Risk Factors and Treatment Strategy for Retinal Vascular Occlusive Diseases
Abstract
:1. Introduction
2. Retinal Artery Occlusion
2.1. Etiology of Retinal Artery Occlusion
2.2. Risk Factors for Retinal Artery Occlusion
Authors (Year) | Patients (n) | Risk Factors | Reference |
---|---|---|---|
Shaikh, I. S., et al. (2020) | RAO with/without stroke (1157, 18,652) | AF (13%), carotid stenosis (43%), coronary artery disease (21%), complicated diabetes (5%), hyperlipidemia (45%), hypertension (67%), and cardiac valvular disease (9%). Cardiac valvular disease, tobacco use, non-stroke cerebrovascular disease, hypertension, and hyperlipidemia were significant risk factors of stroke following RAO. | [60] |
Schorr, E. M., et al. (2020) | RAO (4871) | Hypertension (62%), AF (16%), cardiac valvular disease (13%), and heart failure (9%). | [61] |
Xiao, Y. Y., et al. (2020) | CRAO (28) and BRAO (17) | Plaques in the carotid artery (89%), MI (7%), history of stroke (40%), smoking (56%). History of stroke was a significant risk factor for RAO. | [62] |
Watson, R. A., et al. (2020) | CRAO (64) | AF was detected in 15% by an implantable recorder. | [48] |
Vestergaard, N., et al. (2021) | RAO (6628) | Hypertension (28%), AF (11%), and heart failure (9%). The incidence of stroke, MI, and death was significantly higher at follow-up. | [63] |
Orskov, M., et al. (2022) | RAO (5683) and stroke (28,415) | Diabetes (15%), arterial hypertension (8%), ischemic heart disease (14%), and peripheral artery disease (9%). | [64] |
Kaur, M., et al.(2022) | CVD with RAO (1700) | Diabetes with complications (69%), complicated hypertension (55%), and peripheral vascular diseases (12%). | [65] |
Chodnicki, K. D., et al. (2022) | CRAO (89) | Hypertension (92%), hyperlipidemia (53%), diabetes (29%), and history of stroke (32%). In addition, 2.2% developed symptomatic ischemic stroke within 15 days before/after CRAO. | [66] |
2.3. Clinical Trials of Treatments for Retinal Artery Occlusion
3. Retinal Vein Occlusion
3.1. Etiology of Retinal Vein Occlusion
3.2. Treatment Strategy for Retinal Vein Occlusion
3.3. Clinical Trials of New Treatments for Retinal Vein Occlusion
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Cugati, S.; Varma, D.D.; Chen, C.S.; Lee, A.W. Treatment Options for Central Retinal Artery Occlusion. Curr. Treat. Options Neurol. 2012, 15, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Noma, H.; Yasuda, K.; Shimura, M. Cytokines and the Pathogenesis of Macular Edema in Branch Retinal Vein Occlusion. J. Ophthalmol. 2019, 2019, 5185128. [Google Scholar] [CrossRef]
- Noma, H.; Yasuda, K.; Shimura, M. Cytokines and Pathogenesis of Central Retinal Vein Occlusion. J. Clin. Med. 2020, 9, 3457. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Scott, I.U. Retinal-Vein Occlusion. N. Engl. J. Med. 2010, 363, 2135–2144. [Google Scholar] [CrossRef]
- Scott, I.U.; Campochiaro, A.P.; Newman, N.J.; Biousse, V. Retinal vascular occlusions. Lancet 2020, 396, 1927–1940. [Google Scholar] [CrossRef]
- Dattilo, M.; Newman, N.J.; Biousse, V. Acute retinal arterial ischemia. Ann. Eye Sci. 2018, 3, 28. [Google Scholar] [CrossRef] [PubMed]
- Hakim, N.; Hakim, J. Intra-Arterial Thrombolysis for Central Retinal Artery Occlusion. Clin. Ophthalmol. 2019, 13, 2489–2509. [Google Scholar] [CrossRef] [Green Version]
- Arruga, J.; Sanders, M.D. Ophthalmologic Findings in 70 Patients with Evidence of Retinal Embolism. Ophthalmology 1982, 89, 1336–1347. [Google Scholar] [CrossRef]
- Hayreh, S.S. Prevalent misconceptions about acute retinal vascular occlusive disorders. Prog. Retin. Eye Res. 2005, 24, 493–519. [Google Scholar] [CrossRef]
- Hayreh, S.S.; Weingeist, T.A. Experimental occlusion of the central artery of the retina. IV: Retinal tolerance time to acute ischaemia. Br. J. Ophthalmol. 1980, 64, 818–825. [Google Scholar] [CrossRef]
- Olson, A.E.; Lentz, K. Central Retinal Artery Occlusion: A Literature Review and the Rationale for Hyperbaric Oxygen Therapy. Mo. Med. 2016, 113, 53–57. [Google Scholar] [PubMed]
- Park, S.J.; Choi, N.-K.; Seo, K.H.; Park, K.H.; Woo, S.J. Nationwide Incidence of Clinically Diagnosed Central Retinal Artery Occlusion in Korea, 2008 to 2011. Ophthalmology 2014, 121, 1933–1938. [Google Scholar] [CrossRef] [PubMed]
- Leavitt, J.A.; Larson, T.A.; Hodge, D.O.; Gullerud, R.E. The Incidence of Central Retinal Artery Occlusion in Olmsted County, Minnesota. Am. J. Ophthalmol. 2011, 152, 820–823.e2. [Google Scholar] [CrossRef] [Green Version]
- Hayreh, S.S. Ocular vascular occlusive disorders: Natural history of visual outcome. Prog. Retin. Eye Res. 2014, 41, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, D.P.; Schulte-Mönting, J.; Schumacher, M. Prognosis of Central Retinal Artery Occlusion: Local Intraarterial Fibrinolysis versus Conservative Treatment. Am. J. Neuroradiol. 2002, 23, 1301–1307. [Google Scholar]
- Augsburger, J.J.; Magargal, E.L. Visual prognosis following treatment of acute central retinal artery obstruction. Br. J. Ophthalmol. 1980, 64, 913–917. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Liu, L.-M.; Chen, L. Incidence of cilioretinal arteries in Chinese Han population. Int. J. Ophthalmol. 2011, 4, 323–325. [Google Scholar] [CrossRef]
- Schneider, M.; Molnar, A.; Angeli, O.; Szabo, D.; Bernath, F.; Hajdu, D.; Gombocz, E.; Mate, B.; Jiling, B.; Nagy, B.V.; et al. Prevalence of Cilioretinal Arteries: A systematic review and a prospective cross-sectional observational study. Acta Ophthalmol. 2021, 99, e310–e318. [Google Scholar] [CrossRef]
- Kim, Y.H.; Park, K.H.; Woo, S.J. Clinical Manifestations and Visual Prognosis of Cilioretinal Artery Sparing Central Retinal Artery Occlusion. Korean J. Ophthalmol. 2020, 34, 27–34. [Google Scholar] [CrossRef]
- Yuzurihara, D.; Iijima, H. Visual Outcome in Central Retinal and Branch Retinal Artery Occlusion. Jpn. J. Ophthalmol. 2004, 48, 490–492. [Google Scholar] [CrossRef]
- Mason, J.O., 3rd; Shah, A.A.; Vail, R.S.; Nixon, P.A.; Ready, E.L.; Kimble, J.A. Branch Retinal Artery Occlusion: Visual Prognosis. Am. J. Ophthalmol. 2008, 146, 455–457. [Google Scholar] [CrossRef] [PubMed]
