Cardiac Troponin I Reveals Diagnostic and Prognostic Superiority to Aminoterminal Pro-B-Type Natriuretic Peptide in Sepsis and Septic Shock
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Patients, Design and Data Collection
2.2. Inclusion and Exclusion Criteria, Study Endpoints
2.3. Measurement of NT-Pro BNP and cTNI
2.4. Statistical Methods
2.4.1. Diagnostic Performance of NT-Pro BNP and cTNI
2.4.2. Prognostic Performance of NT-Pro BNP and cTNI
3. Results
3.1. Study Population
3.2. Association of cTNI and NT-Pro BNP with Clinical and Laboratory Data
3.3. Diagnostic Performance of cTNI and NT-Pro BNP
3.4. Prognostic Performance of cTNI and NT-Pro BNP
3.5. Multivariable Cox Regression Models
3.6. NT-Pro BNP Adjusted for eGFR
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Cecconi, M.; Evans, L.; Levy, M.; Rhodes, A. Sepsis and septic shock. Lancet 2018, 392, 75–87. [Google Scholar] [CrossRef]
- Charpentier, J.; Luyt, C.E.; Fulla, Y.; Vinsonneau, C.; Cariou, A.; Grabar, S.; Dhainaut, J.F.; Mira, J.P.; Chiche, J.D. Brain natriuretic peptide: A marker of myocardial dysfunction and prognosis during severe sepsis. Crit. Care Med. 2004, 32, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Price, S.; Anning, P.B.; Mitchell, J.A.; Evans, T.W. Myocardial dysfunction in sepsis: Mechanisms and therapeutic implications. Eur. Heart J. 1999, 20, 715–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okamoto, R.; Ali, Y.; Hashizume, R.; Suzuki, N.; Ito, M. BNP as a Major Player in the Heart-Kidney Connection. Int. J. Mol. Sci. 2019, 20, 3581. [Google Scholar] [CrossRef] [Green Version]
- Potter, L.R.; Yoder, A.R.; Flora, D.R.; Antos, L.K.; Dickey, D.M. Natriuretic peptides: Their structures, receptors, physiologic functions and therapeutic applications. Handb. Exp. Pharmacol. 2009, 191, 341–366. [Google Scholar]
- Maisel, A.S.; Duran, J.M.; Wettersten, N. Natriuretic Peptides in Heart Failure: Atrial and B-type Natriuretic Peptides. Heart Fail. Clin. 2018, 14, 13–25. [Google Scholar] [CrossRef]
- Farnsworth, C.W.; Bailey, A.L.; Jaffe, A.S.; Scott, M.G. Diagnostic concordance between NT-proBNP and BNP for suspected heart failure. Clin. Biochem. 2018, 59, 50–55. [Google Scholar] [CrossRef]
- Sutanto, H.; Lyon, A.; Lumens, J.; Schotten, U.; Dobrev, D.; Heijman, J. Cardiomyocyte calcium handling in health and disease: Insights from in vitro and in silico studies. Prog. Biophys. Mol. Biol. 2020, 157, 54–75. [Google Scholar] [CrossRef]
- Katrukha, I.A. Human cardiac troponin complex. Structure and functions. Biochemistry 2013, 78, 1447–1465. [Google Scholar] [CrossRef]
- Chaulin, A.M. Cardiac Troponins Metabolism: From Biochemical Mechanisms to Clinical Practice (Literature Review). Int. J. Mol. Sci. 2021, 22, 928. [Google Scholar] [CrossRef]
- Shomanova, Z.; Ohnewein, B.; Schernthaner, C.; Höfer, K.; Pogoda, C.A.; Frommeyer, G.; Wernly, B.; Brandt, M.C.; Dieplinger, A.M.; Reinecke, H.; et al. Classic and Novel Biomarkers as Potential Predictors of Ventricular Arrhythmias and Sudden Cardiac Death. J. Clin. Med. 2020, 9, 578. [Google Scholar] [CrossRef] [Green Version]
