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Abstract: Early prenatal screening with an ultrasound (US) can significantly lower newborn mortality
caused by congenital heart diseases (CHDs). However, the need for expertise in fetal cardiologists
and the high volume of screening cases limit the practically achievable detection rates. Hence,
automated prenatal screening to support clinicians is desirable. This paper presents and analyses
potential deep learning (DL) techniques to diagnose CHDs in fetal USs. Four convolutional neural
network architectures were compared to select the best classifier with satisfactory results. Hence,
dense convolutional network (DenseNet) 201 architecture was selected for the classification of seven
CHDs, such as ventricular septal defect, atrial septal defect, atrioventricular septal defect, Ebstein’s
anomaly, tetralogy of Fallot, transposition of great arteries, hypoplastic left heart syndrome, and a
normal control. The sensitivity, specificity, and accuracy of the DenseNet201 model were 100%, 100%,
and 100%, respectively, for the intra-patient scenario and 99%, 97%, and 98%, respectively, for the
inter-patient scenario. We used the intra-patient DL prediction model to validate our proposed model
against the prediction results of three expert fetal cardiologists. The proposed model produces a
satisfactory result, which means that our model can support expert fetal cardiologists to interpret
the decision to improve CHD diagnostics. This work represents a step toward the goal of assisting
front-line sonographers with CHD diagnoses at the population level.

Keywords: congenital heart disease; classification; deep learning; explainable AI; fetal ultrasound

1. Introduction

Congenital heart disease (CHD) is a structural abnormality of the heart and/or great
vessels found prenatally or postnatally [1]. Such conditions cause health problems in
millions of babies born every year. It accounts for one-third of all CHDs [1,2]. There
are many types of CHD, and they sometimes occur in combination. Some of the more
common defects include septal defects, coarctation of the aorta, pulmonary valve stenosis,
transposition of the great arteries, and an underdeveloped heart [3]. The top seven CHDs
include ventricular septal defect (VSD), atrial septal defect (ASD), atrioventricular septal
defect (AVSD), Ebstein’s anomaly (EA), tetralogy of Fallot (TOF), transposition of great
arteries (TGA), and hypoplastic left heart syndrome (HLHS) [3,4].

CHD screening can be started at 11 weeks of gestation by using a 4-chamber view
(4CV), and sensitivity can increase to 92% at 13 weeks of gestation [5,6]. Through the
4CV, expert fetal cardiologists can ultimately see the cardiac position and its condition in
utero [4,6]. If there is an anomaly in the structure and blood vessels of the fetal heart, it can
be seen clearly through the 4CV [5]. Many cases of CHD are diagnosed before a baby is born
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during an ultrasound (US) scan during pregnancy. Advances in fetal echocardiography
using high-resolution US and serial imaging have led to an increased number of fetuses
diagnosed with CHD. The clinical course in utero and at delivery can now be predicted.
Consequently, fetal medicine specialists are asked to consider the fetus as a patient and
the transition to postnatal life as a significant part of care [6]. Through US, CHDs can be
detected manually. However, it is not always possible to detect CHDs in this way [7,8].
It is a greatly challenging task to analyze such conditions manually due to several key
factors, such as numerous speckles in US images, a small fetal heart, unfixed positions,
and category indistinction caused by the similarity of fetal heart chambers [9]. Expert
fetal cardiologists can detect CHDs with over 98% sensitivity and near 90% specificity [9].
However, a shortage of expert fetal cardiologists means that over 96% of examinations are
performed by obstetrics and gynecology generalist [9]. Correspondingly, population-based
studies consistently report detection rates of around 40% to 50% [10].

To overcome these challenges, a computer-assisted method helping expert fetal car-
diologists to locate and interpret fetal heart anatomy automatically has attracted much
attention in recent years [11,12]. Such procedures can help expert fetal cardiologists to
support the diagnosis of CHDs with automatic mechanisms. One fetal echocardiography-
based computer method is deep learning (DL). Such methods could help close this gap and
provide generalist obstetrics and gynecology assistance for difficult diagnoses to increase
the prediction rate. The automatic analysis of fetal heart anatomy contributes significantly
to the early diagnosis of CHD and the preparation for further therapy. The most successful
applications of DL in fetal ultrasounds have been in pre-diagnostic tasks, including stan-
dard plane detection [10], the classification and detection of CHDs [13–18], and fetal heart
developmental assessment [19,20]. We hypothesized that DL could improve the ultrasound
analysis of CHDs.