- Pula, J.; Yuen, C.; Kattah, J.; Kwan, K. Update on the evaluation of transient vision loss. Clin. Ophthalmol. 2016, 10, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Heath Jeffery, R.C.H.; Chen, F.K.; Lueck, C.J. Blackout: Understanding transient vision loss. Aust. J. Gen. Pract. 2021, 50, 136–140. [Google Scholar] [CrossRef]
- Wallsh, J.; Gallemore, R. Anti-VEGF-Resistant Retinal Diseases: A Review of the Latest Treatment Options. Cells 2021, 10, 1049. [Google Scholar] [CrossRef] [PubMed]
- Wein, T.; Lindsay, M.P.; Côté, R.; Foley, N.; Berlingieri, J.; Bhogal, S.; Bourgoin, A.; Buck, B.; Cox, J.; Davidson, D.; et al. Canadian stroke best practice recommendations: Secondary prevention of stroke, sixth edition practice guidelines, update 2017. Int. J. Stroke 2018, 13, 420–443. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.U.; Marquardsen, J.; Mikkelsen, B.; Nehen, J.H.; Pedersen, K.K.; Vesterlund, T. Amaurosis fugax in a Danish community: A prospective study. Stroke 1988, 19, 196–199. [Google Scholar] [CrossRef] [Green Version]
- Jeeva-Patel, T.; Kabanovski, A.; Margolin, E. Transient Monocular Visual Loss: When Is It an Emergency? J. Emerg. Med. 2021, 60, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.Y.; Zhang, J.; Kim, R.K.; Matthews, J.L.; Rudich, D.S.; Greer, D.; Lesser, R.L.; Amin, H. Risk of Acute Ischemic Stroke in Patients with Monocular Vision Loss of Vascular Etiology. J. Neuro-Ophthalmol. 2018, 38, 328–333. [Google Scholar] [CrossRef]
- Ruiz-Ares, G.; Fuentes, B.; Rodriguez-Pardo de Donlebun, J.; Alonso de Lecinana, M.; Gutierrez-Zuniga, R.; Rigual, R.; Diez-Tejedor, E. Usefulness of orbital colour Doppler ultrasound in vascular-related monocular vision loss. Vasc. Med. 2021, 26, 302–309. [Google Scholar] [CrossRef]
- Rojas-Bartolomé, L.; Ayo-Martín, Ó.; García-García, J.; Hernández-Fernández, F.; Palazón-García, E.; Segura, T. Contribution of Orbital Ultrasound to the Diagnosis of Central Retinal Artery Occlusion. J. Clin. Med. 2022, 11, 1615. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, J.Y.; Jung, C.; Woo, S.J. Iatrogenic ophthalmic artery occlusion and retinal artery occlusion. Prog. Retin. Eye Res. 2020, 78, 100848. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chen, D.; Zhang, J. Ophthalmic artery occlusion after forehead autologous fat injection. Retin. Cases Brief Rep. 2020, 14, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Biousse, V.; Nahab, F.; Newman, N.J. Management of Acute Retinal Ischemia: Follow the Guidelines! Ophthalmology 2018, 125, 1597–1607. [Google Scholar] [CrossRef] [Green Version]
- Furie, K.L.; Kasner, S.E.; Adams, R.J.; Albers, G.W.; Bush, R.L.; Fagan, S.C.; Halperin, J.L.; Johnston, S.C.; Katzan, I.; Kernan, W.N.; et al. Guidelines for the prevention of stroke in patients with stroke or transient ischemic attack: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke 2011, 42, 227–276. [Google Scholar] [CrossRef]
- Olsen, T.W.; Pulido, J.S.; Folk, J.C.; Hyman, L.; Flaxel, C.J.; Adelman, R.A. Retinal and Ophthalmic Artery Occlusions Preferred Practice Pattern®. Ophthalmology 2016, 124, P120–P143. [Google Scholar] [CrossRef]
- Vodopivec, I.; Cestari, D.M.; Rizzo, J.F.; Iii, J.F.R. Management of Transient Monocular Vision Loss and Retinal Artery Occlusions. Semin. Ophthalmol. 2016, 32, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.C.Y.; Lip, G.Y.H.; Lip, P.L. Associations of retinal artery occlusion and retinal vein occlusion to mortality, stroke, and myocardial infarction: A systematic review. Eye 2016, 30, 1031–1038. [Google Scholar] [CrossRef]
- Fallico, M.; Lotery, A.J.; Longo, A.; Avitabile, T.; Bonfiglio, V.; Russo, A.; Murabito, P.; Palmucci, S.; Pulvirenti, A.; Reibaldi, M. Risk of acute stroke in patients with retinal artery occlusion: A systematic review and meta-analysis. Eye 2020, 34, 683–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rim, T.H.; Han, J.; Choi, Y.S.; Hwang, S.-S.; Lee, C.S.; Lee, S.C.; Kim, S.S. Retinal Artery Occlusion and the Risk of Stroke Development: Twelve-Year Nationwide Cohort Study. Stroke 2016, 47, 376–382. [Google Scholar] [CrossRef]
- Al-Moujahed, A.; Tran, E.M.; Azad, A.; Vail, D.; Ludwig, C.A.; Pasricha, M.V.; Rosenblatt, T.R.; Callaway, N.F.; Moshfeghi, D.M. Risk of Retinal Artery Occlusion in Patients with Migraine. Am. J. Ophthalmol. 2020, 225, 157–165. [Google Scholar] [CrossRef]
- Mac Grory, B.; Schrag, M.; Biousse, V.; Furie, K.L.; Gerhard-Herman, M.; Lavin, P.J.; Sobrin, L.; Tjoumakaris, S.I.; Weyand, C.M.; Yaghi, S.; et al. Management of Central Retinal Artery Occlusion: A Scientific Statement from the American Heart Association. Stroke 2021, 52, e282–e294. [Google Scholar] [CrossRef] [PubMed]
- Callizo, J.; Feltgen, N.; Pantenburg, S.; Wolf, A.; Neubauer, A.S.; Jurklies, B.; Wachter, R.; Schmoor, C.; Schumacher, M.; Junker, B.; et al. Cardiovascular Risk Factors in Central Retinal Artery Occlusion: Results of a Prospective and Standardized Medical Examination. Ophthalmology 2015, 122, 1881–1888. [Google Scholar] [CrossRef]
- Brown, G.C.; Magargal, L.E.; Shields, J.A.; Goldberg, R.E.; Walsh, P.N. Retinal Arterial Obstruction in Children and Young Adults. Ophthalmology 1981, 88, 18–25. [Google Scholar] [CrossRef]
- Greven, C.M.; Slusher, M.M.; Weaver, R.G. Retinal Arterial Occlusions in Young Adults. Am. J. Ophthalmol. 1995, 120, 776–783. [Google Scholar] [CrossRef]
- Uppuluri, A.; Xia, T.; Zarbin, M.A.; Bhagat, N. Risk factors for central retinal artery occlusion in young patients. Can. J. Ophthalmol. 2020, 56, 270–272. [Google Scholar] [CrossRef] [PubMed]
