Surgical and Medical Aspects of the Initial Treatment of Biliary Atresia: Position Paper
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Diagnostic Strategy
3.2. Surgical Strategy (Based on 42 Completed Questionnaires)
4. Discussion
4.1. Surgical Strategy
4.1.1. Role of Laparoscopy
4.1.2. Degree of Liver Mobilisation
4.1.3. Roux Loop
4.2. Post Operative Adjuvant Therapy
5. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nizery, L.; Chardot, C.; Sissaoui, S.; Capito, C.; Henrion-Caude, A.; Debray, D.; Girard, M. Biliary atresia: Clinical advances and perspectives. Clin. Res. Hepatol. Gastroenterol. 2016, 40, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Scottoni, F.; Davenport, M. Biliary atresia: Potential for a new decade. Semin. Pediatr. Surg. 2020, 29, 150940. [Google Scholar] [CrossRef] [PubMed]
- Harpavat, S.; Finegold, M.J.; Karpen, S.J. Patients with biliary atresia have elevated direct/conjugated bilirubin levels shortly after birth. Pediatrics 2011, 128, e1428–e1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.; Wang, J.; Shen, Z.; Lu, X.; Chen, G.; Huang, Y.; Dong, R.; Zheng, S. Serum MMP-7 in the diagnosis of biliary atresia. Pediatrics 2019, 144, e20190902. [Google Scholar] [CrossRef]
- Wu, J.F.; Jeng, Y.M.; Chen, H.L.; Ni, Y.-H.; Hsu, H.-Y.; Chang, M.-H. Quantification of serum matrix metallopeptide 7 levels may assist in the diagnosis and predict the outcome for patients with biliary atresia. J. Pediatr. 2019, 208, 30–37.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsu, F.R.; Dai, S.T.; Chou, C.M.; Huang, S.Y. The application of artificial intelligence to support biliary atresia screening by ultrasound images: A study based on deep learning models. PLoS ONE 2022, 17, e0276278. [Google Scholar] [CrossRef]
- Harpavat, S.; Garcia-Prats, J.A.; Anaya, C.; Brandt, M.L.; Lupo, P.J.; Finegold, M.J.; Obuobi, A.; Elhennawy, A.A.; Jarriel, W.S.; Shneider, B.L. Diagnostic yield of newborn screening for biliary atresia using direct or conjugated bilirubin measurements. JAMA 2020, 323, 1141–1150. [Google Scholar] [CrossRef]
- Kasai, M.; Suzuki, S. A new operation for “non-correctable” biliary atresia—Portoenterostomy. Shijitsu 1959, 13, 733–739. (In Japanese) [Google Scholar]
- Saeki, M.; Nakano, M.; Hagane, K.; Shimizu, K. Effectiveness of an intussusceptive antireflux valve to prevent ascending cholangitis after hepatic portojejunostomy in biliary atresia. J. Pediatr. Surg. 1991, 26, 800–803. [Google Scholar] [CrossRef]
- Ohya, T.; Miyano, T.; Kimura, K. Indication for portoenterostomy based on 103 patients with Suruga II modification. J. Pediatr. Surg. 1990, 25, 801–804. [Google Scholar] [CrossRef]
- Sun, X.; Diao, M.; Wu, X.; Cheng, W.; Ye, M.; Li, L. A prospective study comparing laparoscopic and conventional Kasai portoenterostomy in children with biliary atresia. J. Pediatr. Surg. 2016, 51, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Chen, B.W.; Xia, L.S. Experience of treating biliary atresia with laparoscopic-modified Kasai and laparoscopic conventional Kasai: A cohort study. ANZ J. Surg. 2021, 91, 1170–1173. [Google Scholar] [CrossRef] [PubMed]
- Starzl, T.E.; Marchioro, T.L.; Vonkailla, K.N.; Hermann, G.; Brittain, R.S.; Waddell, W.R. Homotransplantation of the liver in humans. Surg. Gynecol. Obste. 1963, 117, 659–676. [Google Scholar]
