Predictive Value of the Age, Creatinine, and Ejection Fraction (ACEF) Score in Cardiovascular Disease among Middle-Aged Population
Abstract
:1. Introduction
2. Method
2.1. Study Population and Ethics
2.2. Data Collection
2.3. Definition
2.4. Adjudication of Endpoints
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Clauss, S.B.; de Ferranti, S.D. Update on Preventive Cardiology. Pediatr. Clin. N. Am. 2020, 67, 923–944. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Yao, C.; Zhao, D.; Wu, G.; Wang, W.; Liu, J.; Zeng, Z.; Wu, Y. Sino-MONICA project: A collaborative study on trends and determinants in cardiovascular diseases in China, Part i: Morbidity and mortality monitoring. Circulation 2001, 103, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Liu, J.; Wang, M.; Zhang, X.; Zhou, M. Epidemiology of cardiovascular disease in China: Current features and implications. Nat. Rev. Cardiol. 2019, 16, 203–212. [Google Scholar] [CrossRef]
- Zhang, Y.; Miao, H.; Chia, Y.; Buranakitjaroen, P.; Siddique, S.; Shin, J.; Turana, Y.; Park, S.; Tsoi, K.; Chen, C.; et al. Cardiovascular risk assessment tools in Asia. J. Clin. Hypertens. 2022, 24, 369–377. [Google Scholar] [CrossRef]
- Damen, J.A.; Hooft, L.; Schuit, E.; Debray, T.; Collins, G.; Tzoulaki, I.; Lassale, C.; Siontis, G.C.M.; Chiocchia, V.; Roberts, C.; et al. Prediction models for cardiovascular disease risk in the general population: Systematic review. BMJ 2016, 353, i2416. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Zhang, D.; He, L.; Wu, N.; Si, Y.; Cao, Y.; Huang, S.; Li, N.; Li, J.; Dou, H.; et al. Performance of atherosclerotic cardiovascular risk prediction models in a rural Northern Chinese population: Results from the Fangshan Cohort Study. Am. Heart J. 2019, 211, 34–44. [Google Scholar] [CrossRef]
- Călburean, P.A.; Grebenișan, P.; Nistor, I.A.; Pal, K.; Vacariu, V.; Drincal, R.K.; Țepes, O.; Bârlea, I.; Șuș, I.; Somkereki, C.; et al. Prediction of 3-year all-cause and cardiovascular cause mortality in a prospective percutaneous coronary intervention registry: Machine learning model outperforms conventional clinical risk scores. Atherosclerosis 2022, 350, 33–40. [Google Scholar] [CrossRef]
- Huang, J.; Wei, X.; Wang, Y.; Jiang, M.; Lin, Y.; Su, Z.; Ran, P.; Zhou, Y.; Chen, J.; Yu, D. Comparison of Prognostic Value Among 4 Risk Scores in Patients with Acute Coronary Syndrome: Findings from the Improving Care for Cardiovascular Disease in China-ACS (CCC-ACS) Project. Med. Sci. Monit. 2021, 27, e928863. [Google Scholar] [CrossRef]
- Zhang, D.; Yan, R.; Gao, G.; Wang, H.; Fu, R.; Li, J.; Yin, D.; Zhu, C.; Feng, L.; Song, W.; et al. Validating the Performance of 5 Risk Scores for Major Adverse Cardiac Events in Patients Who Achieved Complete Revascularization After Percutaneous Coronary Intervention. Can. J. Cardiol. 2019, 35, 1058–1068. [Google Scholar] [CrossRef]