- Burke, M.A.; Cotts, W.G. Interpretation of B-type natriuretic peptide in cardiac disease and other comorbid conditions. Heart Fail. Rev. 2007, 12, 23–36. [Google Scholar] [CrossRef]
- Ammann, P.; Fehr, T.; Minder, E.I.; Günter, C.; Bertel, O. Elevation of troponin I in sepsis and septic shock. Intensive Care Med. 2001, 27, 965–969. [Google Scholar] [CrossRef]
- Mehta, S.; Granton, J.; Gordon, A.C.; Cook, D.J.; Lapinsky, S.; Newton, G.; Bandayrel, K.; Little, A.; Siau, C.; Ayers, D.; et al. Cardiac ischemia in patients with septic shock randomized to vasopressin or norepinephrine. Crit. Care 2013, 17, R117. [Google Scholar] [CrossRef] [Green Version]
- ver Elst, K.M.; Spapen, H.D.; Nguyen, D.N.; Garbar, C.; Huyghens, L.P.; Gorus, F.K. Cardiac troponins I and T are biological markers of left ventricular dysfunction in septic shock. Clin. Chem. 2000, 46, 650–657. [Google Scholar] [CrossRef]
- Schupp, T.; Weidner, K.; Rusnak, J.; Jawhar, S.; Forner, J.; Dulatahu, F.; Brück, L.M.; Hoffmann, U.; Bertsch, T.; Weiß, C.; et al. Diagnostic and prognostic value of the AST/ALT ratio in patients with sepsis and septic shock. Scand. J. Gastroenterol. 2022. epub ahead of print. [Google Scholar] [CrossRef]
- Galderisi, M.; Cosyns, B.; Edvardsen, T.; Cardim, N.; Delgado, V.; Di Salvo, G.; Donal, E.; Sade, L.E.; Ernande, L.; Garbi, M.; et al. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: An expert consensus document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1301–1310. [Google Scholar]
- Apple, F.S.; Collinson, P.O. Analytical characteristics of high-sensitivity cardiac troponin assays. Clin. Chem. 2012, 58, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Behnes, M.; Espeter, F.; Hoffmann, U.; Lang, S.; Brueckmann, M.; Akin, I.; Borggrefe, M.; Bertsch, T.; Weiss, C.; Neumaier, M.; et al. Diagnostic and Long-Term Prognostic Value of Sensitive Troponin I in Symptomatic Patients Suspected of Acute Heart Failure. Clin. Lab. 2015, 61, 1737–1747. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983, 148, 839–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beesley, S.J.; Weber, G.; Sarge, T.; Nikravan, S.; Grissom, C.K.; Lanspa, M.J.; Shahul, S.; Brown, S.M. Septic Cardio-myopathy. Crit. Care Med. 2018, 46, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Barre, M.; Behnes, M.; Hamed, S.; Pauly, D.; Lepiorz, D.; Lang, S.; Akin, I.; Borggrefe, M.; Bertsch, T.; Hoffmann, U. Revisiting the prognostic value of monocyte chemotactic protein 1 and interleukin-6 in the sepsis-3 era. J. Crit. Care 2018, 43, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Babuin, L.; Jaffe, A.S. Troponin: The biomarker of choice for the detection of cardiac injury. CMAJ 2005, 173, 1191–1202. [Google Scholar] [CrossRef] [Green Version]
