Guillain–Barré Syndrome in Northern China: A Retrospective Analysis of 294 Patients from 2015 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Electrophysiological Studies
2.3. Statistical Analysis
2.4. Ethical Approval
3. Results
3.1. General Features
3.2. Clinical Features of Different Subtypes (AIDP vs. AMAN)
3.3. Clinical Severity, Treatment and Outcome
3.4. Regional Comparison of GBS Patients in China
4. Discussion
4.1. Epidemiology Feature
4.2. Antecedent Events
4.3. Clinical Features of Different Electrophysiological Subtypes and Regional Variation
4.4. Clinical Features of Mechanically Ventilated Patients
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuki, N.; Hartung, H. Guillain–Barré Syndrome. N. Engl. J. Med. 2012, 366, 2294–2304. [Google Scholar] [CrossRef] [PubMed]
- Sejvar, J.J.; Baughman, A.L.; Wise, M.; Morgan, O.W. Population Incidence of Guillain-Barré Syndrome: A Systematic Review and Meta-Analysis. Neuroepidemiology 2011, 36, 123–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, P.; Tian, D.C.; Xiu, Y.; Wang, Y.; Shi, F.D. Incidence of Guillain-Barré syndrome (GBS) in China: A national population-based study. Lancet Reg. Health West Pac. 2022, 18, 100302. [Google Scholar] [CrossRef] [PubMed]
- Leonhard, S.E.; Mandarakas, M.R.; Gondim, F.; Bateman, K.; Ferreira, M.; Cornblath, D.R.; van Doorn, P.A.; Dourado, M.E.; Hughes, R.; Islam, B.; et al. Diagnosis and management of Guillain-Barré syndrome in ten steps. Nat. Rev. Neurol. 2019, 15, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, J.A.; Willison, H.J. Guillain–Barré syndrome: A century of progress. Nat. Rev. Neurol. 2016, 12, 723–731. [Google Scholar] [CrossRef] [Green Version]
- Wakerley, B.R.; Uncini, A.; Yuki, N.; Attarian, S.; Barreira, A.A.; Chan, Y.; Créange, A.; Hsieh, S.; Islam, B.; Kannan, M.A.; et al. Guillain–Barré and Miller Fisher syndromes—New diagnostic classification. Nat. Rev. Neurol. 2014, 10, 537–544. [Google Scholar] [CrossRef]
- Shahrizaila, N.; Lehmann, H.C.; Kuwabara, S. Guillain-Barré syndrome. Lancet 2021, 397, 1214–1228. [Google Scholar] [CrossRef]
- Ho, T.W.; Mishu, B.; Li, C.Y.; Gao, C.Y.; Cornblath, D.R.; Griffin, J.W.; Asbury, A.K.; Blaser, M.J.; Mckhann, G.M. Guillain-Barré syndrome in northern China. Relationship to Campylobacter jejuni infection and anti-glycolipid antibodies. Brain 1995, 118, 597–605. [Google Scholar] [CrossRef]
- Mckhann, G.M.; Cornblath, D.R.; Ho, T.; Griffin, J.W.; Li, C.Y.; Bai, A.Y.; Wu, H.S.; Yei, Q.F.; Zhang, W.C.; Zhaori, Z.; et al. Clinical and electrophysiological aspects of acute paralytic disease of children and young adults in northern China. Lancet 1991, 338, 593–597. [Google Scholar] [CrossRef]
- Yao, J.; Liu, Y.; Liu, S.; Lu, Z. Regional Differences of Guillain-Barré Syndrome in China: From South to North. Front. Aging Neurosci. 2022, 14, 831890. [Google Scholar] [CrossRef]