- Chardot, C.; Buet, C.; Serinet, M.O.; Golmard, J.L.; Lachaux, A.; Roquelaure, B.; Gottrand, F.; Broué, P.; Dabadie, A.; Gauthier, F.; et al. Improving outcomes of biliary atresia: French national series 1986–2009. J. Hepatol. 2013, 58, 1209–1217. [Google Scholar] [CrossRef]
- Serinet, M.O.; Wildhaber, B.E.; Broué, P.; Lachaux, A.; Sarles, J.; Jacquemin, E.; Gauthier, F.; Chardot, C. Impact of age at Kasai operation on its results in late childhood and adolescence: A rational basis for biliary atresia screening. Pediatrics 2009, 123, 1280–1286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fawaz, R.; Baumann, U.; Ekong, U.; Fischler, B.; Hadzic, N.; Mack, C.L.; McLin, V.A.; Molleston, J.P.; Neimark, E.; Ng, V.L.; et al. Guideline for the Evaluation of Cholestatic Jaundice in Infants: Joint Recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 154–168. [Google Scholar]
- Nicastro, E.; Di Giorgio, A.; Marchetti, D.; Barboni, C.; Cereda, A.; Iascone, M.; D’Antiga, L. Diagnostic yield of an algorithm for neonatal and infantile cholestasis integrating Next-Generation Sequencing. J. Pediatr. 2019, 211, 54–62.e4. [Google Scholar] [CrossRef]
- Ibrahim, S.H.; Kamath, B.M.; Loomes, K.M.; Karpen, S.J. Cholestatic liver diseases of genetic etiology: Advances and controversies. Hepatology 2022, 75, 1627–1646. [Google Scholar] [CrossRef]
- Kianifar, H.R.; Tehranian, S.; Shojaei, P.; Adinehpoor, Z.; Sadeghi, R.; Kakhki, V.R.D.; Keshtgar, A.S. Accuracy of hepatobiliary scintigraphy for differentiation of neonatal hepatitis from biliary atresia: Systematic review and meta-analysis of the literature. Pediatr. Radiol. 2013, 43, 905–919. [Google Scholar] [CrossRef]
- Hery, G.; Gonzales, E.; Bernard, O.; Fouquet, V.; Gauthier, F.; Branchereau, S. Hepatic portocholecystostomy: 97 cases From a single institution. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 375–379. [Google Scholar] [CrossRef]
- Ayuso, L.; Vila-Carbó, J.J.; Lluna, J.; Hernández, E.; Marco, A. Intervención de Kasai por vía laparoscópica: Presente y futuro del tratamiento de la atresia de vías biliares. Laparoscopic Kasai portoenterostom: Present and future of biliary atresia treatment. Cir. Pediatr. 2008, 21, 23–26. (In Spanish) [Google Scholar] [PubMed]
- von Sochaczewski, C.O.; Petersen, C.; Ure, B.M.; Osthaus, A.; Schubert, K.-P.; Becker, T.; Lehner, F.; Kuebler, J.F. Laparoscopic versus conventional Kasai portoenterostomy does not facilitate subsequent liver transplantation in infants with biliary atresia. J. Laparoendosc. Adv. Surg. Tech. A 2012, 22, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Ure, B.M.; Kuebler, J.F.; Schukfeh, N.; Engelmann, C.; Dingemann, J.; Petersen, C. Survival with the native liver after laparoscopic versus conventional Kasai portoenterostomy in infants with biliary atresia: A prospective trial. Ann. Surg. 2011, 253, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Zhang, X.; Chen, S.; Li, Y.; Yang, K.; Zhou, J.; Xu, Z. Medium-term outcomes after laparoscopic revision of laparoscopic Kasai portoenterostomy in patients with biliary atresia. Orphanet J. Rare Dis. 2021, 16, 193. [Google Scholar] [CrossRef]
- Toyosaka, A.; Okamoto, E.; Okasora, T.; Nose, K.; Tomimoto, Y.; Seki, Y. Extensive dissection at the porta hepatis for biliary atresia. J. Pediatr. Surg. 1994, 29, 896–899. [Google Scholar] [CrossRef]