- Altmann, D.R.; Korte, W.; Maeder, M.T.; Fehr, T.; Haager, P.; Rickli, H.; Kleger, G.R.; Rodriguez, R.; Ammann, P. Elevated cardiac troponin I in sepsis and septic shock: No evidence for thrombus associated myocardial necrosis. PLoS ONE 2010, 5, e9017. [Google Scholar] [CrossRef]
- Ammann, P.; Maggiorini, M.; Bertel, O.; Haenseler, E.; Joller-Jemelka, H.I.; Oechslin, E.; Minder, E.I.; Rickli, H.; Fehr, T. Troponin as a risk factor for mortality in critically ill patients without acute coronary syndromes. J. Am. Coll. Cardiol. 2003, 41, 2004–2009. [Google Scholar] [CrossRef] [Green Version]
- Agewall, S.; Giannitsis, E.; Jernberg, T.; Katus, H. Troponin elevation in coronary vs. non-coronary disease. Eur. Heart J. 2011, 32, 404–411. [Google Scholar] [CrossRef]
- Vasile, V.C.; Chai, H.S.; Abdeldayem, D.; Afessa, B.; Jaffe, A.S. Elevated cardiac troponin T levels in critically ill patients with sepsis. Am. J. Med. 2013, 126, 1114–1121. [Google Scholar] [CrossRef]
- Kalla, C.; Raveh, D.; Algur, N.; Rudensky, B.; Yinnon, A.M.; Balkin, J. Incidence and significance of a positive troponin test in bacteremic patients without acute coronary syndrome. Am. J. Med. 2008, 121, 909–915. [Google Scholar] [CrossRef]
- Wen, K.; Du, H.; Tang, B.; Xiong, B.; Zhang, A.; Wang, P. Complete Blood Count and Myocardial Markers Combination with Sequential Organ Failure Assessment Score Can Effectively Predict the Mortality in Sepsis: A Derivation and Validation Study. Int. J. Gen. Med. 2022, 15, 3265–3280. [Google Scholar] [CrossRef]
- Brueckmann, M.; Huhle, G.; Lang, S.; Haase, K.K.; Bertsch, T.; Weiss, C.; Kaden, J.J.; Putensen, C.; Borggrefe, M.; Hoffmann, U. Prognostic value of plasma N-terminal pro-brain natriuretic peptide in patients with severe sepsis. Circulation 2005, 112, 527–534. [Google Scholar] [CrossRef] [Green Version]
- Khoury, J.; Arow, M.; Elias, A.; Makhoul, B.F.; Berger, G.; Kaplan, M.; Mashiach, T.; Ismael-Badarneh, R.; Aronson, D.; Azzam, Z.S. The prognostic value of brain natriuretic peptide (BNP) in non-cardiac patients with sepsis, ultra-long follow-up. J. Crit. Care 2017, 42, 117–122. [Google Scholar] [CrossRef]
- Yang, Y.; Leng, J.; Tian, X.; Wang, H.; Hao, C. Brain natriuretic peptide and cardiac troponin I for prediction of the prognosis in cancer patients with sepsis. BMC Anesthesiol. 2021, 21, 159. [Google Scholar] [CrossRef]
- Qian, A.; Zhang, M.; Zhao, G. Dynamic detection of N-terminal pro-B-type natriuretic peptide helps to predict the outcome of patients with major trauma. Eur. J. Trauma Emerg. Surg. 2015, 41, 57–64. [Google Scholar] [CrossRef]
- Andersson, P.; Frigyesi, A. High-sensitivity troponin T is an important independent predictor in addition to the Simplified Acute Physiology Score for short-term ICU mortality, particularly in patients with sepsis. J. Crit. Care 2019, 53, 218–222. [Google Scholar] [CrossRef]