- Mir, T.A.; Arham, A.Z.; Fang, W.; Alqahtani, F.; Alkhouli, M.; Gallo, J.; Hinkle, D.M. Acute Vascular Ischemic Events in Patients with Central Retinal Artery Occlusion in the United States: A Nationwide Study 2003–2014. Am. J. Ophthalmol. 2019, 200, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Rim, T.H.; Teo, A.W.J.; Yang, H.H.S.; Cheung, C.Y.; Wong, T.Y. Retinal Vascular Signs and Cerebrovascular Diseases. J. Neuro-Ophthalmol. 2020, 40, 44–59. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.A.; Wellings, J.; Hingorani, R.; Zhan, T.; Frisch, D.R.; Ho, R.T.; Pavri, B.B.; Sergott, R.C.; Greenspon, A.J. Atrial fibrillation post central retinal artery occlusion: Role of implantable loop recorders. Pacing Clin. Electrophysiol. 2020, 43, 992–999. [Google Scholar] [CrossRef]
- Lavin, P.; Patrylo, M.; Hollar, M.; Espaillat, K.B.; Kirshner, H.; Schrag, M. Stroke Risk and Risk Factors in Patients with Central Retinal Artery Occlusion. Am. J. Ophthalmol. 2018, 196, 96–100. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.W.; Lee, S.C.; Kwon, O.W.; Kim, Y.D.; Byeon, S.H. Co-occurrence of Acute Retinal Artery Occlusion and Acute Ischemic Stroke: Diffusion-Weighted Magnetic Resonance Imaging Study. Am. J. Ophthalmol. 2014, 157, 1231–1238. [Google Scholar] [CrossRef]
- Roskal-Wałek, J.; Wałek, P.; Biskup, M.; Odrobina, D.; Mackiewicz, J.; Głuszek, S.; Wożakowska-Kapłon, B. Central and Branch Retinal Artery Occlusion—Do They Harbor the Same Risk of Further Ischemic Events? J. Clin. Med. 2021, 10, 3093. [Google Scholar] [CrossRef] [PubMed]
- Egan, R.A.; Lutsep, H.L. Prevalence of Retinal Emboli and Acute Retinal Artery Occlusion in Acute Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2020, 29, 104446. [Google Scholar] [CrossRef]
- Long, C.P.; Chan, A.X.; Bakhoum, C.Y.; Toomey, C.B.; Madala, S.; Garg, A.K.; Freeman, W.R.; Goldbaum, M.H.; DeMaria, A.N.; Bakhoum, M.F. Prevalence of subclinical retinal ischemia in patients with cardiovascular disease—A hypothesis driven study. eClinicalMedicine 2021, 33, 100775. [Google Scholar] [CrossRef]
- French, D.D.; Margo, C.E.; Greenberg, P.B. Ischemic Stroke Risk in Medicare Beneficiaries with Central Retinal Artery Occlusion: A Retrospective Cohort Study. Ophthalmol. Ther. 2018, 7, 125–131. [Google Scholar] [CrossRef]
- Scoles, D.; McGeehan, B.; VanderBeek, B.L. The association of stroke with central and branch retinal arterial occlusion. Eye 2022, 36, 835–843. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Choi, N.-K.; Yang, B.R.; Park, K.H.; Lee, J.; Jung, S.-Y.; Woo, S.J. Risk and Risk Periods for Stroke and Acute Myocardial Infarction in Patients with Central Retinal Artery Occlusion. Ophthalmology 2015, 122, 2336–2343.e2. [Google Scholar] [CrossRef]
- Chodnicki, K.D.; Pulido, J.S.; Hodge, D.O.; Klaas, J.P.; Chen, J.J. Stroke Risk Before and After Central Retinal Artery Occlusion in a US Cohort. Mayo Clin. Proc. 2019, 94, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, S.J.; Guiseppi, R.; Katz, D.M.; Nnorom, S.O.; Akinyemi, O.A. Emergency Department Presentation of Retinal Artery Occlusion. Ophthalmol. Retin. 2022, 6, 318–324. [Google Scholar] [CrossRef]
- Roskal-Wałek, J.; Wałek, P.; Biskup, M.; Sidło, J.; Cieśla, E.; Odrobina, D.; Mackiewicz, J.; Wożakowska-Kapłon, B. Retinal Artery Occlusion and Its Impact on the Incidence of Stroke, Myocardial Infarction, and All-Cause Mortality during 12-Year Follow-Up. J. Clin. Med. 2022, 11, 4076. [Google Scholar] [CrossRef]
- Shaikh, I.S.; Elsamna, S.T.; Zarbin, M.A.; Bhagat, N. Assessing the risk of stroke development following retinal artery occlusion. J. Stroke Cerebrovasc. Dis. 2020, 29, 105002. [Google Scholar] [CrossRef]
- Schorr, E.M.; Rossi, K.; Stein, L.K.; Park, B.L.; Tuhrim, S.; Dhamoon, M.S. Characteristics and Outcomes of Retinal Artery Occlusion: Nationally Representative Data. Stroke 2020, 51, 800–807. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.-Y.; Wei, W.-B.; Wang, Y.-X.; Lu, A.-D.; Chen, S.-H.; Song, L.; Wu, S.-L. Correlation of the history of stroke and the retinal artery occlusion: A nested case-control study. Int. J. Ophthalmol. 2020, 13, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, N.; Torp-Pedersen, C.; Vorum, H.; Aasbjerg, K. Risk of Stroke, Myocardial Infarction, and Death Among Patients with Retinal Artery Occlusion and the Effect of Antithrombotic Treatment. Transl. Vis. Sci. Technol. 2021, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Ørskov, M.; Vorum, H.; Larsen, T.B.; Lip, G.Y.; Bek, T.; Skjøth, F. Similarities and Differences in Systemic Risk Factors for Retinal Artery Occlusion and Stroke: A Nationwide Case-Control Study. J. Stroke Cerebrovasc. Dis. 2022, 31, 106610. [Google Scholar] [CrossRef]
- Kaur, M.; Ahmed, S.; Younis, H.; Jaka, S.; Anusheel; Benitez, J.S.C.; Roshan, N.S.; Desai, N. Retinal Artery Occlusion and Associated Risk of Cerebrovascular Disease Related Hospitalization: A National Inpatient Study. Cureus 2022, 14, e27354. [Google Scholar] [CrossRef] [PubMed]
- Chodnicki, K.D.; Tanke, L.B.; Pulido, J.S.; Hodge, D.O.; Klaas, J.P.; Olsen, T.W.; Bhatti, M.T.; Chen, J.J. Stroke Risk before and after Central Retinal Artery Occlusion: A Population-based Analysis. Ophthalmology 2022, 129, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.X.; Bakhoum, C.Y.; Bangen, K.J.; Bakhoum, M.F. Relationship between Retinal Vascular Occlusions and Cognitive Dementia in a Large Cross-Sectional Cohort. Am. J. Ophthalmol. 2021, 226, 201–205. [Google Scholar] [CrossRef]
- Lee, C.S.; Lee, M.L.; Gibbons, L.E.; Yanagihara, R.T.; Blazes, M.; Kam, J.P.; McCurry, S.M.; Bowen, J.D.; McCormick, W.C.; Lee, A.Y.; et al. Associations Between Retinal Artery/Vein Occlusions and Risk of Vascular Dementia. J. Alzheimer’s Dis. 2021, 81, 245–253. [Google Scholar] [CrossRef]
- Abdul-Kadir, M.-A.; Lim, L.T. Human coronaviruses: Ophthalmic manifestations. BMJ Open Ophthalmol. 2020, 5, e000630. [Google Scholar] [CrossRef]
- González-Gay, M.A.; Mayo, J.; Castañeda, S.; Cifrián, J.M.; Hernández-Rodríguez, J. Tocilizumab: From the rheumatology practice to the fight against COVID-19, a virus infection with multiple faces. Expert Opin. Biol. Ther. 2020, 20, 717–723. [Google Scholar] [CrossRef]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in COVID-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Larrea, J.; Villota-Deleu, E.; Fernández-Vega, B.; Sanz, F.-V. Late retinal and optic nerve vascular complications due to COVID-19 in young individuals. Am. J. Ophthalmol. Case Rep. 2022, 25, 101327. [Google Scholar] [CrossRef] [PubMed]