- Nio, M.; Wada, M.; Sasaki, H.; Kazama, T.; Tanaka, H.; Kudo, H. Technical Standardization of Kasai Portoenterostomy in Biliary Atresia. J. Pediatr. Surg. 2016, 51, 2105–2108. [Google Scholar] [CrossRef]
- Nakamura, H.; Koga, H.; Miyano, G.; Okawada, M.; Doi, T.; Yamataka, A. Does the level of transection of the biliary remnant affect outcome after laparoscopic Kasai portoenterostomy for biliary atresia? J. Laparoendosc. Adv. Surg. Tech. A 2017, 27, 744–747. [Google Scholar] [CrossRef]
- Xiao, H.; Huang, R.; Chen, L.; Diao, M.; Li, L. The application of a shorter loop in Kasai portoenterostomy reconstruction for Ohi Type III Biliary Atresia: A Prospective Randomized Controlled Trial. J. Surg. Res. 2018, 232, 492–496. [Google Scholar] [CrossRef]
- Ogasawara, Y.; Yamataka, A.; Tsukamoto, K.; Okada, Y.; Lane, G.J.; Kobayashi, T.; Miyano, T. The intussusception antireflux valve is ineffective for preventing cholangitis in biliary atresia: A prospective study. J. Pediatr. Surg. 2003, 38, 1826–1829. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, S.; Ge, L.; Jia, J.; Gou, Q.; Zhao, J.; Zhan, J. Investigation into multi-centre diagnosis and treatment strategies of biliary atresia in mainland China. Pediatr. Surg. Int. 2020, 36, 827–833. [Google Scholar] [CrossRef]
- Russo, P.; Magee, J.C.; Anders, R.A.; Bove, K.E.; Chung, C.; Cummings, O.W. Childhood Liver Disease Research Network (ChiLDReN). Key histopathologic features of liver biopsies that distinguish biliary atresia from other causes of infantile cholestasis and their correlation with outcome: A multicenter study. Am. J. Surg. Pathol. 2016, 40, 1601–1615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abukawa, D.; Nakagawa, M.; Iinuma, K.; Nio, M.; Ohi, R.; Goto, J. Hepatic and serum bile acid compositions in patients with biliary atresia: A microanalysis using gas chromatography-mass spectrometry with negative ion chemical ionization detection. Tohoku J. Exp. Med. 1998, 185, 227–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asai, A.; Miethke, A.; Bezerra, J.A. Pathogenesis of biliary atresia: Defining biology to understand clinical phenotypes. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Hukkinen, M.; Kerola, A.; Lohi, J.; Jahnukainen, T.; Heikkilä, P.; Pakarinen, M.P. Very low bilirubin after portoenterostomy improves survival of the native liver in patients with biliary atresia by deferring liver fibrogenesis. Surgery 2019, 165, 843–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moyer, K.; Kaimal, V.; Pacheco, C.; Mourya, R.; Xu, H.; Shivakumar, P.; Chakraborty, R.; Rao, M.; Magee, J.C.; Bove, K.; et al. Staging of biliary atresia at diagnosis by molecular profiling of the liver. Genome Med. 2010, 2, 33. [Google Scholar] [CrossRef] [Green Version]
- Verkade, H.J.; Bezerra, J.A.; Davenport, M.; Schreiber, R.A.; Mieli-Vergani, G.; Hulscher, J.B.; Sokol, R.J.; Kelly, D.A.; Ure, B.; Whitington, P.F.; et al. Biliary atresia and other cholestatic childhood diseases: Advances and future challenges. J. Hepatol. 2016, 65, 631–642. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, H.; Tanaka, H.; Nio, M. Current management of long-term survivors of biliary atresia: Over 40 years of experience in a single center and review of the literature. Pediatr. Surg. Int. 2017, 33, 1327–1333. [Google Scholar] [CrossRef]