- de Groot, B.; Verdoorn, R.C.; Lameijer, J.; van der Velden, J. High-sensitivity cardiac troponin T is an independent predictor of inhospital mortality in emergency department patients with suspected infection: A prospective observational derivation study. Emerg. Med. J. 2014, 31, 882–888. [Google Scholar] [CrossRef]
- Mehta, N.J.; Khan, I.A.; Gupta, V.; Jani, K.; Gowda, R.M.; Smith, P.R. Cardiac troponin I predicts myocardial dysfunction and adverse outcome in septic shock. Int. J. Cardiol. 2004, 95, 13–17. [Google Scholar] [CrossRef]
- Hai, P.D.; Binh, N.T.; Tot, N.H.; Hung, H.M.; Hoa, L.T.V.; Hien, N.V.Q.; Son, P.N. Diagnostic Value of High-Sensitivity Troponin T for Subclinical Left Ventricular Systolic Dysfunction in Patients with Sepsis. Cardiol. Res. Pract. 2021, 2021, 8897738. [Google Scholar] [CrossRef]
- Yu, J.; Zheng, R.; Yang, P.; Wang, D. Construction of a predictive model and prognosis of left ventricular systolic dysfunction in patients with sepsis based on the diagnosis using left ventricular global longitudinal strain. J. Intensive Care 2022, 10, 29. [Google Scholar] [CrossRef]
All Patients (n = 162) | Sepsis (n = 93) | Septic Shock (n = 69) | p-Value | ||||
---|---|---|---|---|---|---|---|
Age, median; (IQR) | 70 | (61–78) | 70 | (60–78) | 70 | (60–80) | 0.966 |
Male sex, n (%) | 106 | (65.4) | 61 | (65.6) | 45 | (65.2) | 0.961 |
Body mass index (kg/m2), median; (IQR) | 26.67 | (24.22–30.86) | 26.58 | (23.77–29.89) | 26.73 | (24.69–32.65) | 0.410 |
Entry criteria, median; (IQR) | |||||||
Body temperature (°C) | 36.8 | (36–37.6) | 36.9 | (36.1–37.4) | 36.6 | (35.6–37.9) | 0.381 |
Heart rate (bpm) | 102 | (87–115) | 96 | (85–111) | 108 | (90–123) | 0.027 |
Systolic blood pressure (mmHg) | 111 | (96–129) | 114 | (99–133) | 108 | (88–125) | 0.010 |
Respiratory rate (breaths/minute) | 22 | (18–26) | 22 | (18–26) | 21 | (18–26) | 0.563 |
Cardiovascular risk factors, n (%) | |||||||
Arterial hypertension | 113 | (69.8) | 65 | (69.9) | 48 | (69.6) | 0.964 |
Diabetes mellitus | 60 | (37.0) | 35 | (37.6) | 25 | (36.2) | 0.855 |
Hyperlipidemia | 51 | (31.5) | 24 | (25.8) | 27 | (39.1) | 0.071 |
Smoking | 44 | (27.3) | 27 | (29.3) | 17 | (24.6) | 0.507 |
Prior medical history, n (%) | |||||||
Coronary artery disease | 67 | (41.4) | 36 | (38.7) | 31 | (44.9) | 0.427 |
Congestive heart failure | 39 | (24.1) | 18 | (19.4) | 21 | (30.4) | 0.103 |
Atrial fibrillation | 50 | (30.9) | 25 | (26.9) | 25 | (36.2) | 0.203 |
Chronic kidney disease | 32 | (19.8) | 22 | (23.7) | 10 | (14.5) | 0.147 |
COPD | 32 | (19.8) | 18 | (19.4) | 14 | (20.3) | 0.882 |
Liver cirrhosis | 7 | (4.3) | 4 | (4.3) | 3 | (4.3) | 0.988 |
Malignancy | 48 | (29.6) | 26 | (28.0) | 22 | (31.9) | 0.588 |
Immunosuppression | 19 | (12.1) | 13 | (14.8) | 6 | (8.7) | 0.247 |
LVEF at admission, n (%) | |||||||
≥55% | 46 | (28.4) | 26 | (28.0) | 20 | (29.0) | 0.886 |
54–45 | 44 | (27.2) | 35 | (37.6) | 9 | (13.0) | 0.001 |
44–35% | 35 | (21.6) | 15 | (16.1) | 20 | (29.0) | 0.049 |
<35% | 37 | (22.8) | 17 | (18.3) | 20 | (29.0) | 0.108 |
Cardiopulmonary resuscitation, n (%) | 26 | (16.0) | 5 | (5.4) | 21 | (30.4) | 0.001 |