- Fonollosa, A.; Hernández-Rodríguez, J.; Cuadros, C.; Giralt, L.; Sacristán, C.; Artaraz, J.; Pelegrín, L.; Olate-Pérez, Á.; Romero, R.; Pastor-Idoate, S.; et al. CHARACTERIZING COVID-19–RELATED RETINAL VASCULAR OCCLUSIONS: A Case Series and Review of the Literature. Retina 2021, 42, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Modjtahedi, B.S.; Do, D.; Luong, T.Q.; Shaw, J. Changes in the Incidence of Retinal Vascular Occlusions After COVID-19 Diagnosis. JAMA Ophthalmol. 2022, 140, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Invernizzi, A.; Torre, A.; Parrulli, S.; Zicarelli, F.; Schiuma, M.; Colombo, V.; Giacomelli, A.; Cigada, M.; Milazzo, L.; Ridolfo, A.; et al. Retinal findings in patients with COVID-19: Results from the SERPICO-19 study. eClinicalMedicine 2020, 27, 100550. [Google Scholar] [CrossRef]
- Rifkin, L.; Schaal, S. H1N1-associated Acute Retinitis. Ocul. Immunol. Inflamm. 2012, 20, 230–232. [Google Scholar] [CrossRef]
- Arnold, M.; Koerner, U.; Remonda, L.; Nedeltchev, K.; Mattle, H.P.; Schroth, G.; Sturzenegger, M.; Weber, J.; Koerner, F. Comparison of intra-arterial thrombolysis with conventional treatment in patients with acute central retinal artery occlusion. J. Neurol. Neurosurg. Psychiatry 2005, 76, 196–199. [Google Scholar] [CrossRef]
- Atebara, N.H.; Brown, G.C.; Cater, J. Efficacy of Anterior Chamber Paracentesis and Carbogen in Treating Acute Nonarteritic Central Retinal Artery Occlusion. Ophthalmology 1995, 102, 2029–2035, discussion 2034–2025. [Google Scholar] [CrossRef]
- Mehboob, M.A.; Khan, A.; Mukhtar, A. Efficacy of YAG Laser Embolysis in Retinal Artery Occlusion. Pak. J. Med Sci. 2020, 37, 71–75. [Google Scholar] [CrossRef]
- Mac Grory, B.; Lavin, P.; Kirshner, H.; Schrag, M. Thrombolytic Therapy for Acute Central Retinal Artery Occlusion. Stroke 2020, 51, 687–695. [Google Scholar] [CrossRef]
- Weber, J.; Remonda, L.; Mattle, H.P.; Koerner, U.; Baumgartner, R.W.; Sturzenegger, M.; Ozdoba, C.; Koerner, F.; Schroth, G. Selective intra-arterial fibrinolysis of acute central retinal artery occlusion. Stroke 1998, 29, 2076–2079. [Google Scholar] [CrossRef] [PubMed]
- Beatty, S.; Au Eong, K.G. Local intra-arterial fibrinolysis for acute occlusion of the central retinal artery: A meta-analysis of the published data. Br. J. Ophthalmol. 2000, 84, 914–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schumacher, M.; Schmidt, D.; Jurklies, B.; Gall, C.; Wanke, I.; Schmoor, C.; Maier-Lenz, H.; Solymosi, L.; Brueckmann, H.; Neubauer, A.S.; et al. Central Retinal Artery Occlusion: Local Intra-arterial Fibrinolysis versus Conservative Treatment, a Multicenter Randomized Trial. Ophthalmology 2010, 117, 1367–1375.e1. [Google Scholar] [CrossRef] [PubMed]
- Schrag, M.; Youn, T.; Schindler, J.; Kirshner, H.; Greer, D. Intravenous Fibrinolytic Therapy in Central Retinal Artery Occlusion: A Patient-Level Meta-analysis. JAMA Neurol. 2015, 72, 1148–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.S.; Lee, A.W.; Campbell, B.; Lee, T.; Paine, M.; Fraser, C.; Grigg, J.; Markus, R. Efficacy of Intravenous Tissue-Type Plasminogen Activator in Central Retinal Artery Occlusion: Report from a randomized, controlled trial. Stroke 2011, 42, 2229–2234. [Google Scholar] [CrossRef] [Green Version]
- Chan, W.; Flowers, A.M.; Meyer, B.I.; Bruce, B.B.; Newman, N.J.; Biousse, V. Acute Central Retinal Artery Occlusion Seen within 24 Hours at a Tertiary Institution. J. Stroke Cerebrovasc. Dis. 2021, 30, 105988. [Google Scholar] [CrossRef]
- Laouri, M.; Chen, E.; Looman, M.; Gallagher, M. The burden of disease of retinal vein occlusion: Review of the literature. Eye 2011, 25, 981–988. [Google Scholar] [CrossRef]
- Jaulim, A.; Ahmed, B.; Khanam, T.; Chatziralli, I.P. ranch retinal vein occlusion: Epidemiology, pathogenesis, risk factors, clinical features, diagnosis, and complications. An update of the literature. Retina 2013, 33, 901–910. [Google Scholar] [CrossRef]
- Hayreh, S.S.; Zimmerman, M.B.; Podhajsky, P. Incidence of Various Types of Retinal Vein Occlusion and Their Recurrence and Demographic Characteristics. Am. J. Ophthalmol. 1994, 117, 429–441. [Google Scholar] [CrossRef]
- Klein, R.; Klein, E.B.; Moss, E.S.; Meuer, S.M. The epidemiology of retinal vein occlusion: The Beaver Dam Eye Study. Trans. Am. Ophthalmol. Soc. 2000, 98, 133–143, discussion 141–133. [Google Scholar]
- Song, P.; Xu, Y.; Zha, M.; Zhang, Y.; Rudan, I. Global epidemiology of retinal vein occlusion: A systematic review and meta-analysis of prevalence, incidence, and risk factors. J. Glob. Health 2019, 9, 010427. [Google Scholar] [CrossRef] [PubMed]
- Di Capua, M.; Coppola, A.; Albisinni, R.; Tufano, A.; Guida, A.; Di Minno, M.N.D.; Cirillo, F.; Loffredo, M.; Cerbone, A.M. Cardiovascular risk factors and outcome in patients with retinal vein occlusion. J. Thromb. Thrombolysis 2009, 30, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Lim, L.; Cheung, N.; Wang, J.J.; Islam, F.M.A.; Mitchell, P.; Saw, S.M.; Aung, T.; Wong, T.Y. Prevalence and risk factors of retinal vein occlusion in an Asian population. Br. J. Ophthalmol. 2008, 92, 1316–1319. [Google Scholar] [CrossRef]
- Hayreh, S.S.; Zimmerman, B.M.; Podhajsky, P. Hematologic abnormalities associated with various types of retinal vein occlusion. Graefes Arch. Clin. Exp. Ophthalmol. 2002, 240, 180–196. [Google Scholar] [CrossRef]
- Romiti, G.F.; Corica, B.; Borgi, M.; Visioli, G.; Pacella, E.; Cangemi, R.; Proietti, M.; Basili, S.; Raparelli, V. Inherited and acquired thrombophilia in adults with retinal vascular occlusion: A systematic review and meta-analysis. J. Thromb. Haemost. 2020, 18, 3249–3266. [Google Scholar] [CrossRef] [PubMed]