- Guo, X.; Li, Z.; Zhou, Y.; Yu, S.; Yang, H.; Sun, G.; Zheng, L.; Afzal, J.; Liu, Y.; Sun, Y. The effects of transitions in metabolic health and obesity status on incident cardiovascular disease: Insights from a general Chinese population. Eur. J. Prev. Cardiol. 2021, 28, 1250–1258. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Shi, C.; Li, T.; Ouyang, N.; Guo, X.; Chen, Y.; Li, Z.; Zhou, Y.; Yang, H.; Yu, S.; et al. A nomogram integrating non-ECG factors with ECG to screen left ventricular hypertrophy among hypertensive patients from northern China. J. Hypertens. 2022, 40, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Bai, Y.; Guo, X.; Zheng, L.; Sun, Y.; Roselle, A.M. Alcohol consumption and cardiovascular diseases in rural China. Int. J. Cardiol. 2016, 215, 257–262. [Google Scholar] [CrossRef]
- Chen, S.; Guo, X.; Zhang, X.; Yu, S.; Yang, H.; Jiang, M.; Sun, G.; Sun, Y. Association between elevated serum alanine aminotransferase and cardiometabolic risk factors in rural Chinese population: A cross-sectional study. BMC Cardiovasc. Disord. 2015, 15, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Chen, S.; Guo, X.; Yang, J.; Sun, Y. Impact of hypertension with or without diabetes on left ventricular remodeling in rural Chinese population: A cross-sectional study. BMC Cardiovasc. Disord. 2017, 17, 206. [Google Scholar] [CrossRef]
- Li, T.; Li, G.; Guo, X.; Li, Z.; Yang, J.; Sun, Y. The influence of diabetes and prediabetes on left heart remodeling: A population-based study. J. Diabetes Compl. 2021, 35, 107771. [Google Scholar] [CrossRef]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure—The JNC 7 Report. JAMA 2003, 289, 2560–2572. [Google Scholar] [CrossRef]
- WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet 2004, 363, 157–163. [Google Scholar] [CrossRef]
- World Health Organization and International Diabetes Fedaration. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia: Report of a WHO/IDF Consultation; WHO: Geneva, Switzerland, 2006; pp. 1–3. [Google Scholar]
- Ranucci, M.; Castelvecchio, S.; Menicanti, L.; Frigiola, A.; Pelissero, G. Risk of assessing mortality risk in elective cardiac operations: Age, creatinine, ejection fraction, and the law of parsimony. Circulation 2009, 119, 3053–3061. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Liu, J.; Wang, W.; Zeng, Z.; Cheng, J.; Liu, J.; Sun, J.; Wu, Z. Epidemiological transition of stroke in China: Twenty-one-year observational study from the Sino-MONICA-Beijing Project. Stroke 2008, 39, 1668–1674. [Google Scholar] [CrossRef]
- Gaye, B.; Canonico, M.; Perier, M.C.; Samieri, C.; Berr, C.; Dartigues, J.; Tzourio, C.; Elbaz, A.; Empana, J.-P. Ideal cardiovascular health, mortality, and vascular events in elderly subjects: The Three-City Study. J. Am. Coll. Cardiol. 2017, 69, 3015–3026. [Google Scholar] [CrossRef] [PubMed]
- Mei, Z.; Addo, O.Y.; Jefferds, M.E.; Sharma, A.J.; Flores-Ayala, R.C.; Brittenham, G.M. Physiologically based serum ferritin thresholds for iron deficiency in children and non-pregnant women: A US National Health and Nutrition Examination Surveys (NHANES) serial cross-sectional study. Lancet Haematol. 2021, 8, e572–e582. [Google Scholar] [CrossRef]