In-hospital | 7 | (4.3) | 2 | (2.2) | 5 | (7.2) | 0.001 |
Out-of-hospital | 19 | (11.7) | 3 | (3.2) | 16 | (23.2) |
All Patients (n = 162) | Sepsis (n = 93) | Septic Shock (n = 69) | p-Value | ||||
---|---|---|---|---|---|---|---|
Sepsis scores, median; (IQR) | |||||||
DIC | 1 | (1–2) | 1 | (0–2) | 2 | (1–3) | 0.001 |
Acute physiology score | 17 | (12–23) | 13 | (8–19) | 22 | (15–25) | 0.001 |
APACHE II | 24 | (18–30) | 20 | (14–27) | 27 | (21–33) | 0.001 |
SOFA | 10 | (8–13) | 9 | (6–12) | 13 | (10–15) | 0.001 |
ISARIC-4C-Mortality score | 15 | (12–16) | 14 | (12–16) | 15 | (12–16) | 0.615 |
Infection focus, n (%) | |||||||
Pulmonary | 93 | (57.4) | 53 | (57.0) | 40 | (58.0) | 0.216 |
Urogenital | 19 | (11.7) | 15 | (16.1) | 4 | (5.8) | |
Intra-abdominal | 12 | (7.4) | 6 | (6.5) | 6 | (8.7) | |
Wound | 1 | (0.6) | 0 | (0.0) | 1 | (1.4) | |
Unknown | 37 | (22.8) | 19 | (20.4) | 18 | (26.1) | |
SARS-CoV-2 infection, n (%) | 24 | (14.8) | 19 | (20.4) | 5 | (7.2) | 0.020 |
Multiple organ support during ICU | |||||||
Vasopressor support norepinephrine, n (%) | 141 | (87.0) | 73 | (78.5) | 68 | (98.6) | 0.001 |
Dose of norepinephrine (µg; median (IQR)) | 51.7 | (5.8–158.3) | 25.0 | (1.8–104.3) | 105.4 | (24.3–281.5) | 0.001 |
Dialysis during hospitalization, n (%) | 75 | (46.3) | 31 | (33.2) | 44 | (63.8) | 0.001 |
Extracorporeal membrane oxygenation, n (%) | 14 | (8.6) | 9 | (9.7) | 5 | (7.2) | 0.586 |
Respiratory status | |||||||
Mechanical ventilation, n (%) | 96 | (59.3) | 49 | (52.3) | 47 | (68.1) | 0.048 |
Invasive mechanical ventilation, n (%) | 73 | (45.1) | 29 | (31.2) | 44 | (63.8) | 0.001 |
Duration of mechanical ventilation (days; mean, (range)) | 5 | (1–15) | 5 | (1–16) | 3 | (1–15) | 0.715 |
PaO2/FiO2 ratio (median; (IQR)) | 191 | (129–285) | 192 | (129–297) | 191 | (127–278) | 0.866 |
PaO2 (median; (IQR)) | 91 | (72–123) | 87 | (69–117) | 97 | (80–126) | 0.081 |
Liver function | |||||||
Acute liver failure, n (%) | 15 | (9.3) | 6 | (6.5) | 9 | (13.0) | 0.152 |
Renal function, median; (IQR) | |||||||
Serum creatinine (mg/dL) | 1.9 | (1.28–3.03) | 1.69 | (1.09–2.85) | 2.16 | (1.56–3.49) | 0.010 |
GFR (mL/min) | 31.49 | (19.2–51.88) | 34.93 | (21.7–62.01) | 26.87 | (16.2–40.48) | 0.008 |
Urine output (mL) | 790 | (179–1493) | 900 | (415–1650) | 510 | (40–1270) | 0.022 |
Dialysis (days) | 0 | (0–4) | 0 | (0–4) | 2 | (0–6) | 0.001 |
Baseline laboratory values, median; (IQR) | |||||||
pH | 7.37 | (7.28–7.42) | 7.39 | (7.31–7.44) | 7.33 | (7.22–7.40) | 0.001 |
Lactate (mmol/L) | 2.1 | (1.2–3.9) | 1.4 | (1.0–2.2) | 3.5 | (2.3–8.6) | 0.001 |
Serum sodium (mmol/L) | 139 | (135–143) | 138 | (135–142) | 140 | (135–145) | 0.181 |
Serum potassium (mmol/L) | 4.2 | (3.7–4.7) | 4.1 | (3.6–4.6) | 4.2 | (3.8–4.8) | 0.289 |
Hemoglobin (g/dL) | 10.8 | (9.0–12.5) | 10.7 | (9.0–12.9) | 10.8 | (9.0–12.3) | 0.691 |
WBC (106/mL) | 13.13 | (8.45–17.76) | 13.06 | (8.21–17.58) | 13.97 | (8.92–19.62) | 0.657 |