- Vieira, M.J.; Campos, A.; Carmo, A.D.; Arruda, H.; Martins, J.; Sousa, J.P. Thrombophilic risk factors for retinal vein occlusion. Sci. Rep. 2019, 9, 18972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirota, A.; Mishima, H.K.; Kiuchi, Y. Incidence of Retinal Vein Occlusion at the Glaucoma Clinic of Hiroshima University. Ophthalmologica 1997, 211, 288–291. [Google Scholar] [CrossRef]
- Frucht, J.; Shapiro, A.; Merin, S. Intraocular pressure in retinal vein occlusion. Br. J. Ophthalmol. 1984, 68, 26–28. [Google Scholar] [CrossRef] [Green Version]
- Kir, E.; Tulin Berk, A.; Osman Saatci, A.; Kaynak, S.; Ergin, M.H. Axial length and hyperopia in eyes with retinal vein occlusions. Int. Ophthalmol. 1997, 21, 209–211. [Google Scholar] [CrossRef]
- Yin, X.; Li, J.; Zhang, B.; Lu, P. Association of glaucoma with risk of retinal vein occlusion: A meta-analysis. Acta Ophthalmol. 2019, 97, 652–659. [Google Scholar] [CrossRef]
- Avci, R.; Inan, U.U.; Kaderli, B. Evaluation of arteriovenous crossing sheathotomy for decompression of branch retinal vein occlusion. Eye 2008, 22, 120–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, I.U. Vitreoretinal surgery for complications of branch retinal vein occlusion. Curr. Opin. Ophthalmol. 2002, 13, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Muraoka, Y.; Tsujikawa, A. Arteriovenous crossing associated with branch retinal vein occlusion. Jpn. J. Ophthalmol. 2019, 63, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Tomita, R.; Iwase, T.; Fukami, M.; Goto, K.; Ra, E.; Terasaki, H. Elevated retinal artery vascular resistance determined by novel visualized technique of laser speckle flowgraphy in branch retinal vein occlusion. Sci. Rep. 2021, 11, 20034. [Google Scholar] [CrossRef]
- Frangieh, G.T.; Green, W.R.; Barraquer-Somers, E.; Finkelstein, D. Histopathologic Study of Nine Branch Retinal Vein Occlusions. Arch. Ophthalmol. 1982, 100, 1132–1140. [Google Scholar] [CrossRef]
- Khayat, M.; Williams, M.; Lois, N. Ischemic retinal vein occlusion: Characterizing the more severe spectrum of retinal vein occlusion. Surv. Ophthalmol. 2018, 63, 816–850. [Google Scholar] [CrossRef] [Green Version]
- Mimouni, M.; Segev, O.; Dori, D.; Geffen, N.; Flores, V.; Segal, O. Disorganization of the Retinal Inner Layers as a Predictor of Visual Acuity in Eyes with Macular Edema Secondary to Vein Occlusion. Am. J. Ophthalmol. 2017, 182, 160–167. [Google Scholar] [CrossRef]
- Balaratnasingam, C.; Inoue, M.; Ahn, S.; McCann, J.; Dhrami-Gavazi, E.; Yannuzzi, L.A.; Freund, K.B. Visual Acuity Is Correlated with the Area of the Foveal Avascular Zone in Diabetic Retinopathy and Retinal Vein Occlusion. Ophthalmology 2016, 123, 2352–2367. [Google Scholar] [CrossRef]
- Hayreh, S.S.; Podhajsky, P.A.; Zimmerman, M.B. Natural History of Visual Outcome in Central Retinal Vein Occlusion. Ophthalmology 2011, 118, 119–133.e2. [Google Scholar] [CrossRef] [Green Version]
- Brodell, L.P.; Olk, R.J.; Arribas, N.P.; Okun, E.; Johnston, G.P.; Boniuk, I.; Escoffery, R.F.; Grand, M.G.; Burgess, D.B.; Schoch, L.H. Neovascular Glaucoma: A Retrospective Analysis of Treatment with Peripheral Panretinal Cryotherapy. Ophthalmic Surg. 1987, 18, 200–206. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Hafiz, G.; Shah, S.M.; Nguyen, Q.D.; Ying, H.; Do, D.V.; Quinlan, E.; Zimmer-Galler, I.; A Haller, J.; Solomon, S.D.; et al. Ranibizumab for Macular Edema Due to Retinal Vein Occlusions: Implication of VEGF as a Critical Stimulator. Mol. Ther. 2008, 16, 791–799. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.; Heier, J.S.; Clark, W.L.; Boyer, D.S.; Vitti, R.; Berliner, A.J.; Zeitz, O.; Sandbrink, R.; Zhu, X.; Haller, J.A. Intravitreal Aflibercept Injection for Macular Edema Secondary to Central Retinal Vein Occlusion: 1-Year Results from the Phase 3 COPERNICUS Study. Am. J. Ophthalmol. 2013, 155, 429–437.e7. [Google Scholar] [CrossRef] [PubMed]
- Boyer, D.; Heier, J.; Brown, D.M.; Clark, W.L.; Vitti, R.; Berliner, A.J.; Groetzbach, G.; Zeitz, O.; Sandbrink, R.; Zhu, X.; et al. Vascular Endothelial Growth Factor Trap-Eye for Macular Edema Secondary to Central Retinal Vein Occlusion: Six-Month Results of the Phase 3 COPERNICUS Study. Ophthalmology 2012, 119, 1024–1032. [Google Scholar] [CrossRef]
- Holz, F.G.; Roider, J.; Ogura, Y.; Korobelnik, J.-F.; Simader, C.; Groetzbach, G.; Vitti, R.; Berliner, A.J.; Hiemeyer, F.; Beckmann, K.; et al. VEGF Trap-Eye for macular oedema secondary to central retinal vein occlusion: 6-month results of the phase III GALILEO study. Br. J. Ophthalmol. 2013, 97, 278–284. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Clark, W.L.; Boyer, D.S.; Heier, J.S.; Brown, D.M.; Vitti, R.; Kazmi, H.; Berliner, A.J.; Erickson, K.; Chu, K.W.; et al. Intravitreal Aflibercept for Macular Edema Following Branch Retinal Vein Occlusion: The 24-week results of the VIBRANT study. Ophthalmology 2015, 122, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Tadayoni, R.; Waldstein, S.M.; Boscia, F.; Gerding, H.; Pearce, I.; Priglinger, S.; Wenzel, A.; Barnes, E.; Gekkieva, M.; Pilz, S.; et al. Individualized Stabilization Criteria–Driven Ranibizumab versus Laser in Branch Retinal Vein Occlusion: Six-Month Results of BRIGHTER. Ophthalmology 2016, 123, 1332–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Januschowski, K.; Dimopoulos, S.; Szurman, P.; Feltgen, N.; Spitzer, B.; Pielen, A.; Rehak, M.; Spital, G.; Meyer, C.H.; Bevacizumab Study Group Venous Occlusion; et al. Injection scheme for intravitreal bevacizumab therapy for macular oedema due to central retinal vein occlusion: Results of a multicenter study. Acta Ophthalmol. 2015, 93, e400–e402. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.M.; Campochiaro, P.A.; Singh, R.P.; Li, Z.; Gray, S.; Saroj, N.; Rundle, A.C.; Rubio, R.G.; Murahashi, W.Y.; Investigators, C. Ranibizumab for Macular Edema following Central Retinal Vein Occlusion: Six-Month Primary End Point Results of a Phase III Study. Ophthalmology 2010, 117, 1124–1133.e1. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Bhisitkul, R.B.; Shapiro, H.; Rubio, R.G. Vascular Endothelial Growth Factor Promotes Progressive Retinal Nonperfusion in Patients with Retinal Vein Occlusion. Ophthalmology 2013, 120, 795–802. [Google Scholar] [CrossRef]