- Wu, X.; Shen, D.; Li, T.; Zhang, B.; Li, C.; Mao, M.; Zhao, J.; Liu, K.; Zhang, H.L. Distinct Clinical Characteristics of Pediatric Guillain-Barré Syndrome: A Comparative Study between Children and Adults in Northeast China. PLoS ONE 2016, 11, e151611. [Google Scholar] [CrossRef]
- Jiang, W.; Wang, H.D.; Huang, Y.G.; Wan, Q.; Xu, Y.; Wu, B.R. Guillain-Barré syndrome in northwestern China. Electromyogr. Clin. Neurophysiol. 2001, 41, 387–391. [Google Scholar]
- Hui, A.C.; Chow, K.M.; Tang, A.S.; Fu, M.; Kay, R.; Wong, K.S. Electrophysiological, clinical and epidemiological study of Guillain-Barre Syndrome in Hong Kong Chinese. J. Clin. Neurosci. 2005, 12, 134–136. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, Y.; Yuki, N.; Wakerley, B.R.; Liu, C.; Song, J.; Wang, M.; Feng, X.; Hao, Y.; Wang, Y. Guillain-Barré syndrome in Eastern China: A study of 595 patients. Eur. J. Neurol. 2021, 28, 2727–2735. [Google Scholar] [CrossRef]
- Tan, C.Y.; Razali, S.; Goh, K.J.; Shahrizaila, N. Diagnosis of Guillain-Barré syndrome and validation of the Brighton criteria in Malaysia. J. Peripher. Nerv. Syst. 2020, 25, 256–264. [Google Scholar] [CrossRef]
- Hughes, R.A.; Newsom-Davis, J.M.; Perkin, G.D.; Pierce, J.M. Controlled trial prednisolone in acute polyneuropathy. Lancet 1978, 2, 750–753. [Google Scholar] [CrossRef]
- Liu, S.; Xiao, Z.; Lou, M.; Ji, F.; Shao, B.; Dai, H.; Luo, C.; Hu, B.; Zhou, R.; Zou, Z.; et al. Guillain-Barré syndrome in southern China: Retrospective analysis of hospitalised patients from 14 provinces in the area south of the Huaihe River. J. Neurol. Neurosurg. Psychiatry 2018, 89, 618–626. [Google Scholar] [CrossRef]
- Hadden, R.D.; Cornblath, D.R.; Hughes, R.A.; Zielasek, J.; Hartung, H.P.; Toyka, K.V.; Swan, A.V. Electrophysiological classification of Guillain-Barré syndrome: Clinical associations and outcome. Plasma Exchange/Sandoglobulin Guillain-Barré Syndrome Trial Group. Ann. Neurol. 1998, 44, 780–788. [Google Scholar] [CrossRef]
- IBM Corporation. IBM SPSS Statistics for Windows, Version 22.0. Released 2013. IBM Corporation: Armonk, NY, USA, 2013.
- Blum, S.; Reddel, S.; Spies, J.; Mccombe, P. Clinical features of patients with Guillain-Barré syndrome at seven hospitals on the East Coast of Australia. J. Peripher. Nerv. Syst. 2013, 18, 316–320. [Google Scholar] [CrossRef]
- Peric, S.; Milosevic, V.; Berisavac, I.; Stojiljkovic, O.; Beslac-Bumbasirevic, L.; Marjanovic, I.; Djuric, V.; Djordjevic, G.; Rajic, S.; Cvijanovic, M.; et al. Clinical and epidemiological features of Guillain-Barré syndrome in the Western Balkans. J. Peripher. Nerv. Syst. 2014, 19, 317–321. [Google Scholar] [CrossRef]
- Ginanneschi, F.; Giannini, F.; Sicurelli, F.; Battisti, C.; Capoccitti, G.; Bartalini, S.; Mignarri, A.; Volpi, N.; Cioncoloni, D.; Franci, L.; et al. Clinical Features and Outcome of the Guillain-Barre Syndrome: A Single-Center 11-Year Experience. Front. Neurol. 2022, 13, 856091. [Google Scholar] [CrossRef] [PubMed]