Unfortunately, there have been few studies on diagnostic assistance in fetal heart
screening. No research has performed an automatic fetal heart diagnostic process for many
CHDs conditions. Most CHD prediction methods use only one or two cases and one
control. Furthermore, most previously reported works in the literature had been evaluated
based on the intra-patient paradigm rather than the inter-patient scheme, which is a more
realistic scenario to prevent training and test the model using samples from the same
patients [21]. Therefore, although some of these methods achieved good performance using
the intra-patient scheme, their results are unreliable because their evaluation process was
biased [17]. To improve the classification approach, this study proposes explainable CNNs
to classify, localize, and interpret echocardiograms for distinguishing between normal and
CHD conditions. The novelty and contributions of this study are as follows:

• To propose a DL model for classifying eight-class of congenital heart diseases; seven
CHDs, such as ASD, VSD, AVSD, EA, TOF, TGA, HLHS, and one control as Normal;

• To extract relevant frames from the normal control (NC) and CHD US video based on
an apical four-chamber view (4CV) standard plane;

• To produce the explainable classification result with a combination of gradient activa-
tion mapping and guided backpropagation;

• To compare the prediction performance of the proposed model against three expert
fetal cardiologist’s interpretations;

• To evaluate the DL model with intra-patient and inter-patient scenarios.

The rest of the paper is structured as follows: Section 2 details our search methodology,
and Section 3 presents the results and discussion. Section 4 provides the conclusion.

2. Materials and Methods
2.1. Data Preparation

The population of this study was 76 pregnant women who presented for routine
clinical pregnancy at obstetrics and gynecology, subspecialist fetal cardiology, Mohammad
Hoesin General Hospital, Palembang, Indonesia. The subjects in the case group were
31 patients, and there were 45 patients in the normal control group. The fetal heart was
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examined by taking a four-chamber view (4CV). Table 1 shows that we divided the data
distribution into two scenarios based on intra- and inter-patient US to develop a robust
model. The whole data comprised about 1129 for training and testing in the intra-patient
scenario and about 55 echocardiograms for testing in the inter-patient scenario. The expert
fetal cardiologist’s interpretation of the entire US served as our gold standard for the
learning process. The dataset represented a real clinical setting well since images were
collected prospectively by different operators using GE Voluson E6 machines.

Table 1. Distribution of patients and clean cardiac frames.

Number of Data Seven Diseases Normal Total

Unique patient 31 45 76
Frames for training

(intra-patient) 812 157 969

Frames for testing
(intra-patient) 140 20 160

Frames for testing
(inter-patient) 50 5 55

Figure 1 depicts the sample of seven diseases, including ASD, VSD, AVSD, EA, TOF,
TGA, HLHS, and control echocardiograms from fetal USG. Each patient’s data were col-
lected as raw ultrasound digital imaging and communications in medicine (DICOM)
videos. These fetal USG videos are unannotated with precise standard planes, typically
used for diagnosis. However, the size of each frame is converted from 640 × 480 pixels to
300 × 300 pixels. Table 1 summarizes the distribution of the frames.
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2.2. Characteristics of the Research Subject

The general characteristics of the research subjects in each group are shown in Table 2.
We used five characteristics—age, body mass index (BMI), trimester, gestation, and parity—to
measure the clinical history of each patient before they were predicted based on the DL
model. Pregnant women were divided into an age group under or over 35 years, with
as many as 31 cases and 45 controls. In the age group above 35 years, there were five
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cases and 11 controls. In the case group, there were five subjects and 19 subjects who were
divided into a BMI of 18.5–22.9 (normal weight) and <18.5 or >22.9 (abnormal weight).
In the control group, 12 and 44 subjects were in the normal and abnormal BMI groups,
respectively. There were 20 subjects (nine cases and 11 controls) who joined the study in
the second trimester (16–26 weeks) and 60 subjects (15 cases and 45 controls) who joined
in the third trimester of pregnancy (>26 weeks). Based on gestational history, there were
69 subjects with gravida 1–4 (23 pregnant women in the case group and 46 pregnant women
in the control group). One subject in the case group and ten subjects in the control group
had a gravida of more than 4. Meanwhile, based on parity, nine nulliparous subjects,
and 15 multiparous subjects were in the case group. In the control group, 13 nulliparous
subjects, 49 multiparous subjects, and three grandee-multiparous subjects, respectively.