- Feltgen, N.; Ogura, Y.; Boscia, F.; Holz, F.G.; Korobelnik, J.-F.; Brown, D.M.; Heier, J.S.; Stemper, B.; Rittenhouse, K.D.; Asmus, F.; et al. Impact of Baseline Retinal Nonperfusion and Macular Retinal Capillary Nonperfusion on Outcomes in the COPERNICUS and GALILEO Studies. Ophthalmol. Retin. 2019, 3, 553–560. [Google Scholar] [CrossRef]
- Scott, I.U.; VanVeldhuisen, P.C.; Ip, M.S.; Blodi, B.A.; Oden, N.L.; Awh, C.C.; Kunimoto, D.Y.; Marcus, D.M.; Wroblewski, J.J.; King, J.; et al. Effect of Bevacizumab vs Aflibercept on Visual Acuity Among Patients with Macular Edema Due to Central Retinal Vein Occlusion: The SCORE2 Randomized Clinical Trial. JAMA 2017, 317, 2072–2087. [Google Scholar] [CrossRef] [PubMed]
- Hykin, P.; Prevost, T.; Vasconcelos, J.C.; Murphy, C.; Kelly, J.; Ramu, J.; Hounsome, B.; Yang, Y.; Harding, S.P.; Lotery, A.; et al. Clinical Effectiveness of Intravitreal Therapy with Ranibizumab vs Aflibercept vs Bevacizumab for Macular Edema Secondary to Central Retinal Vein Occlusion: A Randomized Clinical Trial. JAMA Ophthalmol. 2019, 137, 1256–1264. [Google Scholar] [CrossRef] [PubMed]
- Querques, G.; Sacconi, R.; Borrelli, E.; Bandello, F. Management of patients with macular oedema secondary to central retinal vein occlusion: New findings from SCORE2 and LEAVO studies. Eye 2020, 34, 215–216. [Google Scholar] [CrossRef]
- Singh, P.P.; Borkar, D.S.; Robbins, C.B.; Kim, J.S.; Birnbaum, F.; Gomez-Caraballo, M.; Thomas, A.S.; Fekrat, S. Systemic antiplatelet agents and anticoagulants in eyes with branch retinal vein occlusion. Ther. Adv. Ophthalmol. 2021, 13, 25158414211040894. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R. Ranibizumab According to Need: A Treatment for Age-related Macular Degeneration. Am. J. Ophthalmol. 2007, 143, 679–680. [Google Scholar] [CrossRef]
- Ogura, Y.; Roider, J.; Korobelnik, J.-F.; Holz, F.G.; Simader, C.; Schmidt-Erfurth, U.; Vitti, R.; Berliner, A.J.; Hiemeyer, F.; Stemper, B.; et al. Intravitreal Aflibercept for Macular Edema Secondary to Central Retinal Vein Occlusion: 18-Month Results of the Phase 3 GALILEO Study. Am. J. Ophthalmol. 2014, 158, 1032–1038.e2. [Google Scholar] [CrossRef] [PubMed]
- Park, D.-G.; Jeong, W.J.; Park, J.M.; Kim, J.-Y.; Ji, Y.-S.; Sagong, M. Prospective trial of treat-and-extend regimen with aflibercept for branch retinal vein occlusion: 1-year results of the PLATON trial. Graefes Arch. Clin. Exp. Ophthalmol. 2021, 259, 2879–2886. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Sophie, R.; Pearlman, J.; Brown, D.M.; Boyer, D.S.; Heier, J.S.; Marcus, D.M.; Feiner, L.; Patel, A.; Group, R.S. Long-term outcomes in patients with retinal vein occlusion treated with ranibizumab: The RETAIN study. Ophthalmology 2014, 121, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Rufai, S.; Almuhtaseb, H.; Paul, R.; Stuart, B.L.; Kendrick, T.; Lee, H.; Lotery, A.J. A systematic review to assess the ‘treat-and-extend’ dosing regimen for neovascular age-related macular degeneration using ranibizumab. Eye 2017, 31, 1337–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engelbert, M.; Zweifel, S.A.; Freund, K.B. “Treat and extend” dosing of intravitreal antivascular endothelial growth factor therapy for type 3 neovascularization/retinal angiomatous proliferation. Retina 2009, 29, 1424–1431. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Garg, P.G.; Lyon, A.T.; Mirza, R.; Gill, M.K. Long-term Outcomes of Treat and Extend Regimen of Anti-vascular Endothelial Growth Factor in Neovascular Age-related Macular Degeneration. J. Ophthalmic Vis. Res. 2020, 15, 331–340. [Google Scholar] [CrossRef]
- De Salles, M.C.; Amrén, U.; Kvanta, A.; Epstein, D.L. Injection Frequency of Aflibercept Versus Ranibizumab in a Treat-And-Extend Regimen for Central Retinal Vein Occlusion: A Randomized Clinical Trial. Retina 2019, 39, 1370–1376. [Google Scholar] [CrossRef] [PubMed]
- Korobelnik, J.-F.; Larsen, M.; Eter, N.; Bailey, C.; Wolf, S.; Schmelter, T.; Allmeier, H.; Chaudhary, V. Efficacy and Safety of Intravitreal Aflibercept Treat-and-Extend for Macular Edema in Central Retinal Vein Occlusion: The CENTERA Study. Am. J. Ophthalmol. 2021, 227, 106–115. [Google Scholar] [CrossRef]
- Hirano, T.; Toriyama, Y.; Takamura, Y.; Sugimoto, M.; Nagaoka, T.; Sugiura, Y.; Okamoto, F.; Saito, M.; Noda, K.; Yoshida, S.; et al. Treat-and-extend therapy with aflibercept for diabetic macular edema: A prospective clinical trial. Jpn. J. Ophthalmol. 2021, 65, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.Y.; Wong, W.M.; Seah, I.; Chan, H.W.; Su, X.; Lingam, G.; Yuen, Y.S. Treat and extend regimen for diabetic macular oedema—A systematic review and meta-analysis. Graefes Arch. Clin. Exp. Ophthalmol. 2022, 1–13. [Google Scholar] [CrossRef]
- Rahimy, E.; Rayess, N.; Brady, C.J.; Regillo, C.D. Treat-and-Extend Regimen for Macular Edema Secondary to Central Retinal Vein Occlusion: 12-Month Results. Ophthalmol. Retin. 2017, 1, 118–123. [Google Scholar] [CrossRef]
- Khurana, R.N.; Chang, L.K.; Bansal, A.S.; Palmer, J.D.; Wu, C.; Wieland, M.R. Treat and extend regimen with aflibercept for chronic central retinal vein occlusions: 2 year results of the NEWTON study. Int. J. Retin. Vitr. 2019, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Arumi, J.; Gómez-Ulla, F.; Amparo, N.; Cervera, E.; Fonollosa, A.; Arias, L.; Araiz, J.; Donate, J.; de Figueroa, M.S.; Manzanas, L.; et al. Efficacy and Safety of an Aflibercept Treat-and-Extend Regimen in Treatment-Naïve Patients with Macular Oedema Secondary to Central Retinal Vein Occlusion (CRVO): A Prospective 12-Month, Single-Arm, Multicentre Trial. J. Ophthalmol. 2018, 2018, 8310350. [Google Scholar] [CrossRef] [Green Version]
- Scott, I.U.; VanVeldhuisen, P.C.; Ip, M.S.; Blodi, B.A.; Oden, N.L.; Altaweel, M.; Berinstein, D.M.; for the SCORE2 Investigator Group. Comparison of Monthly vs Treat-and-Extend Regimens for Individuals with Macular Edema Who Respond Well to Anti–Vascular Endothelial Growth Factor Medications: Secondary Outcomes From the SCORE2 Randomized Clinical Trial. JAMA Ophthalmol. 2018, 136, 337–345. [Google Scholar] [CrossRef]
