Avoiding the Removal of Syndesmotic Screws after Distal Tibiofibular Diastasis Repair: A Benefit or a Drawback?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Settings
2.2. Participants and Definitions
2.3. Variables
2.4. Statistical Analysis
3. Results
Patient Characteristics
4. Discussion
4.1. Literature Findings
4.2. Study Limitations and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Avila, V.R.; Bento, T.; Gomes, W.; Leitão, J.; de Sousa, N.F. Functional Outcomes and Quality of Life after Ankle Fracture Surgically Treated: A Systematic Review. J. Sport Rehabil. 2018, 27, 274–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhage, S.M.; Schipper, I.B.; Hoogendoorn, J.M. Long-term functional and radiographic outcomes in 243 operated ankle fractures. J. Foot Ankle Res. 2015, 8, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Luna, V.; Caterini, A.; Casci, C.; Marsiolo, M.; Efremov, K.; De Maio, F.; Farsetti, P. Clinical and Radiological Results after Fracture-Dislocations of the Ankle: A Medium- to Long-Term Followup Study. J. Funct. Morphol. Kinesiol. 2022, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Hu, Y.-C.; Lu, J.-K. Rare variants of Bosworth fracture-dislocation: Bosworth fracture-dislocation with medial malleolus adduction type fracture. Chin. J. Traumatol. 2019, 22, 120–124. [Google Scholar] [CrossRef]
- Deng, Y.; Dong, C.; Yang, X.; Liu, R.; Hou, F.; Li, S.; Tang, K. High-Energy Transsyndesmotic Ankle Fracture Dislocation: A Case Report and Systematic Literature Review. Case Rep. Orthop. 2018, 2018, 7902641. [Google Scholar] [CrossRef] [Green Version]
- Colomb, E.; Muscatelli, S.; Morash, J.G.; Crawford, E.A.; Holmes, J.R.; Walton, D.M. Irreducible Fractures and Dislocations of the Ankle Associated with Entrapment of the Posterior Tibial Tendon within the Tibiofibular Interosseous Space: A Case Series and Literature Review. Foot Ankle Orthop. 2021, 6, 24730114211000297. [Google Scholar] [CrossRef]
- Krukhaug, Y.; Schrama, J.C. Acute traumatic proximal tibiofibular dislocation: Treatment of three cases. J. Orthop. Case Rep. 2019, 9, 98–101. [Google Scholar] [CrossRef]
- McKeon, J.M.M.; Hoch, M.C. The Ankle-Joint Complex: A Kinesiologic Approach to Lateral Ankle Sprains. J. Athl. Train. 2019, 54, 589–602. [Google Scholar] [CrossRef] [Green Version]
- Pogliacomi, F.; De Filippo, M.; Casalini, D.; Longhi, A.; Tacci, F.; Perotta, R.; Pagnini, F.; Tocco, S.; Ceccarelli, F. Acute syn-desmotic injuries in ankle fractures: From diagnosis to treatment and current concepts. World J. Orthop. 2021, 12, 270–291. [Google Scholar] [CrossRef]
- Altmeppen, J.N.; Colcuc, C.; Balser, C.; Gramlich, Y.; Klug, A.; Neun, O.; Manegold, S.; Hoffmann, R.; Fischer, S. A 10-Year Follow-Up of Ankle Syndesmotic Injuries: Prospective Comparison of Knotless Suture-Button Fixation and Syndesmotic Screw Fixation. J. Clin. Med. 2022, 11, 2524. [Google Scholar] [CrossRef]
- Kim, J.; Kwon, M.; Day, J.; Aspang, J.S.U.; Shim, J.; Cho, J. The Impact of Suture Button Removal in Syndesmosis Fixation. J. Clin. Med. 2021, 10, 3726. [Google Scholar] [CrossRef] [PubMed]