Table 2. General characteristics of research subjects.

Normal Control
Cases

Frequency (n) Percentage (%)

Age
20–35 year 19 79.17 45 80.36
>35 years 5 20.83 11 19.64

Body Massa index (BMI)
Normoweight 5 20.83 12 21.43

Abnormal weight 19 79.17 44 78.57
Trimester

second 13 54.2 22 39.3
third 11 45.8 34 60.7

Gestation
1–4 23 95.83 46 82.14
>4 1 4.17 10 17.86

Parity
0 9 37.5 13 23.21

1–4 15 62.5 40 71.43
>4 0 0 3 5.36

2.3. Proposed CHD Classification Architecture

This study compared two important CNN architectures, ResNet and DenseNet. One
reason that ResNet and DenseNet are exceptionally selected in this study is that the simple
design strategy produces good performance [22]. In learning with traditional CNNs, all
layers are gradually connected. However, the ResNet architecture proposed employing the
shortcut connection by skipping at least two layers. In contrast, the DenseNet architecture
offers concatenations of all feature maps from previous layers, which means that all feature
maps propagate to later layers and are connected to the newly generated feature maps
(Figure 2). CNNs is an end-to-end solution for image classification, it extracts necessary
features for efficient image and learns the feature by itself. The feature extraction includes
convolution layer piles and sets of pooling layers. As its name implies, the convolution
layer transforms the image using the convolution process. It can be described as a series
of digital filters. The feature maps are the bright areas (indicated by the blue arrow) are
the activated areas, meaning that the filter detects patterns from the given input. This
filter captures features of the heart chamber area in the center of the image. The layer
of pooling transforms the neighboring pixels into a single pixel and decreases the image
dimension. As CNN’s primary concern is the image, the convolution and pooling layers’
procedures are intuitively in a two-dimensional plane. As the sample-generated feature
from the DenseNet 201 architecture is presented in Figure 3.
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We trained and tested four CNN architectures, including DenseNet121, DenseNet 201,
ResNet 50, and ResNet 101. We conducted the learning process without augmentation
data to maintain the actual clinical condition. We selected the best model of the CNN
architecture from the whole performance. The hyperparameter that controls the learning
process is selected with a learning rate of 0.001 based on the SoftMax activation function.
To optimize the network, adaptive moment estimation (Adam) is utilized with categor-
ical_crossentropy as the loss function. For reducing overfitting, dropout (0.5) is used as
a regularization technique. All the networks were implemented using Python and the
PyTorch 1.7.1 library and trained using a computer with specifications as follows: processor
with Intel® Core™ i9-9920X CPU @ 3.50GHz, 490,191 MB RAM, and GeForce 2080 RTX Ti,
by NVIDIA Corporation GV102 (Rev A1). The operating system was Ubuntu 18.04.5 LTS.
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The DenseNet201 model consists of convolutional blocks and two fully connected
layers with localization based on gradient-weighted class activation mapping (Grad-CAM)
and guided backpropagation (Guided BP) [23]. Such a process explains fine-grained details
in the abnormal image. In this study, we combine two techniques to visualize the classi-
fication result. The combination produces class discrimination and highlights important
fine-grained regions of an echocardiogram for the prediction of CHDs and normal in high
resolution for the proposed CNN architecture model. Finally, a combination of Grad-CAM
and Guided BP as explainable artificial intelligence (XAI) algorithms are applied to localize
and visualize the image features that are most important for the prediction. The internal
representations of the specific input for each convolutional layer in the model can be visu-
alized through feature maps. Through the feature map, we can analyze the classification
by region.

2.4. Model Evaluation

Fetal US based on DL algorithms is evaluated using different metrics according to
the addressed task. For classification tasks, performance is assessed using the confusion
matrix, with True Positives (TP), True Negatives (TN), False Negatives (FN), and False
Positives (FP). The gold standard of classification metrics computed from the confusion
matrix is: (1) Accuracy is the number of correct predictions (TP + TN) divided by the
total number of predictions (N); (2) Sensitivity is the fraction of actual positives which
are correctly identified; (3) Specificity is the fraction of actual negatives which are cor-
rectly identified; (4) Negative predictive value in distinguishing normal from CHDs; and
(5) Positive predictive value in distinguishing CHDs from normal.