- Clark, W.L.; Boyer, D.S.; Heier, J.S.; Brown, D.M.; Haller, J.A.; Vitti, R.; Kazmi, H.; Berliner, A.J.; Erickson, K.; Chu, K.W.; et al. Intravitreal Aflibercept for Macular Edema Following Branch Retinal Vein Occlusion: 52-Week Results of the VIBRANT Study. Ophthalmology 2016, 123, 330–336. [Google Scholar] [CrossRef] [PubMed]
- Arai, Y.; Takahashi, H.; Inoda, S.; Sakamoto, S.; Tan, X.; Inoue, Y.; Tominaga, S.; Kawashima, H.; Yanagi, Y. Efficacy of Modified Treat-and-Extend Aflibercept Regimen for Macular Edema Due to Branch Retinal Vein Occlusion: 1-Year Prospective Study. J. Clin. Med. 2020, 9, 2360. [Google Scholar] [CrossRef]
- Campochiaro, P.A.; Heier, J.S.; Feiner, L.; Gray, S.; Saroj, N.; Rundle, A.C.; Murahashi, W.Y.; Rubio, R.G.; Investigators, B. Ranibizumab for Macular Edema following Branch Retinal Vein Occlusion: Six-Month Primary End Point Results of a Phase III Study. Ophthalmology 2010, 117, 1102–1112.e1. [Google Scholar] [CrossRef] [PubMed]
- Miwa, Y.; Muraoka, Y.; Osaka, R.; Ooto, S.; Murakami, T.; Suzuma, K.; Takahashi, A.; Iida, Y.; Yoshimura, N.; Tsujikawa, A. Ranibizumab for Macular Edema after Branch Retinal Vein Occlusion: One Initial Injection Versus Three Monthly Injections. Retina 2017, 37, 702–709. [Google Scholar] [CrossRef]
- Rush, R.B.; Simunovic, M.P.; Aragon, A.V., 2nd; Ysasaga, J.E. Treat-and-Extend Intravitreal Bevacizumab for Branch Retinal Vein Occlusion. Ophthalmic Surg. Lasers Imaging Retin. 2014, 45, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Arai, Y.; Takahashi, H.; Inoda, S.; Sakamoto, S.; Tan, X.; Inoue, Y.; Tominaga, S.; Kawashima, H.; Yanagi, Y. Efficacy of Modified Treat-and-Extend Regimen of Aflibercept for Macular Edema from Branch Retinal Vein Occlusion: 2-Year Prospective Study Outcomes. J. Clin. Med. 2021, 10, 3162. [Google Scholar] [CrossRef] [PubMed]
- Ghanchi, F.; Bourne, R.; Downes, S.M.; Gale, R.; Rennie, C.; Tapply, I.; Sivaprasad, S. An update on long-acting therapies in chronic sight-threatening eye diseases of the posterior segment: AMD, DMO, RVO, uveitis and glaucoma. Eye 2022, 36, 1154–1167. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, N.; Kuppermann, B.D.; Bandello, F.; Loewenstein, A. Faricimab: Expanding horizon beyond VEGF. Eye 2020, 34, 802–804. [Google Scholar] [CrossRef]
- Roche, H.-L.; Pharmaceutical, C. A Study to Evaluate the Efficacy and Safety of Faricimab in Participants with Macular Edema Secondary to Branch Retinal Vein Occlusion. 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT04740905?term=A+Study+to+Evaluate+the+Efficacy+and+Safety+of+Faricimab+in+Participants+With+Macular+Edema+Secondary+to+Branch+Retinal+Vein+Occlusion&draw=2&rank=1 (accessed on 1 October 2022).
- Roche, H.-L.; Pharmaceutical, C. A Study to Evaluate the Efficacy and Safety of Faricimab in Participants with Macular Edema Secondary to Central Retinal or Hemiretinal Vein Occlusion. 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT04740931?term=A+Study+to+Evaluate+the+Efficacy+and+Safety+of+Faricimab+in+Participants+With+Macular+Edema+Secondary+to+Central+Retinal+or+Hemiretinal+Vein+Occlusion&draw=2&rank=1 (accessed on 1 October 2022).
- Terao, R.; Kaneko, H. Lipid Signaling in Ocular Neovascularization. Int. J. Mol. Sci. 2020, 21, 4758. [Google Scholar] [CrossRef]
- Grzybowski, A.; Markeviciute, A.; Zemaitiene, R. Treatment of Macular Edema in Vascular Retinal Diseases: A 2021 Update. J. Clin. Med. 2021, 10, 5300. [Google Scholar] [CrossRef]
- Kishore, K.; Bhat, P.V.; Venkatesh, P.; Canizela, C.C. Dexamethasone Intravitreal Implant for the Treatment of Macular Edema and Uveitis: A Comprehensive Narrative Review. Clin. Ophthalmol. 2022, 16, 1019–1045. [Google Scholar] [CrossRef]
- Yong, M.H.; Amin, A.; Mushawiahti, M.; Bastion, M.L. Recalcitrant cystoid macular oedema in an eye with ischaemic central retinal vein occlusion—What’s next? Med. J. Malaysia 2015, 70, 358–360. [Google Scholar] [PubMed]
- Haller, J.A.; Bandello, F.; Belfort, R., Jr.; Blumenkranz, M.S.; Gillies, M.; Heier, J.; Loewenstein, A.; Yoon, Y.-H.; Jacques, M.-L.; Jiao, J.; et al. Randomized, Sham-Controlled Trial of Dexamethasone Intravitreal Implant in Patients with Macular Edema Due to Retinal Vein Occlusion. Ophthalmology 2010, 117, 1134–1146.e3. [Google Scholar] [CrossRef] [PubMed]
- Kuppermann, B.D.; Blumenkranz, M.S.; Haller, J.A.; Williams, G.A.; Weinberg, D.; Chou, C.; Whitcup, S.M.; Dexamethasone DDS Phase II Study Group. Randomized Controlled Study of an Intravitreous Dexamethasone Drug Delivery System in Patients with Persistent Macular Edema. Arch. Ophthalmol. 2007, 125, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Hoerauf, H.; Feltgen, N.; Weiss, C.; Paulus, E.-M.; Schmitz-Valckenberg, S.; Pielen, A.; Puri, P.; Berk, H.; Eter, N.; Wiedemann, P.; et al. Clinical Efficacy and Safety of Ranibizumab Versus Dexamethasone for Central Retinal Vein Occlusion (COMRADE C): A European Label Study. Am. J. Ophthalmol. 2016, 169, 258–267. [Google Scholar] [CrossRef]
- Hattenbach, L.-O.; Feltgen, N.; Bertelmann, T.; Schmitz-Valckenberg, S.; Berk, H.; Eter, N.; Lang, G.E.; Rehak, M.; Taylor, S.R.; Wolf, A.; et al. Head-to-head comparison of ranibizumab PRN versus single-dose dexamethasone for branch retinal vein occlusion (COMRADE-B). Acta Ophthalmol. 2017, 96, e10–e18. [Google Scholar] [CrossRef] [Green Version]
- Bandello, F.; Augustin, A.; Tufail, A.; Leaback, R. A 12-month, multicenter, parallel group comparison of dexamethasone intravitreal implant versus ranibizumab in branch retinal vein occlusion. Eur. J. Ophthalmol. 2018, 28, 697–705. [Google Scholar] [CrossRef]
- He, J.; Hu, Q.; Li, H.; Xu, W.; Du, Y.; Ma, C. Comparison between Ozurdex and intravitreal anti-vascular endothelial growth factor treatment for retinal vein occlusion–related macular edema: A systematic review and meta-analysis of randomized controlled trials. Indian J. Ophthalmol. 2019, 67, 1800–1809. [Google Scholar] [CrossRef]