- Chroni, E.; Papapetropoulos, S.; Gioldasis, G.; Ellul, J.; Diamadopoulos, N.; Papapetropoulos, T. Guillain-Barré syndrome in Greece: Seasonality and other clinico-epidemiological features. Eur. J. Neurol. 2004, 11, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Islam, Z.; Jacobs, B.C.; van Belkum, A.; Mohammad, Q.D.; Islam, M.B.; Herbrink, P.; Diorditsa, S.; Luby, S.P.; Talukder, K.A.; Endtz, H.P. Axonal variant of Guillain-Barre syndrome associated with Campylobacter infection in Bangladesh. Neurology 2010, 74, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Koike, H.; Chiba, A.; Katsuno, M. Emerging Infection, Vaccination, and Guillain-Barré Syndrome: A Review. Neurol. Ther. 2021, 10, 523–537. [Google Scholar] [CrossRef] [PubMed]
- Levison, L.S.; Thomsen, R.W.; Sindrup, S.H.; Andersen, H. Association Between Incident Cancer and Guillain-Barré Syndrome Development: A Nationwide Case-Control Study. Neurology 2022, 98, e1555–e1561. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zhang, Y.; Deng, S.; Ren, Y.; Lu, W. Trauma-Related Guillain-Barré Syndrome: Systematic Review of an Emerging Concept. Front. Neurol. 2020, 11, 588290. [Google Scholar] [CrossRef]
- Schonberger, L.B.; Bregman, D.J.; Sullivan-Bolyai, J.Z.; Keenlyside, R.A.; Ziegler, D.W.; Retailliau, H.F.; Eddins, D.L.; Bryan, J.A. Guillain-Barre syndrome following vaccination in the National Influenza Immunization Program, United States, 1976–1977. Am. J. Epidemiol. 1979, 110, 105–123. [Google Scholar] [CrossRef]
- Burwen, D.R.; Ball, R.; Bryan, W.W.; Izurieta, H.S.; La Voie, L.; Gibbs, N.A.; Kliman, R.; Braun, M.M. Evaluation of Guillain-Barré Syndrome among recipients of influenza vaccine in 2000 and 2001. Am. J. Prev. Med. 2010, 39, 296–304. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Chu, X.; Xu, Y.; Ma, F. Vaccines and the risk of Guillain-Barré syndrome. Eur. J. Epidemiol. 2020, 35, 363–370. [Google Scholar] [CrossRef]
- Wang, F.; Wang, D.; Wang, Y.; Li, C.; Zheng, Y.; Guo, Z.; Liu, P.; Zhang, Y.; Wang, W.; Wang, Y.; et al. Population-Based Incidence of Guillain-Barré Syndrome During Mass Immunization with Viral Vaccines: A Pooled Analysis. Front. Immunol. 2022, 13, 782198. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Z.; Wang, P.; Li, X.M.; Shuai, Z.W.; Ye, D.Q.; Pan, H.F. New-onset autoimmune phenomena post-COVID-19 vaccination. Immunology 2022, 165, 386–401. [Google Scholar] [CrossRef]
- Doets, A.Y.; Verboon, C.; van den Berg, B.; Harbo, T.; Cornblath, D.R.; Willison, H.J.; Islam, Z.; Attarian, S.; Barroso, F.A.; Bateman, K.; et al. Regional variation of Guillain-Barré syndrome. Brain 2018, 141, 2866–2877. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Lian, Z.; Chen, H.; Shi, Z.; Feng, H.; Du, Q.; Zhang, Q.; Zhou, H. Associations between tumor necrosis factor-α gene polymorphisms and the risk of Guillain-Barré syndrome and its subtypes: A systematic review and meta-analysis. J. Neuroimmunol. 2017, 313, 25. [Google Scholar] [CrossRef]