3. Results and Discussion
3.1. The Classifier Performance

Worldwide, expert fetal cardiologists can detect as few as 30% to 50% of these CHD
conditions before birth [24]. However, combining human-performed US and machine
analysis allowed researchers to detect 95% CHDs in their test dataset. This work experi-
mented with DL and fetal cardiology experts to observe whether DL could improve fetal
CHD detection. We implemented four CNN architectures. However, DenseNet201 results
outperformed those of state-of-the-art methods in most of them, and the results provided a
classification of CHDs versus normal.

Tables 3 and 4 illustrate the classification results for four CNN architectures regarding
accuracy, sensitivity, and specificity. These three metrics are the gold standard of the DL
model. Satisfactory performance was produced in the intra-patient scenario. However, the
DenseNet201 reach had 100% sensitivity (85.75–100%), 100% specificity (93.62–100%), 100%
positive predictive value, 100% negative predictive value, and 100% accuracy (95.49–100%;
Tables 3 and 4). The confusion matrix (CM) shows a perfect match between the predictions
of the proposed model and the actual image, which means that there was no error prediction
in both the cases or controls. When tested with inter-patient data, the performance of the
proposed model was maintained, and the sensitivity, specificity, and accuracy values
remained above 90%. Comparisons of validation performance and test performance are
depicted in the CM (Figure 4). Our DenseNet201 model is significantly better than all four
CNN architectures, with the highest performance among all state-of-the-art approaches.

In this study, we have also trained, validated and tested the eight-class (seven-class
of diseases and normal). The average performance of the classifier with four architectures
in intra-patient and inter-patient scenarios is presented in Table 5, and the CM is depicted
in Figure 5. It can be seen that DenseNet201’s performance on eight-class classification
outperforms other architectures and two-class classification. In intra-patient scenarios, the
whole classes can be classified by the DenseNet201 model (Figure 5a). However, in the inter-
patient scenario, two classes are unclassified (Figure 5b). The class TOF is misclassified
as ASD, EA, and TGA, and the class VSD is misclassified as TOF and TGA. From the
validation with inter-patient data using such four architectures, none of them succeeded in
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recognizing TOF and VSD, due to the two types of diseases affecting each other with similar
structural abnormalities. One type of abnormality in the TOF class is the complicated VSD,
thus the pixels on the TOF echocardiogram will be identical to the VSD class. This is a
big challenge to recognize similar disorders but different diseases. In addition, the limited
number of echocardiograms makes the learning process on DenseNet 201 produce an
insignificant result.

Table 3. Four Classifier backbones for predicting two-class CHDs.

Metrics Class

Performance (%)

DenseNet121 DenseNet201 ResNet50 ResNet101

Intra Inter Intra Inter Intra Inter Intra Inter

Accuracy CHDs 97 67 100 93 99 76 95 84
Normal 98 74 100 90 99 78 97 69

Sensitivity CHDs 93 100 100 96 98 100 90 96
Normal 100 59 100 86 100 61 100 55

Specificity CHDs 100 50 100 89 100 65 100 75
Normal 96 100 100 95 99 100 95 92

* Intra: intra-patient; Inter: inter-patient.

Table 4. Average performance with intra- and inter-patient scenarios.

Metrics

Average Performance (%)

DenseNet121 DenseNet201 ResNet50 ResNet101

Intra Inter Intra Inter Intra Inter Intra Inter

Accuracy 97 71 100 92 97 77 97 79
Sensitivity 97 79 100 91 95 80 95 76
Specificity 98 75 100 92 98 82 96 83

* Intra: intra-patient; Inter: inter-patient.
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Table 5. Eight-class classification average performance with intra and inter-patient scenarios before
data augmentation.