- Porter, D.A.; Jaggers, R.R.; Barnes, A.F.; Rund, A.M. Optimal management of ankle syndesmosis injuries. Open Access J. Sports Med. 2014, 5, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Mak, M.F.; Stern, R.; Assal, M. Repair of syndesmosis injury in ankle fractures: Current state of the art. EFORT Open Rev. 2018, 3, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Lalli, T.A.; Matthews, L.J.; Hanselman, A.E.; Hubbard, D.F.; Bramer, M.A.; Santrock, R.D. Economic impact of syndesmosis hardware removal. Foot 2015, 25, 131–133. [Google Scholar] [CrossRef] [PubMed]
- Song, D.J.; Lanzi, J.T.; Groth, A.T.; Drake, M.; Orchowski, J.R.; Shaha, S.H.; Lindell, K.K. The Effect of Syndesmosis Screw Removal on the Reduction of the Distal Tibiofibular Joint: A Prospective Radiographic Study. Foot Ankle Int. 2014, 35, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Kubik, J.F.; Rollick, N.C.; Bear, J.; Diamond, O.; Nguyen, J.T.; Kleeblad, L.J.; Helfet, D.L.; Wellman, D.S. Assessment of malreduction standards for the syndesmosis in bilateral CT scans of uninjured ankles. Bone Jt. J. 2021, 103-B, 178–183. [Google Scholar] [CrossRef]
- Xu, Y.; Kang, R.; Li, M.; Li, Z.; Ma, T.; Ren, C.; Wang, Q.; Lu, Y.; Zhang, K. The Clinical Efficacy of Suture-Button Fixation and Trans-Syndesmotic Screw Fixation in the Treatment of Ankle Fracture Combined With Distal Tibiofibular Syndesmosis Injury: A Retrospective Study. J. Foot Ankle Surg. 2022, 61, 143–148. [Google Scholar] [CrossRef]
- Song, L.; Liao, Z.; Kuang, Z.; Qu, S.; Zhang, W.; Yuan, Y.; Fang, T. Comparison of tendon suture fixation and cortical screw fixation for treatment of distal tibiofibular syndesmosis injury: A case-control study. Medicine 2020, 99, e21573. [Google Scholar] [CrossRef]
- Lee, J.S.; Curnutte, B.; Pan, K.; Liu, J.; Ebraheim, N.A. Biomechanical comparison of suture-button, bioabsorbable screw, and metal screw for ankle syndesmotic repair: A meta-analysis. Foot Ankle Surg. 2020, 27, 117–122. [Google Scholar] [CrossRef]
- Seyhan, M.; Donmez, F.; Mahirogullari, M.; Cakmak, S.; Mutlu, S.; Guler, O. Comparison of screw fixation with elastic fixation methods in the treatment of syndesmosis injuries in ankle fractures. Injury 2015, 46, S19–S23. [Google Scholar] [CrossRef]
- Lehtola, R.; Leskelä, H.V.; Flinkkilä, T.; Pakarinen, H.; Niinimäki, J.; Savola, O.; Ohtonen, P.; Kortekangas, T. Suture button versus syndesmosis screw fixation in pronation-external rotation ankle fractures: A minimum 6-year follow-up of a randomised controlled trial. Injury 2021, 52, 3143–3149. [Google Scholar] [CrossRef] [PubMed]
- Schulte, S.S.; Oplinger, S.L.; Graver, H.R.; Bockelman, K.J.; Frost, L.S.; Orr, J.D. Suture Button versus Screw Fixation for Distal Tibiofibular Injury and Expected Value Decision Analysis. Cureus 2021, 13, e19890. [Google Scholar] [CrossRef] [PubMed]
- Sculco, P.K.; Lazaro, L.E.; Little, M.M.; Berkes, M.B.; Warner, S.J.; Helfet, D.L.; Lorich, D.G. Dislocation is a risk factor for poor outcome after supination external rotation type ankle fractures. Arch. Orthop. Trauma. Surg. 2016, 136, 9–15. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. ICD-10: International Statistical Classification of Diseases and Related Health Problems: Tenth Revision, 2nd ed.; World Health Organization: Geneva, Switzerland, 2004; Available online: https://apps.who.int/iris/handle/10665/42980 (accessed on 24 May 2022).
