]FDG
PET in newly diagnosed HL. They used 2.5, 41%, 125% liver SUVmax and 140% liver
SUVmax, proving no significant difference between the respective ROC curves and with
optimal cut-offs used being predictive of treatment failure. Martín-Saladich et al. [40]
showed an optimal reproducibility in MTV computation for SUV > 2.5 threshold using
contouring methodology or software tools. Although the authors found an overestimation
of MTV when using a threshold of 2.5, it seemed preferable to the underestimation obtained
with the cut-offs of 41% and 50%, respectively. Parvez et al. [41] have reported that the
use of a fixed threshold of SUV3 or SUV6 was the best predictor of response to first-line
therapy and overall survival.

Eude et al. [42] have compared the reproducibility of MTV measurement as well
as the thresholds obtained for each method and their prognostic values in this regard.
Eight methods were compared: three absolute thresholds (SUV ≥ 2.5; SUV ≥ liver SU-
Vmax; SUV≥ PERCIST SUV), one percentage SUV threshold method (SUV ≥ 41% SUVmax)
and four adaptive methods (Daisne, Nestle, Fitting, Black). There was a strong correlation
between MTV and patient prognosis regardless of the segmentation method used (p = 0.001
for PFS and OS). The largest inter-observer cut-off variability was observed in the 41% SU-
Vmax method, which resulted in more inter-observer disagreements. MTV measurements
based on absolute SUV criteria were found to be significantly more reproducible than those
based on 41% SUVmax criteria. Recently, Driessen et al. [43] analyzed 105 PET/CT scans
from patients with newly diagnosed and relapsed/refractory cHL with six segmentation
methods: two fixed thresholds (SUV4.0 and SUV2.5), two relative methods (41% of SUVmax
and a contrast-corrected 50% of SUVpeak) and two combination majority vote’ methods
(MV2 and MV3). They observed that SUV4.0 tended to underestimate MTV and often
missed small lesions, whereas SUV2.5 most frequently included all lesions and generally
overestimated MTV. In contrast, few lesions were missed with use of relative or combined
thresholds, but these segmentation methods required extensive manual adaptation and
overestimated MTV in most cases. There were no significant differences in prognostic
performance for all features among the methods.

In our study, we analyzed four segmentation methods: fixed 41% threshold of the
SUVmax within the respective lymphoma site (V41%), fixed absolute SUV threshold of
2.5 (V2.5), SUVmax(lesion)/SUVmean liver > 1.5 (Vliver) and adaptive method (AM).
With the exception of some outliers, Bland–Altman plots revealed no systematic errors
between the different measurement approaches. The calculated limits of agreement were
substantial, especially for the V41% compared to the other methods. Consequently, the best
correlation for volumetric analysis was documented for AM and Vliver, followed by V2.5.
Moreover, the volumetric analysis obtained from V2.5 and Vliver significantly correlated to
response to therapy, proving to be preferred thresholds in our pediatric HL cohort.

The results of our study are in line with the cited studies currently in the literature and
even when there were no significant differences between the main segmentation methods
studied, the absolute SUV method appeared statistically as the most robust. In fact, in many
studies [21,39,40,42,43], MTV for SUV > 2.5 threshold has shown an optimal reproducibility
and a good correlation with prognosis.

One of the main limitations of our study is the use of images obtained from different
scanners and subjected to different algorithm reconstructions. The parameters extracted
could lose out from this bias, although harmonization based on EANM Research Ltd.
(EARL, Vienna, Austria) accreditation is recommended for experimentation [35]. However,
this is a preliminary and parallel study to the prospective study sponsored by the AIEOP
Hodgkin Lymphoma Study Group, aimed at investigating the role of volumetric and
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texture (radiomic) characteristics better fulfilling the need for predictive and prognostic
factors in pediatric HL.

5. Conclusions

Volumetric analyses with [18F]FDG PET/CT are known to help predict the outcome
in adult patients with lymphoma. This suggests a similar implication for the pediatric
population with HL. To better define the optimal method for tumor volume segmentation,
we performed a direct comparison of four computations based on either fixed thresholds
(i.e., V41%, V2.5, Vliver) or adaptive methods (AM). Based on our findings, the best
correlation for volumetric analysis was documented for AM and Vliver, followed by V2.5.
The volumetric analyses obtained from V2.5 and Vliver significantly correlated to response
to therapy, proving to be the preferred thresholds for volumetric analyses in our pediatric
HL cohort.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/jcm11206223/s1, Table S1: Comparison of different ab-
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corresponding investigators involved in the study.
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