- De Vries, W.; de Langen, Z.J.; Groen, H.; Scheenstra, R.; Peeters, P.M.; Hulscher, J.B.; Verkade, H.J. Netherlands Study Group of Biliary Atresia and Registry (NeSBAR). Biliary atresia in the Netherlands: Outcome of patients diagnosed between 1987 and 2008. J. Pediatr. 2012, 160, 638–644.e2. [Google Scholar] [CrossRef]
- Fanna, M.; Masson, G.; Capito, C.; Girard, M.; Guerin, F.; Hermeziu, B.; Lachaux, A.; Roquelaure, B.; Gottrand, F.; Broue, P.; et al. Management of biliary atresia in France 1986 to 2015: Long-term Results. J. Pediatr. Gastroenterol. Nutr. 2019, 69, 416–424. [Google Scholar] [CrossRef]
- Petersen, C.; Madadi-Sanjani, O. Registries for Biliary Atresia and Related Disorders. Eur. J. Pediatr. Surg. 2015, 25, 469–473. [Google Scholar]
- Davenport, M.; Ong, E.; Sharif, K.; Alizai, N.; McClean, P.; Hadzic, N.; Kelly, D.A. Biliary atresia in England and Wales: Results of centralization and new benchmark. J. Pediatr. Surg. 2011, 46, 1689–1694. [Google Scholar] [CrossRef] [PubMed]
- Parolini, F.; Boroni, G.; Milianti, S.; Tonegatti, L.; Armellini, A.; Magne, M.G.; Pedersini, P.; Torri, F.; Orizio, P.; Benvenuti, S.; et al. Biliary atresia: 20–40-year follow-up with native liver in an Italian centre. J. Pediatr. Surg. 2019, 54, 1440–1444. [Google Scholar] [CrossRef] [PubMed]
- Kumagi, T.; Drenth, J.P.; Guttman, O.; Ng, V.; Lilly, L.; Therapondos, G.; Hiasa, Y.; Michitaka, K.; Onji, M.; Watanabe, Y.; et al. Biliary atresia and survival into adulthood without transplantation: A collaborative multicentre clinic review. Liver Int. 2012, 32, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bezerra, J.A. Novel approaches to the treatment of biliary atresia. Clin. Liver Dis. 2016, 8, 145–149. [Google Scholar] [CrossRef]
- Qiu, J.L.; Shao, M.Y.; Xie, W.F.; Li, Y.; Yang, H.D.; Niu, M.M.; Xu, H. Effect of combined ursodeoxycholic acid and glucocorticoid on the outcome of Kasai procedure: A systematic review and meta-analysis. Medicine 2018, 97, e12005. [Google Scholar] [CrossRef]
- Davenport, M.; Parsons, C.; Tizzard, S.; Hadzic, N. Steroids in biliary atresia: Single surgeon, single centre, prospective study. J. Hepatol. 2013, 59, 1054–1058. [Google Scholar] [CrossRef]
- Lu, X.; Jiang, J.; Shen, Z.; Chen, G.; Wu, Y.; Xiao, X.; Yan, W.; Zheng, S. Effect of adjuvant steroid therapy in type 3 biliary atresia: A single-center, open-label, randomized controlled trial. Ann. Surg. 2022; ahead of print. [Google Scholar] [CrossRef]
- Bezerra, J.A.; Spino, C.; Magee, J.C.; Shneider, B.L.; Rosenthal, P.; Wang, K.S. Childhood Liver Disease Research and Education Network (ChiLDREN). Use of corticosteroids after hepatoportoenterostomy for bile drainage in infants with biliary atresia: The START randomized clinical trial. JAMA 2014, 311, 1750–1759. [Google Scholar] [CrossRef] [Green Version]
- Alonso, E.M.; Ye, W.; Hawthorne, K.; Venkat, V.; Loomes, K.M.; Mack, C.L.; Hertel, P.M.; Karpen, S.J.; Kerkar, N.; Molleston, J.P.; et al. ChiLDReN Network. Impact of steroid therapy on early growth in infants with biliary atresia: The Multicenter Steroids in Biliary Atresia Randomized Trial. J. Pediatr. 2018, 202, 179–185.e4. [Google Scholar] [CrossRef]
- Karpen, S.J.; Kelly, D.; Mack, C.; Stein, P. Ileal bile acid transporter inhibition as an anticholestatic therapeutic target in biliary atresia and other cholestatic disorders. Hepatol. Int. 2020, 14, 677–689. [Google Scholar] [CrossRef]