- Warner, S.J.; Schttel, P.C.; Hinds, R.M.; Helfet, D.L.; Lorich, D.G. Fracture-dislocation demonstrate poorer post-operative functional outcomes among pronation external rotation IV ankle fractures. Foot Ankle Int. 2015, 36, 641–647. [Google Scholar] [CrossRef]
- Tantigate, D.; Ho, G.; Kirschenbaum, J.; Baker, H.C.; Asherman, B.; Freibott, C.; Greisberg, J.; Vosseller, J.T. Functional outcomes after fracture-dislocation of the ankle. Foot Ankle Spec. 2020, 13, 18–26. [Google Scholar] [CrossRef]
- Tartaglione, J.P.; Rosenbaum, A.J.; Abousayed, M.; DiPreta, J.A. Classifications in Brief: Lauge-Hansen Classification of Ankle Fractures. Clin. Orthop. Relat. Res. 2015, 473, 3323–3328. [Google Scholar] [CrossRef] [Green Version]
- Van Lieshout, E.M.M.; De Boer, A.S.; Meuffels, D.E.; Hoed, P.T.D.; Van Der Vlies, C.H.; Tuinebreijer, W.E.; Verhofstad, M.H.J. American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Score: A study protocol for the translation and validation of the Dutch language version. BMJ Open 2017, 7, e012884. [Google Scholar] [CrossRef]
- Van Dijk, C.N.; Verhagen, R.A.W.; Tol, J.L. Arthroscopy for Problems after Ankle Fracture. J. Bone Jt. Surg. Br. Vol. 1997, 79, 280–284. [Google Scholar] [CrossRef]
- Shoap, S.C.; Polzer, H.; Baumbach, S.F.; Herterich, V.; Freibott, C.; Vosseller, J.T. Recurrence of Syndesmotic Diastasis Following Syndesmotic Screw Removal: Does the Time Point of Screw Removal Matter? Foot Ankle Orthop. 2020, 5, 2473011420S00444. [Google Scholar] [CrossRef]
- Huang, C.-T.; Huang, P.-J.; Lu, C.-C.; Shih, C.-L.; Cheng, Y.-M.; Chen, S.-J. Syndesmosis Changes before and after Syndesmotic Screw Removal: A Retrospective Radiographic Study. Medicina 2022, 58, 445. [Google Scholar] [CrossRef]
- Boyle, M.J.; Gao, R.; Frampton, C.M.A.; Coleman, B. Removal of the syndesmotic screw after the surgical treatment of a fracture of the ankle in adult patients does not affect one-year outcomes. J. Bone Joint Surg. 2014, 96, 1699–1705. [Google Scholar] [CrossRef] [PubMed]
- Jordan, T.H.; Talarico, R.H.; Schuberth, J.M. The Radiographic Fate of the Syndesmosis after Trans-syndesmotic Screw Removal in Displaced Ankle Fractures. J. Foot Ankle Surg. 2011, 50, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Needleman, R.L.; Skrade, D.A.; Stiehl, J.B. Effect of the Syndesmotic Screw on Ankle Motion. Foot Ankle Int. 1989, 10, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Sipahioglu, S.; Zehir, S.; Isikan, U. Syndesmotic screw fixation in tibiofibular diastasis. Niger. J. Clin. Pract. 2018, 21, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Colcuc, C.; Blank, M.; Stein, T.; Raimann, F.; Weber-Spickschen, S.; Fischer, S.; Hoffmann, R. Lower complication rate and faster return to sports in patients with acute syndesmotic rupture treated with a new knotless suture button device. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 3156–3164. [Google Scholar] [CrossRef]