- Wilson, P.W.; D’Agostino, R.B.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B. Prediction of coronary heart disease using risk factor categories. Circulation 1998, 97, 1837–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tillmann, T.; Läll, K.; Dukes, O.; Veronesi, G.; Pikhart, H.; Peasey, A.; Kubinova, R.; Kozela, M.; Pajak, A.; Nikitin, Y.; et al. Development and validation of two SCORE-based cardiovascular risk prediction models for Eastern Europe: A multicohort study. Eur. Heart J. 2020, 41, 3325–3333. [Google Scholar] [CrossRef] [PubMed]
- Wendt, D.; Osswald, B.R.; Kayser, K.; Thielmann, M.; Tossios, P.; Massoudy, P.; Kamler, M.; Jakob, H. Society of Thoracic Surgeons score is superior to the EuroSCORE determining mortality in high risk patients undergoing isolated aortic valve replacement. Ann. Thorac. Surg. 2009, 88, 468–475. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Zeng, X.; Wang, H.; Yin, P.; Wang, L.; Liu, Y.; Liu, J.; Qi, J.; Ran, S. Burden of Cardiovascular Diseases in China, 1990–2016: Findings From the 2016 Global Burden of Disease Study. JAMA Cardiol. 2019, 4, 342–352. [Google Scholar] [CrossRef]
- Wei, X.; Walley, J.D.; Zhang, Z.; Zou, G.; Gong, W.; Deng, S.; Harries, A.D.; Hicks, J.P.; Chong, M.K.C.; Newell, J.N.; et al. Implementation of a comprehensive intervention for patients at high risk of cardiovascular disease in rural China: A pragmatic cluster randomized controlled trial. PLoS ONE 2017, 12, e0183169. [Google Scholar] [CrossRef] [Green Version]
- Lloyd-Jones, D.M.; Braun, L.T.; Ndumele, C.E.; Smith, S.C., Jr.; Sperling, L.S.; Virani, S.S.; Blumenthal, R.S. Use of Risk Assessment Tools to Guide Decision-Making in the Primary Prevention of Atherosclerotic Cardiovascular Disease: A Special Report From the American Heart Association and American College of Cardiology. Circulation 2019, 139, e1162–e1177. [Google Scholar] [CrossRef]
- Gao, S.; Ma, W.; Huang, S.; Lin, X.; Yu, M. Predictive value of the age, creatinine, and ejection fraction score in patients with myocardial infarction with nonobstructive coronary arteries. Clin. Cardiol. 2021, 44, 1011–1018. [Google Scholar] [CrossRef]
- Stähli, B.E.; Wischnewsky, M.B.; Jakob, P.; Klingenberg, R.; Obeid, S.; Heg, D.; Räber, L.; Windecker, S.; Roffi, M.; Mach, F.; et al. Predictive value of the age, creatinine, and ejection fraction (ACEF) score in patients with acute coronary syndromes. Int. J. Cardiol. 2018, 270, 7–13. [Google Scholar] [CrossRef]
- Liu, L.; Yang, X.; Gu, Y.; Jiang, T.; Xu, J.; Xu, M. Predictive Value of the Age, Creatinine, and Ejection Fraction (ACEF) Score in Patients with Acute Fulminant Myocarditis. Front. Physiol. 2021, 12, 596548. [Google Scholar] [CrossRef] [PubMed]