Platelets (106/mL) | 201 | (132–281) | 212 | (136–280) | 197 | (119–297) | 0.649 |
INR | 1.18 | (1.08–1.32) | 1.13 | (1.06–1.23) | 1.28 | (1.12–1.64) | 0.001 |
Fibrinogen (g/L) | 4.40 | (2.80–5.86) | 4.93 | (3.40–6.34) | 3.67 | (2.53–5.61) | 0.074 |
D-dimer (µg/L) | 4.13 | (1.50–15.25) | 2.68 | (1.28–10.34) | 11.59 | (4.04–30.54) | 0.001 |
AST (U/L) | 61 | (35–147) | 50 | (29–83) | 85 | (46–247) | 0.003 |
ALT (U/L) | 33 | (18–97) | 30 | (18–87) | 39 | (17–125) | 0.352 |
Bilirubin (mg/dL) | 0.85 | (0.50–1.36) | 0.74 | (0.49–1.31) | 0.97 | (0.53–1.54) | 0.224 |
Troponin I (µg/L) | 0.14 | (0.03–0.92) | 0.08 | (0.02–0.37) | 0.37 | (0.05–1.73) | 0.002 |
NT-pro BNP (pg/mL) | 2794 | (913–7978) | 2256 | (668–7053) | 4500 | (1033–12,742) | 0.085 |
Procalcitonin (ng/mL) | 2.44 | (0.57–17.85) | 1.65 | (0.50–9.78) | 5.66 | (0.74–26.68) | 0.042 |
CRP (mg/L) | 144 | (76–225) | 147 | (87–226) | 137 | (47–221) | 0.204 |
Primary endpoint | |||||||
All-cause mortality at 30 days, n (%) | 80 | (49.4) | 39 | (41.9) | 41 | (59.4) | 0.028 |
Follow up data, n (%) | |||||||
ICU time (days; median; (IQR)) | 7 | (3–17) | 8 | (3–18) | 5 | (3–16) | 0.098 |
Death ICU, n (%) | 75 | (46.3) | 33 | (35.5) | 42 | (60.9) | 0.001 |
cTNI | NT-Pro BNP | |||
---|---|---|---|---|
r | p-Value | r | p-Value | |
Age | 0.092 | 0.293 | 0.222 | 0.018 |
BMI | 0.000 | 0.997 | −0.137 | 0.155 |
Hb (g/dL) | −0.045 | 0.607 | −0.080 | 0.399 |
WBC (106/mL) | −0.050 | 0.571 | −0.159 | 0.091 |
Platelets (106/mL) | −0.160 | 0.067 | −0.225 | 0.016 |
Albumin (g/L) | −0.064 | 0.520 | −0.170 | 0.112 |
Bilirubin (mg/dL) | 0.072 | 0.493 | 0.185 | 0.088 |
cTNI (µg/L) | - | - | 0.528 | 0.001 |
NT-pro BNP (pg/mL) | 0.528 | 0.001 | - | - |
LVEF | 0.307 | 0.001 | 0.439 | 0.001 |
CRP (mg/L) | −0.141 | 0.110 | 0.081 | 0.403 |
PCT (ng/mL) | 0.209 | 0.029 | 0.247 | 0.012 |
PaO2/FiO2 ratio | 0.115 | 0.201 | 0.202 | 0.037 |
Mechanical ventilation days | −0.053 | 0.544 | −0.342 | 0.001 |
Creatinine (mg/dL) | 0.154 | 0.078 | 0.291 | 0.002 |
Renal replacement days | 0.053 | 0.545 | −0.021 | 0.824 |
SOFA score | 0.201 | 0.020 | 0.226 | 0.015 |
Acute Physiology score | 0.239 | 0.006 | 0.192 | 0.040 |
APACHE II score | 0.220 | 0.011 | 0.281 | 0.002 |
MAP (mmHg) | 0.013 | 0.884 | −0.199 | 0.034 |
Catecholamine use | 0.133 | 0.127 | −0.074 | 0.432 |
Intensive-care days | −0.080 | 0.358 | −0.304 | 0.001 |
cTNI | NT-Pro BNP | p-Value for AUC Difference | |
---|---|---|---|
Day 1 | 0.658 (0.564–0.753); p = 0.002 | 0.595 (0.488–0.702); p = 0.085 | 0.389 |
Day 1: Controls n = 93 patients with sepsis | |||
Day 2 | 0.547 (0.382–0.712); p = 0.592 | 0.517 (0.284–0.750); p = 0.888 | 0.842 |
Day 2: Controls n = 103 patients with sepsis | |||
Day 3 | 0.885 (0.770–1.000); p = 0.001 | 0.481 (0.162–0.800); p = 0.903 | 0.022 |
Day 3: Controls n = 100 patients with sepsis |
cTNI | NT-Pro BNP | p-Value for AUC Difference | |
---|---|---|---|
Day 1 | 0.635 (0.541–0.729); p = 0.007 | 0.582 (0.477–0.687); p = 0.132 | 0.462 |