- Bae, J.S.; Yuki, N.; Kuwabara, S.; Kim, J.K.; Vucic, S.; Lin, C.S.; Kiernan, M.C. Guillain-Barré syndrome in Asia. J. Neurol. 2014, 85, 905–911. [Google Scholar] [CrossRef]
- Yuki, N.; Kokubun, N.; Kuwabara, S.; Sekiguchi, Y.; Ito, M.; Odaka, M.; Hirata, K.; Notturno, F.; Uncini, A. Guillain–Barré syndrome associated with normal or exaggerated tendon reflexes. J. Neurol. 2012, 259, 1181–1190. [Google Scholar] [CrossRef]
- Nasiri, J.; Ghazavi, M.; Yaghini, O.; Chaldavi, M. Clinical Features and Outcome of Guillain-Barré Syndrome in Children. Iran. J. Child Neurol. 2018, 12, 49–57. [Google Scholar]
- Luo, H.Y.; Li, X.J.; Cheng, M.; Wang, J.; Xie, L.L.; Yao, Z.X.; Jiang, L. Clinical characteristics of children with Guillain-Barré syndrome and factors associated with disease severity. J. Clin. Neurosci. 2021, 92, 120–125. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, N.; Gupta, A.M.; Chandel, A.S.; Waghela, S.; Saple, P. Clinical profile and predictors for outcome in children presenting with Guillain-Barré syndrome. J. Fam. Med. Prim. Care 2020, 9, 5316–5319. [Google Scholar] [CrossRef]
- Van den Berg, B.; Storm, E.F.; Garssen, M.; Blomkwist-Markens, P.H.; Jacobs, B.C. Clinical outcome of Guillain-Barré syndrome after prolonged mechanical ventilation. J. Neurol. Neurosurg. Psychiatry 2018, 89, 949–954. [Google Scholar] [CrossRef]
- Green, C.; Baker, T.; Subramaniam, A. Predictors of respiratory failure in patients with Guillain-Barré syndrome: A systematic review and meta-analysis. Med. J. Aust. 2018, 208, 181–188. [Google Scholar] [CrossRef]
- Li, C.; Sun, R.; Feng, L.; Jiang, J. Risk factors associated with the need for mechanical ventilation in children with Guillain-Barré syndrome. Chin. J. Contemp. Pediatr. 2021, 23, 922–926. [Google Scholar] [CrossRef]
- Schröder, J.B.; Marian, T.; Muhle, P.; Claus, I.; Thomas, C.; Ruck, T.; Wiendl, H.; Warnecke, T.; Suntrup-Krueger, S.; Meuth, S.; et al. Intubation, tracheostomy, and decannulation in patients with Guillain-Barré-syndrome-does dysphagia matter? Muscle Nerve 2019, 59, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Barzegar, M.; Toopchizadeh, V.; Golalizadeh, D.; Pirani, A.; Jahanjoo, F. A Predictive Model for Respiratory Failure and Determining the Risk Factors of Prolonged Mechanical Ventilation in Children with Guillain-Barre Syndrome. Iran. J. Child. Neurol. 2020, 14, 33–46. [Google Scholar] [PubMed]
Parameters | |
---|---|
Age * [years, M (Q1–Q3)] | 53 (42.5–63) |
Male, n (%) | 178 (60.5%) |
Antecedent events within 4 weeks | |
URTI, n (%) | 64 (21.8%) |
Gastroenteritis, n (%) | 69 (23.5%) |
Pneumoniae, n (%) | 8 (2.7%) |
Vaccination, n (%) | 2 (0.6%) |
Varicella-zoster virus, n (%) | 3 (1%) |
Cancer, n (%) | 5 (1.7%) |
Autoimmune diseases, n (%) | 7 (2.4%) |
Surgery or trauma, n (%) | 32 (10.9%) |
Others or none, n (%) | 104 (35.4%) |
Electrophysiological subtype | |
AIDP, n (%) | 99/262 (37.8%) |
AMAN, n (%) | 105/262 (40.1%) |
Equivocal, n (%) | 28/262 (10.7%) |
Inexcitable, n (%) | 6/262 (2.3%) |
Normal, n (%) | 24/262 (9.1%) |