- Reindl, M.; Reinstadler, S.J.; Tiller, C.; Kofler, M.; Theurl, M.; Klier, N.; Fleischmann, K.; Mayr, A.; Henninger, B.; Klug, G.; et al. ACEF score adapted to ST-elevation myocardial infarction patients: The ACEF-STEMI score. Int. J. Cardiol. 2018, 264, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Donato, A.J.; Machin, D.R.; Lesniewski, L.A. Mechanisms of Dysfunction in the Aging Vasculature and Role in Age-Related Disease. Circ. Res. 2018, 123, 825–848. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Segar, M.W.; Kondamudi, N.; Ayers, C.; Chandra, A.; Matulevicius, S.; Agusala, K.; Peshock, R.; Abbara, S.; Michos, E.D.; et al. Supranormal Left Ventricular Ejection Fraction, Stroke Volume, and Cardiovascular Risk: Findings from Population-Based Cohort Studies. JACC Heart Fail. 2022, 10, 583–594. [Google Scholar] [CrossRef]
- Ballew, S.H.; Matsushita, K. Cardiovascular Risk Prediction in CKD. Semin. Nephrol. 2018, 38, 208–216. [Google Scholar] [CrossRef]
- Matsushita, K.; Sang, Y.; Ballew, S.H.; Astor, B.C.; Hoogeveen, R.C.; Solomon, S.D.; Ballantyne, C.M.; Woodward, M.; Coresh, J. Cardiac and kidney markers for cardiovascular prediction in individuals with chronic kidney disease: The Atherosclerosis Risk in Communities study. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1770–1777. [Google Scholar] [CrossRef]
Variables | Total (n = 8613) | CVD (n = 388) | Non-CVD (n = 8225) | p Value |
---|---|---|---|---|
Age, year | 52.9 ± 10.3 | 61.1 ± 9.6 | 52.5 ± 10.1 | <0.001 |
Male sex, n (%) | 3974 (46.1) | 202 (52.1) | 3772 (45.9) | 0.004 |
Body mass index, kg/m2 | 24.7 ± 3.6 | 25.3 ± 3.6 | 24.7 ± 3.6 | 0.009 |
Currently smoking, n (%) | 3068 (35.6) | 157 (40.5) | 2911 (35.4) | 0.115 |
Currently drinking, n (%) | 2053 (23.8) | 104 (26.8) | 1949 (23.7) | 0.035 |
Hypertension, n (%) | 4123 (47.9) | 282 (72.7) | 3841 (46.7) | <0.001 |
Diabetes, n (%) | 765 (8.9) | 61 (15.7) | 704 (8.6) | 0.005 |
LVEF (%) | 62.9 ± 3.8 | 61.7 ± 4.6 | 62.9 ± 3.8 | <0.001 |
TG, mmol/L | 1.6 ± 1.4 | 1.7 ± 1.5 | 1.5 ± 1.4 | 0.157 |
TCH, mmol/L | 5.2 ± 1.1 | 5.5 ± 1.1 | 5.2 ± 1.1 | <0.001 |
LDL-C, mmol/L | 2.9 ± 0.8 | 3.1 ± 0.9 | 2.9 ± 0.8 | <0.001 |
HDL-C, mmol/L | 1.4 ± 0.4 | 1.4 ± 0.4 | 1.4 ± 0.4 | 0.415 |
ALT, IU/L | 22.5 ± 18.8 | 23.2 ± 20.5 | 22.4 ± 18.7 | 0.793 |
AST, IU/L | 22.2 ± 12.1 | 24.3 ± 15.9 | 22.1 ± 11.9 | 0.009 |
eGFR, ml/min | 94.5 ± 14.9 | 87.1 ± 14.7 | 94.8 ± 14.8 | <0.001 |
FPG, mol/L | 5.8 ± 1.5 | 6.1 ± 1.6 | 5.8 ± 1.5 | 0.009 |
CR, mmol/L | 70.9 ± 18.3 | 75.1 ± 40.7 | 70.7 ± 16.5 | <0.001 |
ACEF | 0.84 ± 0.2 | 1.0 ± 0.2 | 0.84 ± 0.2 | <0.001 |
Event | ACEF | Univariate Model | Adjusted Model | ||
---|---|---|---|---|---|
HR (95% CI) | p Value | HR (95% CI) | p Value | ||
CVD | |||||
Per 1 SD increment | 2.11 (1.90–2.33) | <0.001 | 1.95 (1.74–2.20) | 0.026 | |
<0.706 (1st quartile) | 1.00 (reference) | 1.00 (reference) | |||
0.706–0.823 (2nd quartile) | 2.59 (1.52–4.39) | <0.001 | 2.33 (1.37–3.98) | 0.002 | |
0.823–0.964 (3rd quartile) | 5.81 (3.57–9.47) | <0.001 | 4.81 (2.93–7.88) | <0.001 | |
>0.964 (4th quartile) | 9.92 (6.10–16.13) | <0.001 | 8.00 (5.44–11.81) | <0.001 | |