Metrics

Average Performance (%)

DenseNet121 DenseNet201 ResNet50 ResNet101

Intra Inter Intra Inter Intra Inter Intra Inter

Accuracy 93 60 98 71 97 60 95 67
Sensitivity 87 49 90 62 88 48 89 56
Specificity 90 53 98 68 97 53 95 62

* Intra: intra-patient; Inter: inter-patient.
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3.2. Improving Classifier Performance by Data Augmentation

DenseNet201 performs well from the CM compared to other models (Figure 5). How-
ever, such classifier performance in the inter-patient scenario must be improved because
there are two classes (TOF and VSD) that fail to be classified due to insufficient data. To
overcome such conditions, data augmentation is performed to improve the DenseNet201
model performance. The augmentation process is implemented by using echocardiogram
geometric transformation. We serve image rotation (±15 degrees), height and width
shift, and vertical and horizontal flipping. We increase the training data from 1129 to
23,504 echocardiograms (19,626 for training and the rest for the validation process). Based
on such a process, the classifier performance is increased by 30–35%, especially in the
inter-patient scenario (Table 6). In addition, TOF and VSD are classified successfully that
previously failed to classify (Figures 5b and 6). For binary and multiclass classification,
analyses of CM and incorrectly classified images helped determine that the model error
mirrored uncertainties in clinical practice.
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Table 6. Eight-class classification average performance after data augmentation.

Metrics
DenseNet201′s Performance (%)

Before Augmentation After Augmentation

Intra-Patient Inter-Patient Intra-Patient Inter-Patient

Accuracy 98 71 100 99
Sensitivity 90 62 100 97
Specificity 98 68 100 98
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3.3. Deep Learning against Fetal Expert Cardiologists

To maintain that our model could work robustly in real-world clinical settings, we
compared the CHD prediction against three clinicians with expertise in fetal cardiology.
One by one, they were shown about 1609 images in the intra-patient set and asked if each
image displayed a CHD. The detailed result prediction by expert fetal cardiologists is
revealed in Table 7.

Table 7. Interpretation by expert fetal cardiologists.

Interpretation
Actual Label

Total
Kappa
ValueCHDs Normal

Expert 1
CHDs 765

(99.74%)
2

(0.26%) 767
0.912

Normal 69
(8.27%)

766
(91.73%) 835

Expert 2
CHDs 709

(92.43%)
58

(7.57%) 767
0.540

Normal 318
(37.77%)

524
(62.23%) 842

Expert 3
CHDs 748

(97.52%)
19

(2.48%) 767
0.669

Normal 250
(29.69%)

592
(70.31%) 842

Table 7 displays the varying degrees of Kappa values of CHDs interpretations between
expert fetal cardiologists and the proposed CNN model. The results of the Kappa test be-
tween the first expert fetal cardiologists’ interpretation and the proposed CNNs predictions
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demonstrated a substantial degree of conformity with the Kappa value of about 0.912, with
a 99.73% positive predictive value and a 91.74% negative predictive value. Hence, the first
expert fetal cardiologists’ interpretation is almost equal to the proposed CNN prediction.
However, the second and third expert fetal cardiologists only reached the Kappa value of
about 0.542 (99.73% positive predictive value and 62.23% negative predictive value) and
0.669 (97.52% positive predictive value and 70.31% negative predictive value), respectively.
In other words, the expert fetal cardiologist’s interpretation performance undershot CNN’s
predictions (Figure 7). The results obtained following previous research using the DL
method from fetal US images can help increase the detection of fetal heart abnormalities
compared to human experts [10,17,18,24]. Correspondingly, our DL model can support the
expert fetal cardiologist’s interpretation of fetal echocardiography US for making diagnoses.
In conclusion, our approach to modeling design (intra-patient) and testing (inter-patient)
ensured fetal echocardiography US interpretability with satisfactory performance in terms
of accuracy, sensitivity, specificity, positive predictive value, and negative predictive value,
which can assist clinical adoption.
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Figure 7. Performance of CHD Prediction Based on Validation (Intra-Patient), Testing (Inter-Patient),
and Three Expert Fetal Cardiologists.