Day 2 | 0.687 (0.540–0.834); p = 0.021 | 0.537 (0.317–0.757); p = 0.735 | 0.255 |
Day 3 | 0.633 (0.436–0.830); p = 0.200 | 0.525 (0.315–0.735); p = 0.813 | 0.455 |
Variables | Univariable | Multivariable | ||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
Age | 1.013 | 0.995–1.030 | 0.151 | 0.994 | 0.966–1.023 | 0.688 |
Sodium (mmol/L) | 1.027 | 0.998–1.057 | 0.066 | 1.023 | 0.950–1.102 | 0.548 |
Potassium (mmol/L) | 0.989 | 0.736–1.329 | 0.944 | 0.669 | 0.354–1.266 | 0.217 |
pH | 0.101 | 0.015–0.686 | 0.019 | 0.067 | 0.002–2.793 | 0.155 |
WBC (106/mL) | 0.978 | 0.954–1.002 | 0.069 | 0.982 | 0.940–1.026 | 0.424 |
Platelets (106/mL) | 0.998 | 0.996–1.000 | 0.042 | 0.998 | 0.995–1.001 | 0.179 |
Malignancy | 1.255 | 0.786–2.005 | 0.341 | 3.439 | 1.389–8.511 | 0.008 |
Immunosuppression | 0.559 | 0.243–1.287 | 0.172 | 0.520 | 0.106–2.540 | 0.419 |
Respiratory rate > 22/min | 0.793 | 0.511–1.231 | 0.301 | 0.696 | 0.306–1.582 | 0.387 |
Heart rate > 100 bpm | 0.923 | 0.595–1.431 | 0.721 | 0.549 | 0.236–1.276 | 0.163 |
Systolic BP < 100 mmHg | 0.851 | 0.520–1.392 | 0.520 | 1.457 | 0.619–3.429 | 0.389 |
Creatinine (mg/dL) | 1.004 | 0.896–1.126 | 0.940 | 1.035 | 0.847–1.266 | 0.735 |
LVEF < 35% | 1.239 | 0.747–2.055 | 0.407 | 4.084 | 1.475–11.304 | 0.007 |
cTNI > 0.136 µg/L | 1.703 | 1.030–2.814 | 0.038 | 2.251 | 1.017–4.981 | 0.045 |
NT-pro BNP > 2793.5 pg/mL | 1.769 | 1.048–2.986 | 0.033 | 1.364 | 0.528–3.521 | 0.522 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forner, J.; Schupp, T.; Weidner, K.; Rusnak, J.; Jawhar, S.; Dulatahu, F.; Brück, L.M.; Behnes, M.; Hoffmann, U.; Bertsch, T.; et al. Cardiac Troponin I Reveals Diagnostic and Prognostic Superiority to Aminoterminal Pro-B-Type Natriuretic Peptide in Sepsis and Septic Shock. J. Clin. Med. 2022, 11, 6592. https://doi.org/10.3390/jcm11216592
Forner J, Schupp T, Weidner K, Rusnak J, Jawhar S, Dulatahu F, Brück LM, Behnes M, Hoffmann U, Bertsch T, et al. Cardiac Troponin I Reveals Diagnostic and Prognostic Superiority to Aminoterminal Pro-B-Type Natriuretic Peptide in Sepsis and Septic Shock. Journal of Clinical Medicine. 2022; 11(21):6592. https://doi.org/10.3390/jcm11216592
Chicago/Turabian StyleForner, Jan, Tobias Schupp, Kathrin Weidner, Jonas Rusnak, Schanas Jawhar, Floriana Dulatahu, Lea Marie Brück, Michael Behnes, Ursula Hoffmann, Thomas Bertsch, and et al. 2022. "Cardiac Troponin I Reveals Diagnostic and Prognostic Superiority to Aminoterminal Pro-B-Type Natriuretic Peptide in Sepsis and Septic Shock" Journal of Clinical Medicine 11, no. 21: 6592. https://doi.org/10.3390/jcm11216592
APA StyleForner, J., Schupp, T., Weidner, K., Rusnak, J., Jawhar, S., Dulatahu, F., Brück, L. M., Behnes, M., Hoffmann, U., Bertsch, T., Kittel, M., & Akin, I. (2022). Cardiac Troponin I Reveals Diagnostic and Prognostic Superiority to Aminoterminal Pro-B-Type Natriuretic Peptide in Sepsis and Septic Shock. Journal of Clinical Medicine, 11(21), 6592. https://doi.org/10.3390/jcm11216592