- Deeks, E.D. Odevixibat: First Approval. Drugs 2021, 81, 1781–1786. [Google Scholar] [CrossRef] [PubMed]
- Shirley, M. Maralixibat: First Approval. Drugs 2022, 82, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Parolini, F.; Hadzic, N.; Davenport, M. Adjuvant therapy of cytomegalovirus IgM + ve associated biliary atresia: Prima facie evidence of effect. J. Pediatr. Surg. 2019, 54, 1941–1945. [Google Scholar] [CrossRef]
- Jain, V.; Burford, C.; Alexander, E.C.; Sutton, H.; Dhawan, A.; Joshi, D.; Davenport, M.; Heaton, N.; Hadzic, N.; Samyn, M. Prognostic markers at adolescence in patients requiring liver transplantation for biliary atresia in adulthood. J. Hepatol. 2019, 71, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Lykavieris, P.; Chardot, C.; Sokhn, M.; Gauthier, F.; Valayer, J.; Bernard, O. Outcome in adulthood of biliary atresia: A study of 63 patients who survived for over 20 years with their native liver. Hepatology 2005, 41, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Kohaut, J.; Guérin, F.; Fouquet, V.; Gonzales, E.; de Lambert, G.; Martelli, H.; Jacquemin, E.; Branchereau, S. First liver transplantation for biliary atresia in children: The hidden effects of non-centralization. Pediatr. Transplant. 2018, 4, e13232. [Google Scholar] [CrossRef]
- Betalli, P.; Cheli, M.; Colusso, M.M.; Casotti, V.; Alberti, D.; Ferrari, A.; Starita, G.; Lucianetti, A.; Pinelli, D.; Colledan, M.; et al. Association between Kasai portoenterostomy at low caseload centres and transplant complications in children with biliary atresia. J. Pediatr. Surg. 2022, 10, 223–228. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, Y.; Xu, P.P.; Mourya, R.; Lei, H.-Y.; Cao, G.-Q.; Xiong, X.-L.; Xu, H.; Duan, X.-F.; Wang, N.; et al. Diagnostic accuracy of serum matrix metalloproteinase-7 for biliary atresia. Hepatology 2018, 68, 2069–2077. [Google Scholar] [CrossRef] [Green Version]
- Godbole, N.; Nyholm, I.; Hukkinen, M.; Davidson, J.R.; Tyraskis, A.; Lohi, J.; Heikkilä, P.; Eloranta, K.; Pihlajoki, M.; Davenport, M.; et al. Liver secretin receptor predicts portoenterostomy outcomes and liver injury in biliary atresia. Sci. Rep. 2022, 12, 7233. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davenport, M.; Madadi-Sanjani, O.; Chardot, C.; Verkade, H.J.; Karpen, S.J.; Petersen, C. Surgical and Medical Aspects of the Initial Treatment of Biliary Atresia: Position Paper. J. Clin. Med. 2022, 11, 6601. https://doi.org/10.3390/jcm11216601
Davenport M, Madadi-Sanjani O, Chardot C, Verkade HJ, Karpen SJ, Petersen C. Surgical and Medical Aspects of the Initial Treatment of Biliary Atresia: Position Paper. Journal of Clinical Medicine. 2022; 11(21):6601. https://doi.org/10.3390/jcm11216601
Chicago/Turabian StyleDavenport, Mark, Omid Madadi-Sanjani, Christophe Chardot, Henkjan J. Verkade, Saul J. Karpen, and Claus Petersen. 2022. "Surgical and Medical Aspects of the Initial Treatment of Biliary Atresia: Position Paper" Journal of Clinical Medicine 11, no. 21: 6601. https://doi.org/10.3390/jcm11216601
APA StyleDavenport, M., Madadi-Sanjani, O., Chardot, C., Verkade, H. J., Karpen, S. J., & Petersen, C. (2022). Surgical and Medical Aspects of the Initial Treatment of Biliary Atresia: Position Paper. Journal of Clinical Medicine, 11(21), 6601. https://doi.org/10.3390/jcm11216601