- Grassi, A.; Samuelsson, K.; D’Hooghe, P.; Romagnoli, M.; Mosca, M.; Zaffagnini, S.; Amendola, A. Dynamic Stabilization of Syndesmosis Injuries Reduces Complications and Reoperations as Compared with Screw Fixation: A Meta-analysis of Randomized Controlled Trials. Am. J. Sports Med. 2020, 48, 1000–1013. [Google Scholar] [CrossRef]
- Klitzman, R.; Zhao, H.; Zhang, L.Q.; Strohmeyer, G.; Vora, A. Suture-button versus screw fixation of the syndesmosis: A biomechanical analysis. Foot Ankle Int. 2010, 31, 69–75. [Google Scholar] [CrossRef]
- Laflamme, M.; Belzile, E.L.; Bedard, L.; van den Bekerom, M.P.; Glazebrook, M.; Pelet, S. A prospective randomized multicenter trial comparing clinical outcomes of patients treated surgically with a static or dynamic implant for acute ankle syndesmosis rupture. J. Orthop. Trauma 2015, 29, 216–223. [Google Scholar] [CrossRef]
- Westermann, R.W.; Rungprai, C.; Goetz, J.E.; Femino, J.; Amendola, A.; Phisitkul, P. The Effect of Suture-Button Fixation on Simulated Syndesmotic Malreduction: A Cadaveric Study. J. Bone Jt. Surg. Am. 2014, 96, 1732–1738. [Google Scholar] [CrossRef]
- Romero, J.D.-L.; Alvarez, A.M.L.; Sanchez, F.M.; Garcia, A.P.; Porcel, P.A.G.; Sarabia, R.V.; Torralba, M.H. Management of syndesmotic injuries of the ankle. EFORT Open Rev. 2017, 2, 403–409. [Google Scholar] [CrossRef]
- Mansur, H.; da Silva, S.D.; Maranho, D.A. Reconstruction of tibiofibular syndesmosis using autologous semitendinosus graft and lengthening derotational osteotomy of the distal fibula. J. Clin. Orthop. Trauma 2020, 14, 80–84. [Google Scholar] [CrossRef] [PubMed]
Variables | Tibiofibular Screw Removal (n = 212) | Tibiofibular Screw Non-Removal (n = 96) | p-Value * |
---|---|---|---|
Age | <0.001 | ||
18–40 years | 127 (59.9%) | 23 (24.0%) | |
40–65 years | 31 (14.6%) | 24 (25.0%) | |
>65 years | 54 (25.5%) | 49 (51.0%) | |
Sex | 0.013 | ||
Men | 129 (60.8%) | 44 (45.8%) | |
Women | 83 (39.2%) | 52 (54.2%) | |
BMI ** | 0.107 | ||
Underweight (<18.5 kg/m2) | 21 (9.9%) | 13 (13.5%) | |
Normal weight (18.5–25.0 kg/m2) | 109 (51.4%) | 37 (38.5%) | |
Overweight (>25.0 kg/m2) | 82 (38.7%) | 46 (47.9%) | |
Area of residence (urban) | 133 (62.7%) | 52 (54.2%) | 0.154 |
Relationship status (married) | 141 (66.5%) | 70 (72.9%) | 0.262 |
Level of income (average or higher) | 122 (57.5%) | 56 (58.3%) | 0.897 |