Initial symptoms | |
Motor weakness, n (%) | 189 (64.3%) |
Sensory change, n (%) | 78 (26.5%) |
Cranial nerve palsy, n (%) | 27 (9.2%) |
Tendon reflex at entry | |
Hyperreflexia, n (%) | 4 (1.4%) |
Absent or decreased tendon reflex, n (%) | 256 (87.1%) |
Normal tendon reflex, n (%) | 34 (11.5%) |
Clinical Presentation at nadir | |
Limb weakness, n (%) | 271 (92.2%) |
Paresthesia, n (%) | 131 (44.6%) |
Facial paralysis, n (%) | 59 (20.1%) |
Bulbar palsy, n (%) | 38 (12.9%) |
Diplopia, n (%) | 37 (12.6%) |
Autonomic dysfunction, n (%) | 51 (17.3%) |
Mechanical ventilation (MV), n (%) | 39 (13.3%) |
HFGS score | |
HFGS score at entry ≥3, n (%) | 218 (74.1%) |
HFGS score at nadir ≥3, n (%) | 232 (78.9%) |
HFGS score at discharge ≥3, n (%) | 172 (58.5%) |
Time to nadir * [d,M (Q1–Q3)] | 6 (4–10) |
Hospital stay * [d,M (Q1–Q3)] | 14 (10–20) |
CSF protein concentration * [g/L,M (Q1–Q3)] | 0.8 (0.5–1.36) |
CSF albumin-cytologic dissociations, n (%) | 188 (85.1%) |
Treatment, n (%) | |
IVIg treatment alone, n (%) | 143 (48.6%) |
IVIg plus steroids, n (%) | 117 (39.8%) |
Steroids, n (%) | 16 (5.4%) |
Supportive treatment, n (%) | 18 (6.2%) |
AIDP (n = 99) | AMAN (n = 105) | Two-Tailed p-Value | |
---|---|---|---|
Age * [years, M(Q1–Q3)] | 53 (41–63) | 53 (45–63) | 0.882 |
Male, n (%) | 63 (63.6%) | 64 (61%) | 0.693 |
Antecedent events within 4 weeks | 0.161 | ||
URTI, n (%) | 25 (25.3%) | 18 (17.1%) | 0.156 |
Gastroenteritis, n (%) | 20 (20.2%) | 31 (29.5%) | 0.124 |
Initial symptoms, n (%) | <0.001 | ||
Motor weakness, n (%) | 58 (58.6%) | 91 (86.7%) | <0.001 |
Sensory change, n (%) | 36 (36.4%) | 12 (11.4%) | <0.001 |
Cranial nerve palsy, n (%) | 5 (5.1%) | 2 (1.9%) | 0.268 |
Clinical Presentation at nadir | |||
Cranial nerve involvement, n (%) | 27 (27.3%) | 17 (15.6%) | 0.054 |
Paresthesia, n (%) | 59 (59.6%) | 29 (27.6%) | <0.001 |
Facial paralysis, n (%) | 21 (21.2%) | 9 (8.5%) | 0.011 |
Autonomic dysfunction, n (%) | 15 (15.2%) | 16 (15.2%) | 0.986 |
Mechanical ventilation (MV), n (%) | 8 (8.1%) | 6 (5.7%) | 0.504 |
HFGS score at admission *,M (Q1–Q3) | 3 (3–4) | 4 (3–4) | 0.120 |
HFGS score at discharge * [M (Q1–Q3),mean rank] | 3 (2–4), 91.56 | 3 (2–4), 112.82 | 0.007 |
HFGS score at discharge ≥3, n (%) | 55 (55.5%) | 73 (69.5%) | 0.039 |
Time to nadir * [d,M (Q1–Q3)] | 7 (5–10) | 6 (4–8.5) | 0.012 |
Hospital stay * [d,M (Q1–Q3)] | 13 (10–17) | 15 (11–21.5) | 0.016 |
CSF protein concentration * [g/L,M (Q1–Q3)] | 0.97 (0.5–1.91) | 0.8 (0.52–1.3) | 0.473 |
Patient Requiring MV | Other Patients | p-Value | |
---|---|---|---|
39 (13.3%) | 255 (86.7%) | ||
Age * [years, M (Q1–Q3)] | 56 (40–63) | 53 (42–62) | 0.330 |
Gender Female/Male | 17/22 | 99/156 | 0.571 |
Time from onset to admission * [d,M (Q1–Q3)] | 7 (7–10) | 9.5 (7–14) | 0.204 |
HFGS score at admission *, M (Q1–Q3) | 4 (4–4) | 3 (2–4) | <0.001 |
HFGS score at nadir *, M (Q1–Q3) | 5 (5–5) | 4 (3–4) | <0.001 |
Electrophysiological subtype, n | AIDP 8, AMAN 6 | AIDP90, AMAN99 | N/A |