To explain the results of DenseNet201 classification so that they can be easily un-
derstood medically, we created a visualized image output after the classification process.
A combination of guided backpropagation (Guided–BP) and gradient class activation
mapping (Grad–CAM) was combined to describe abnormal pixels from US images as
CHDs. Combining Guided–BP and Grad–CAM allowed us to generate sharp attributions.
Class-discriminative visualization enables expert fetal cardiologists to understand where
models are predicted. It can be used for any CNN-based model. A good explainable
model should highlight fine-grained details in the image to visually explain why the model
predicted a class. Such results can improve expert fetal cardiologists understanding from
a medical point of view. Figure 8 depicts the raw image, Grad–CAM, and a combination
of Guided–BP and Grad–CAM visualization. There was an excellent localization process
for most of the images used in our experiment. Such visualizations can be used to inform
downstream model enhancements.
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3.4. Proposed DenseNet201 Model against State-of-the-Art

To ensure the robustness of the proposed model, we compared the performance of
our architecture against several state-of-the-art methods [9,13–15]. Table 8 illustrates that
our classifier model achieved the best performance in diagnosing fetal CHDs in intra-
patient data, with approximately 100% accuracy, sensitivity, and specificity. Hence, our
simple yet effective classifier model is more reasonable than other models. To further
evaluate the effectiveness of our model, we compared its performance with the model
used by [13] on interpatient data. Our proposed DenseNet201 classifier had 92% accuracy,
91% sensitivity, and 92% specificity, whereas the RLDS achieved 91% accuracy and 91%
sensitivity. Unfortunately, the RLDS architecture has three classes of CHDs (HRHS, HLHS,
and highly RAS) versus the normal control. Correspondingly, our proposed model displays
relatively higher accuracy in intra- and inter-patient data and is thus credible enough for
the early diagnosis of fetal CHDs.

CHDs are the most common birth defect, and diagnosing them early before birth is
very important. They are still rare enough that detecting them is difficult, even for trained
clinicians, unless they are highly subspecialized. Such conditions can produce sensitivity,
and specificity can be quite low. Early screening with DL may also be helpful for fetal
cardiac specialists. Although the performance of fetal echocardiography is excellent in
expert hands, there are still potential routes to improve this performance. Due to the small
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fetal heart size, the dynamics of the fetal position and the fetal heart take up a relatively
small proportion of the image, meaning that the DL algorithm must learn to ignore a large
proportion of the available data.

Table 8. Benchmarking with State-of-the-Art CNNs.

Method Class Data Validation
Performance (%)

Accuracy Sensitivity Specificity

Ensemble Neural
Network [9]

2 classes (normal vs. and HLHS) intra-patient - 89 92
2 classes (normal vs. TOF) intra-patient - 71 89

Residual
learning [13]

2 classes (normal vs. CHDs including
HRHS, HLHS, highly RAS) intra-patient 93 93 -

2 classes (normal vs. CHDs including
HRHS, HLHS, highly RAS) inter-patient 91 91 -

Deep learning
model [14]

2 classes (normal vs. TOF) intra-patient - 75 76
2 classes (normal vs. HLHS) intra-patient - 100 90

DGACNN [15] 2 classes (normal vs. CHD) intra-patient 85 - -

Proposed

2 classes (normal vs. CHDs including ASD,
VSD, AVSD, EA, TOF, TGA, HLHS) intra-patient 100 100 100

2 classes (normal vs. CHDs ASD, VSD,
AVSD, EA, TOF, TGA, HLHS) inter-patient 92 91 92

8 classes (normal, CHDs ASD, VSD, AVSD,
EA, TOF, TGA, HLHS)

inter-patient before
augmentation 71 62 68

8 classes (normal, CHDs ASD, VSD, AVSD,
EA, TOF, TGA, HLHS)

Inter-patient after
augmentation 99 97 98

4. Conclusions

This article proposes a novel, multiple-CHD classification method based on DenseNet201.
We have expatiated every step of our method and the following evaluation results. The ex-
periments showed that our method, DenseNet201, is superior to state-of-the-art approaches.
The proposed model successfully predicts CHDs with good performance, validated with
inter-patient data and three expert fetal cardiologists. While CHD is the most common
congenital disability, CHD is still relatively rare.

Moreover, unlike modalities such as photographs, ECGs, or chest X-rays, each ul-
trasound study contains thousands of image frames. Therefore, designing a DL model
to work on many non-independent images from a relatively small subject dataset was
an important challenge to overcome. The strengths of our proposed model are the effort
to find robust diagnostics for CHDs and the allowed computational efficiency, which is
key to translating this work into real-world and resource-poor settings where it is needed.
Therefore, prospectively, expanded model testing will be necessary in multiple centers in
the future. Several improvements in model algorithms and more training data from more
centers may further boost the performance and allow the diagnosis of specific CHD types.
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