Level of education (higher education) | 151 (71.2%) | 59 (61.5%) | 0.088 |
Occupation (employed) | 116 (54.7%) | 60 (62.5%) | 0.201 |
Substance-use behavior | |||
Frequent alcohol consumption | 22 (10.4%) | 15 (15.6%) | 0.189 |
Frequent smoker | 58 (27.4%) | 33 (34.4%) | 0.211 |
Use of drugs | 9 (4.2%) | 2 (2.1%) | 0.343 |
Chronic comorbidities | |||
Cardiac | 37 (17.5%) | 22 (22.9%) | 0.259 |
Lung | 15 (7.1%) | 13 (13.5%) | 0.067 |
Metabolic | 10 (10.4%) | 16 (16.7%) | 0.120 |
Cerebrovascular | 5 (2.4%) | 6 (6.3%) | 0.088 |
Digestive and liver | 5 (2.4%) | 7 (7.3%) | 0.038 |
Kidney disease | 7 (3.3%) | 7 (7.3%) | 0.119 |
Cancer | 11 (7.0%) | 5 (9.3%) | 0.589 |
Depression | 2 (0.9%) | 4 (4.2%) | 0.057 |
Other | 7 (3.3%) | 8 (8.3%) | 0.057 |
Variables | Tibiofibular Screw Removal (n = 212) | Tibiofibular Screw Non-Removal (n = 96) | p-Value * |
---|---|---|---|
Poor soft tissue condition | 28 (13.2%) | 22 (22.9%) | 0.032 |
Side of injury | 0.232 | ||
Left | 84 (39.6%) | 45 (46.9%) | |
Right | 128 (60.4%) | 51 (53.1%) | |
Time between injury and definitive surgery (mean ± SD) | 3.6 ± 2.2 | 4.1 ± 2.5 | 0.079 |
Danis–Weber classification | 0.637 | ||
B | 14 (6.6%) | 5 (5.2%) | |
C | 198 (93.4%) | 91 (94.8%) | |
Fracture type | 0.411 | ||
Unimalleolar | 54 (25.5%) | 23 (24.0%) | |
Bimalleolar | 113 (53.3%) | 46 (47.9%) | |
Trimalleolar | 45 (21.2%) | 27 (28.1%) | |
Trauma type | 0.026 | ||
Low-energy | 84 (39.6%) | 51 (53.1%) | |
High-energy | 128 (60.4%) | 45 (46.9%) | |
Outcomes | |||
ICU admission | 15 (7.1%) | 14 (14.6%) | 0.036 |
Days in the ICU (mean ± SD) | 3.2 ± 2.5 | 4.0 ± 2.9 | 0.014 |
First intervention hospitalization (mean ± SD) | 5.3 ± 2.0 | 6.8 ± 3.1 | 0.001 |
Second intervention hospitalization (median, IQR) | 2 (0–2) | – | – |
The total duration of medical leave (median, IQR) | 21 (15–27) | 15 (6–20) | <0.001 |
Orthopedic complications | |||
Loss of reduction | 18 (8.5%) | 2 (2.1%) | 0.034 |
Wound infection | 17 (8.0%) | 9 (9.4%) | 0.691 |
Hemarthrosis | 11 (5.2%) | 3 (3.1%) | 0.420 |
Osteomyelitis | 3 (1.4%) | 1 (1.0%) | 0.788 |
Osteoarthritis | 19 (9.0%) | 10 (10.4%) | 0.685 |
Early degenerative joint disease | 23 (10.8%) | 9 (9.4%) | 0.694 |
Skin necrosis | 4 (1.9%) | 1 (1.0%) | 0.864 |
Neuroparalysis | 2 (0.9%) | 0 (0.0%) | 0.339 |
Sepsis | 6 (2.8%) | 2 (2.1%) | 0.702 |
Venous thrombosis | 8 (3.8%) | 5 (5.2%) | 0.561 |
Variables | Tibiofibular Screw Removal (n = 212) | Tibiofibular Screw Non-Removal (n = 96) | p-Value * |
---|---|---|---|
Average time to screw removal (days) | 63.1 ± 7.7 | – | – |
Screw breakage | – | 18 (18.8%) | – |
Post-operative rehabilitation | 0.668 | ||