Cranial nerve involvement, n (%) | 15 (38.4%) | 77 (30.2%) | 0.300 |
Pre-infection, n (%) | 22 (56.4%) | 127 (49.8%) | 0.442 |
CSF protein concentration * [g/L,M (Q1–Q3)] | 1.08 (0.78–3.1) | 0.78 (0.5–1.33) | 0.015 |
Dysphagia, n (%) | 12 (30.7%) | 26 (10.2%) | 0.001 |
Motor weakness, n (%) | 22 (56.4%) | 167 (65.5%) | 0.270 |
Dysautonomia, n (%) | 14 (35.8%) | 37 (14.5%) | 0.002 |
Variables | β | OR | 95% Cl | p-Value | |
---|---|---|---|---|---|
GBS disability score(at admission) | 1.693 | 5.437 | 1.864 | 15.857 | 0.002 |
Dysphagia | 1.472 | 4.360 | 1.009 | 18.835 | 0.049 |
Dysautonomia | 1.874 | 6.513 | 1.689 | 25.120 | 0.007 |
CSF protein concentration | 0.230 | 1.259 | 0.743 | 2.133 | 0.391 |
Hadden’s Criteria | Ho’s Criteria | |
---|---|---|
AMAN, n (%) | 105 (40.1) | 122 (46.6) |
AIDP, n % | 99 (37.8) | 77 (29.4) |
Equivocal, n (%) | 28 (10.7) | 33 (12.6) |
Inexcitable, n (%) | 6 (2.3) | 6 (2.3) |
Normal, n (%) | 24 (9.1) | 24 (9.1) |
Characteristic | Northern China n = 294 | Eastern China n = 595 | Southern China n = 1056 | p-Value * | p-Value # |
---|---|---|---|---|---|
Antecedent infection, n (%) | 144 (49) | 271 (46) | 458 (43) | ||
URTI, n (%) | 64 (21.8) | 175 (29) | 369 (35) | 0.021 | 8.8 × 10−5 |
Gastroenteritis, n (%) | 69 (23.5) | 96 (16) | 89 (8) | 0.012 | 5.8 × 10−11 |
Cranial nerve involvement, n (%) | 92 (31.3) | 256 (43) | 435 (41) | 0.003 | 0.004 |
Sensory deficits, n (%) | 131 (44.6) | 268 (45) | 506 (48) | 0.891 | 0.370 |
Mechanical ventilation, n (%) | 39 (13.3) | 68 (11) | 83 (8) | 0.467 | 0.007 |
Electrophysiology classification | |||||
AIDP, n (%) | 99/262 (37.8) | 98/430 (23) | 324/661 (49) | 8.8 × 10−5 | 0.004 |
AMAN, n (%) | 105/262 (40.1) | 151/430 (35) | 124/661 (19) | ||
Equivocal, n (%) | 28/262 (10.7) | 109/430 (25) | 207/661 (31) | ||
Inexcitable, n (%) | 6/262 (2.3) | 7/430 (2) | 6/661 (1) | ||
Normal, n (%) | 24/262 (9.1) | 65/430 (15) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhai, Q.; Guo, C.; Xue, F.; Qiang, J.; Li, C.; Guo, L. Guillain–Barré Syndrome in Northern China: A Retrospective Analysis of 294 Patients from 2015 to 2020. J. Clin. Med. 2022, 11, 6323. https://doi.org/10.3390/jcm11216323
Zhai Q, Guo C, Xue F, Qiang J, Li C, Guo L. Guillain–Barré Syndrome in Northern China: A Retrospective Analysis of 294 Patients from 2015 to 2020. Journal of Clinical Medicine. 2022; 11(21):6323. https://doi.org/10.3390/jcm11216323
Chicago/Turabian StyleZhai, Qiongqiong, Cheng Guo, Fang Xue, Jing Qiang, Chaonan Li, and Li Guo. 2022. "Guillain–Barré Syndrome in Northern China: A Retrospective Analysis of 294 Patients from 2015 to 2020" Journal of Clinical Medicine 11, no. 21: 6323. https://doi.org/10.3390/jcm11216323
APA StyleZhai, Q., Guo, C., Xue, F., Qiang, J., Li, C., & Guo, L. (2022). Guillain–Barré Syndrome in Northern China: A Retrospective Analysis of 294 Patients from 2015 to 2020. Journal of Clinical Medicine, 11(21), 6323. https://doi.org/10.3390/jcm11216323