- Sacconi, R.; Giuffrè, C.; Corbelli, E.; Borrelli, E.; Querques, G.; Bandello, F. Emerging therapies in the management of macular edema: A review. F1000Research 2019, 8, 1413. [Google Scholar] [CrossRef] [Green Version]
- Manousaridis, K.; Peter, S.; Mennel, S. Outcome of intravitreal dexamethasone implant for the treatment of ranibizumab-resistant macular edema secondary to retinal vein occlusion. Int. Ophthalmol. 2016, 37, 47–53. [Google Scholar] [CrossRef]
- Hida, Y.; Nakamura, S.; Nishinaka, A.; Inoue, Y.; Shimazawa, M.; Hara, H. Effects of ripasudil, a ROCK inhibitor, on retinal edema and nonperfusion area in a retinal vein occlusion murine model. J. Pharmacol. Sci. 2018, 137, 129–136. [Google Scholar] [CrossRef]
- Ahmadieh, H.; Nourinia, R.; Hafezi-Moghadam, A.; Sabbaghi, H.; Nakao, S.; Zandi, S.; Yaseri, M.; Tofighi, Z.; Akbarian, S. Intravitreal injection of a Rho-kinase inhibitor (fasudil) combined with bevacizumab versus bevacizumab monotherapy for diabetic macular oedema: A pilot randomised clinical trial. Br. J. Ophthalmol. 2018, 103, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Ranade, S.V.; Wieland, M.R.; Tam, T.; Rea, J.C.; Horvath, J.; Hieb, A.R.; Jia, W.; Grace, L.; Barteselli, G.; Stewart, J.M. The Port Delivery System with ranibizumab: A new paradigm for long-acting retinal drug delivery. Drug Deliv. 2022, 29, 1326–1334. [Google Scholar] [CrossRef] [PubMed]
- Holekamp, N.M.; Campochiaro, P.A.; Chang, M.A.; Miller, D.; Pieramici, D.; Adamis, A.P.; Brittain, C.; Evans, E.; Kaufman, D.; Maass, K.F.; et al. Archway Randomized Phase 3 Trial of the Port Delivery System with Ranibizumab for Neovascular Age-Related Macular Degeneration. Ophthalmology 2021, 129, 295–307. [Google Scholar] [CrossRef]
- Chang, M.A.; Kapre, A.; Kaufman, D.; Kardatzke, D.R.; Rabena, M.; Patel, S.; Bobbala, A.; Gune, S.; Fung, A.; Wallenstein, G. Patient Preference and Treatment Satisfaction with a Port Delivery System for Ranibizumab vs Intravitreal Injections in Patients with Neovascular Age-Related Macular Degeneration: A Randomized Clinical Trial. JAMA Ophthalmol. 2022, 140, 771–778. [Google Scholar] [CrossRef]
- Chandrasekaran, P.R.; Madanagopalan, V. KSI-301: Antibody biopolymer conjugate in retinal disorders. Ther. Adv. Ophthalmol. 2021, 13, 25158414211027708. [Google Scholar] [CrossRef]
- A Study to Evaluate the Efficacy, Durability, and Safety of KSI-301 Compared to Aflibercept in Patients with Macular Edema Due to Retinal Vein Occlusion (RVO). Available online: https://clinicaltrials.gov/ct2/show/NCT04592419?term=KSI-301&cond=retinal+occlusion&draw=2&rank=1 (accessed on 1 October 2022).
NCT Number | Phase | Conditions | Treatments | Purpose |
---|---|---|---|---|
NCT03981549 | 1/2 | CRVO | Autologous bone marrow CD34+ stem cells | Evaluating the safety and feasibility of intravitreal injection of autologous bone marrow CD34+ stem cells. |
NCT04707625 | 4 | RVO | Aflibercept | Measuring the levels of VEGF in aqueous humor to predict the timing of retreatment. |
NCT03709745 | 4 | BRVO | Aflibercept, ranibizumab | Comparing the time to the first recurrence of macular edema after an initial loading dose. |
NCT05133791 | 1 | RVO | Annexin A5-CW800 | Near-infrared fluorescent imaging in the retina of patients with RVO related to the systemic injection of annexin A5-CW800. |
NCT04444492 | 3 | CRVO | Ranibizumab, laser photocoagulation | Evaluating the long-term effect of laser photocoagulation in combination with ranibizumab. |
NCT04592419 | 3 | RVO | KSI-301 | Evaluating the efficacy and safety of intravitreal KSI-301. |
NCT04740905 | 3 | BRVO | Faricimab | Evaluating the efficacy, safety, and pharmacokinetics of faricimab. |
NCT05282420 | 4 | CRVO | Aflibercept, ranibizumab | Comparing the efficacy and safety of ranibizumab and aflibercept for CRVO (younger than 50 years old). |
NCT04576689 | 2 | RVO, DME | IBE-814 | Evaluating the comparative safety and preliminary efficacy of IBE-814 IVT (dexamethasone implant). |
NCT05290948 | 2 | RVO | Bevacizumab with oral acetazolamide tablets | Comparison of combined intravitreal bevacizumab and oral acetazolamide versus intravitreal bevacizumab alone. |
NCT04740931 | 3 | CRVO, hemi-CRVO | Faricimab | Evaluating the efficacy, safety, and pharmacokinetics of faricimab. |
NCT04563299 | 4 | RVO, DME, nAMD | Dextenza | Evaluating pain and inflammation with DEXTENZA treatment. |
NCT03056079 | 4 | RVO, DME, nAMD | Aflibercept | Investigating the association between cytokine levels in aqueous humor and the optimal treatment interval. |
NCT03056092 | 4 | RVO, DME, nAMD | Ranibizumab | Investigating the association between cytokine levels in aqueous humor and the optimal treatment interval. |
NCT05112861 | 3 | BRVO, DME, nAMD | Bevacizumab | Comparing the safety of ONS-5010 in vials and prefilled syringes. |
NCT04120636 | 1 | BRVO, ERM, RR, CSC with pit of optic disc, vitritis, commotio retinae | Episcleral celecoxib | Assessing the safety, tolerability, and pharmacokinetics of episcleral celecoxib in patients with macular edema and other inflammatory disorders of the retina, choroid, and vitreous. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terao, R.; Fujino, R.; Ahmed, T. Risk Factors and Treatment Strategy for Retinal Vascular Occlusive Diseases. J. Clin. Med. 2022, 11, 6340. https://doi.org/10.3390/jcm11216340
Terao R, Fujino R, Ahmed T. Risk Factors and Treatment Strategy for Retinal Vascular Occlusive Diseases. Journal of Clinical Medicine. 2022; 11(21):6340. https://doi.org/10.3390/jcm11216340
Chicago/Turabian StyleTerao, Ryo, Ryosuke Fujino, and Tazbir Ahmed. 2022. "Risk Factors and Treatment Strategy for Retinal Vascular Occlusive Diseases" Journal of Clinical Medicine 11, no. 21: 6340. https://doi.org/10.3390/jcm11216340
APA StyleTerao, R., Fujino, R., & Ahmed, T. (2022). Risk Factors and Treatment Strategy for Retinal Vascular Occlusive Diseases. Journal of Clinical Medicine, 11(21), 6340. https://doi.org/10.3390/jcm11216340