Yes | 136 (64.2%) | 64 (66.7%) | |
No | 76 (35.8%) | 32 (33.3%) | |
AOFAS score (mean ± SD) | 92.6 ± 6.1 | 88.4 ± 5.8 | <0.001 |
Lauge–Hansen classification | 0.016 | ||
SER | 97 (45.8%) | 32 (33.3%) | |
PER | 68 (32.1%) | 27 (28.1%) | |
SA | 22 (10.4%) | 21 (21.9%) | |
PA | 25 (11.8%) | 16 (16.7%) | |
Van Dijk osteoarthritis scale | 0.389 | ||
0 | 42 (19.8%) | 25 (26.0%) | |
1 | 126 (59.4%) | 47 (49.0%) | |
2 | 37 (17.5%) | 20 (20.8%) | |
3 | 7 (3.3%) | 4 (4.2%) | |
ROM assessment | 0.038 | ||
Poor | 21 (9.9%) | 18 (18.8%) | |
Good | 95 (44.8%) | 46 (47.9%) | |
Excellent | 96 (45.3%) | 33 (34.4%) | |
Quality of reduction | 0.258 | ||
Poor | 17 (8.0%) | 13 (13.5%) | |
Good | 88 (41.5%) | 41 (42.7%) | |
Excellent | 107 (50.5%) | 42 (43.8%) | |
Estimated costs (EUR), median (IQR) | 900 (400–1200) | 400 (200–800) | <0.001 |
Variables (Mean ± SD) | Tibiofibular Screw Removal (n = 212) | Tibiofibular Screw Non-Removal (n = 96) | p-Value * |
---|---|---|---|
TOL | 8.8 ± 1.7 | 8.4 ± 2.6 | 0.109 |
TCS | 3.8 ± 1.0 | 3.6 ± 0.9 | 0.012 |
IFD | 4.3 ± 0.8 | 4.1 ± 1.2 | 0.085 |
TOL change | 18.4% | 11.5% | 0.126 |
TCS change | 15.6% | 7.3% | 0.045 |
IFD change | 19.3% | 9.4% | 0.028 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosin, S.; Vermesan, D.; Prejbeanu, R.; Crisan, D.; Al-Qatawneh, M.; Pop, D.; Mioc, M.; Bratosin, F.; Feciche, B.; Hemaswini, K.; et al. Avoiding the Removal of Syndesmotic Screws after Distal Tibiofibular Diastasis Repair: A Benefit or a Drawback? J. Clin. Med. 2022, 11, 6412. https://doi.org/10.3390/jcm11216412
Hosin S, Vermesan D, Prejbeanu R, Crisan D, Al-Qatawneh M, Pop D, Mioc M, Bratosin F, Feciche B, Hemaswini K, et al. Avoiding the Removal of Syndesmotic Screws after Distal Tibiofibular Diastasis Repair: A Benefit or a Drawback? Journal of Clinical Medicine. 2022; 11(21):6412. https://doi.org/10.3390/jcm11216412
Chicago/Turabian StyleHosin, Samer, Dinu Vermesan, Radu Prejbeanu, Dan Crisan, Musab Al-Qatawneh, Daniel Pop, Mihai Mioc, Felix Bratosin, Bogdan Feciche, Kakarla Hemaswini, and et al. 2022. "Avoiding the Removal of Syndesmotic Screws after Distal Tibiofibular Diastasis Repair: A Benefit or a Drawback?" Journal of Clinical Medicine 11, no. 21: 6412. https://doi.org/10.3390/jcm11216412
APA StyleHosin, S., Vermesan, D., Prejbeanu, R., Crisan, D., Al-Qatawneh, M., Pop, D., Mioc, M., Bratosin, F., Feciche, B., Hemaswini, K., Moise, M. L., Dumitru, C., Bloanca, V., & Pilut, C. N. (2022). Avoiding the Removal of Syndesmotic Screws after Distal Tibiofibular Diastasis Repair: A Benefit or a Drawback? Journal of Clinical Medicine, 11(21), 6412. https://doi.org/10.3390/jcm11216412