CHD | |||||
Per 1 SD increment | 2.12 (1.79–2.49) | <0.001 | 1.80 (1.16–2.78) | 0.008 | |
<0.706 (1st quartile) | 1.00 (reference) | 1.00 (reference) | |||
0.706–0.823 (2nd quartile) | 1.58 (0.76–3.25) | 0.21 | 1.39 (0.67–2.88) | 0.37 | |
0.823–0.964 (3rd quartile) | 3.09 (1.62–5.93) | 0.001 | 2.38 (1.22–4.65) | 0.011 | |
>0.964 (4th quartile) | 6.42 (3.49–11.81) | <0.001 | 4.78 (2.54–9.02) | <0.001 | |
Stroke | |||||
Per 1 SD increment | 2.10 (1.85–2.39) | <0.001 | 1.96 (1.70–2.25) | <0.001 | |
<0.706 (1st quartile) | 1.00 (reference) | 1.00 (reference) | |||
0.706–0.823 (2nd quartile) | 3.45 (1.49–8.00) | 0.004 | 2.71 (1.15–6.41) | 0.023 | |
0.823–0.964 (3rd quartile) | 8.95 (4.10–19.55) | <0.001 | 5.28 (2.23–12.49) | <0.001 | |
>0.964 (4th quartile) | 17.79 (8.30–28.14) | <0.001 | 7.21 (2.69–19.36) | <0.001 |
Model | C-Statistic (95% CI) | NRI (95% CI) | p-Value | IDI (95% CI) | p-Value |
---|---|---|---|---|---|
Original model For CVD | 0.666 (0.640–0.692) | ||||
Original model + ACEF for CVD | 0.692 (0.661–0.723) | 0.543 (0.445–0.642) | <0.001 | 0.0166 (0.0116–0.0216) | <0.001 |
Framingham score for CVD | 0.685 (0.660–0.715) | ||||
Original model For CHD | 0.644 (0.600–0.688) | ||||
Original model + ACEF for CHD | 0.694 (0.664–0.725) | 0.575 (0.419–0.731) | <0.001 | 0.0062 (0.0024–0.01) | <0.001 |
Framingham score for CHD | 0.682 (0.641–0.722) | ||||
Original model For Stroke | 0.676 (0.645–0.708) | ||||
Original model + ACEF for Stroke | 0.690 (0.659–0.720) | 0.618 (0.460–0.677) | <0.001 | 0.0077 (0.0055–0.01) | <0.001 |
Framingham score for Stroke | 0.681 (0.666–0.726) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, S.; Yin, S.; Deng, W.; Zhao, Y.; Li, W.; Wang, P.; Li, Z.; Yang, H.; Zhou, Y.; Yu, S.; et al. Predictive Value of the Age, Creatinine, and Ejection Fraction (ACEF) Score in Cardiovascular Disease among Middle-Aged Population. J. Clin. Med. 2022, 11, 6609. https://doi.org/10.3390/jcm11226609
Xiong S, Yin S, Deng W, Zhao Y, Li W, Wang P, Li Z, Yang H, Zhou Y, Yu S, et al. Predictive Value of the Age, Creatinine, and Ejection Fraction (ACEF) Score in Cardiovascular Disease among Middle-Aged Population. Journal of Clinical Medicine. 2022; 11(22):6609. https://doi.org/10.3390/jcm11226609
Chicago/Turabian StyleXiong, Shengjun, Shizhang Yin, Wanshu Deng, Yuanhui Zhao, Wenhang Li, Pengbo Wang, Zhao Li, Hongmei Yang, Ying Zhou, Shasha Yu, and et al. 2022. "Predictive Value of the Age, Creatinine, and Ejection Fraction (ACEF) Score in Cardiovascular Disease among Middle-Aged Population" Journal of Clinical Medicine 11, no. 22: 6609. https://doi.org/10.3390/jcm11226609
APA StyleXiong, S., Yin, S., Deng, W., Zhao, Y., Li, W., Wang, P., Li, Z., Yang, H., Zhou, Y., Yu, S., Guo, X., & Sun, Y. (2022). Predictive Value of the Age, Creatinine, and Ejection Fraction (ACEF) Score in Cardiovascular Disease among Middle-Aged Population. Journal of Clinical Medicine, 11(22), 6609. https://doi.org/10.3390/jcm11226609