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Abstract: Acute kidney injury (AKI) is becoming a public health problem worldwide. AKI is usually
considered a complication of lung, heart, liver, gut, and brain disease, but recent findings have
supported that injured kidney can also cause dysfunction of other organs, suggesting organ crosstalk
existence in AKI. However, the organ crosstalk in AKI and the underlying mechanisms have not been
broadly reviewed or fully investigated. In this review, we summarize recent clinical and laboratory
findings of organ crosstalk in AKI and highlight the related molecular mechanisms. Moreover, their
crosstalk involves inflammatory and immune responses, hemodynamic change, fluid homeostasis,
hormone secretion, nerve reflex regulation, uremic toxin, and oxidative stress. Our review provides
important clues for the intervention for AKI and investigates important therapeutic potential from a
new perspective.
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1. Introduction

Acute kidney injury (AKI) is a severe condition and is associated with a worsened
prognosis in critically ill patients. Clinically, AKI is determined based on elevated serum
creatinine levels (a marker of the kidney excretory function) and reduced urinary output
(a quantitative marker of urine production) within 7 days. According to the KDIGO
definition, AKI can be classified into three stages (1–3) relying on a list of functional criteria
(Table 1) [1,2]. However, these criteria do not help to diagnose the early stage of AKI
(so-called “subclinical AKI”), meaning that the best treatment time for AKI is easily missed.
Thus, before the KDIGO criteria for AKI are met, increasing biomarkers that help to indicate
kidney injury are discovered by persons. Currently, only neutrophil gelatinase-associated
lipocalin (NGAL), tissue inhibitor of metalloproteinase 2 (TIMP-2), and insulin-like growth
factor-binding protein 7 (IGFBP7) are available for clinical determination of subclinical
AKI [3–6]. Notably, AKI is one condition within a group of acute kidney disease and
disorders (AKD) which can occur without ever meeting the criterion of AKI and can
continue to exist when kidney structure damage is persistent. When AKD lasts longer than
3 months, it is referred to as chronic kidney disease (CKD) (Table 1) [7].

AKI can be induced by a broad range of causative factors depending on different
clinical settings, such as sepsis, hemorrhage, low output after cardiac surgery, and the
application of chemotherapy drugs. These factors contribute to the high incidence of
AKI worldwide. According to a recent meta-analysis of 154 studies, the incidence of AKI
was 8.3% in ambulatory patients, and as high as 20–31.7% in patients at various levels of
in-hospital care [8]; moreover, the ratio increases to 57% in critically ill patients [9]. The
symptoms of kidney failure, including uremic toxin accumulation, metabolic acidosis,
electrolyte imbalances, and fluid overload, are the typically well-known outcomes of AKI
that contribute to high mortality [10]. However, a significant proportion of AKI-associated
mortality cannot be explained simply by the loss of kidney function or by complications
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occurring during AKI treatment. Multiple organ dysfunction caused by AKI is a particularly
important consequence in critically ill patients [11]. According to a multicenter of AKI
cohort study, cardiac failure was found in 60% of patients with AKI in the intensive care
unit (ICU) [12]. A meta-analysis including 254,150 adults (55,150 with AKI) also concluded
that AKI increased the risk of subsequent heart failure by 58%, myocardial infarction by
40%, and stroke by 15% [13]. Moreover, the average mortality rate of AKI was 23% but
reached 45–60% in those cases accompanied with other organic dysfunction, such as liver
and heart failure [8,14,15]. These data suggest organ crosstalk can occur in AKI and plays a
critical role in patients’ prognosis.

Table 1. Classification and criteria of AKI, AKD, and CKD.

Duration Functional Criteria

AKI ≤7 days
Subclinical AKI TIMP-2*IGFBP-7 > 0.3 (ng/mL)2/1000

AKI stage 1
Increase in scr by 1.5–1.9 times baseline within 7 d or

increase in scr by ≥0.3 mg/dL in 48 h or
UO < 0.5 mL/kg/h for 6 h

AKI stage 2 Increase in scr by 2–2.9 times baseline within 7 d or
UO < 0.5 mL/kg/h for 12 h

AKI stage 3
Increase in scr by 3 times baseline within 7 d or increase

in scr by ≥4 mg/dL or UO < 0.5 mL/kg/h for 24 h or
anuria for ≥12 h

AKD <3 months
AKI or GFR < 60 mL/min/1.73 m2 or decrease in GFR by

≥35% over baseline or increase in scr by >50%
over baseline

CKD >3 months GFR < 60 mL/min/1.73 m2

Abbreviations: AKI, acute kidney injury; AKD, acute kidney diseases and disorders; CKD, chronic kidney disease;
scr, serum creatinine; UO, urine output; GFR, glomerular filtration rate.

Accumulating evidence indicates that the communication between injured kidneys
and other organs, including the heart, lung, liver, brain, and gut, is mediated by a range
of inflammatory cytokines and immune cells [16]. However, due to the limited genetic
diversity of animals and the lack of suitable animal models which mimic the organ crosstalk
in AKI patients [17], the molecular mechanisms of AKI-induced multiorgan failure are still
unclear. In this review, we summarize the updated findings of crosstalk between injured
kidneys and other organs from clinical and laboratory studies. Furthermore, we summarize
the underlying molecular mechanisms of organ crosstalk in AKI (Figure 1).
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dysfunction, inflammation, and metabolite accumulation. Abbreviations: AKI, acute kidney injury.
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2. Kidney–Lung Crosstalk

In the context of the global coronavirus disease 2019 (COVID-19) pandemic, the ef-
fects and mechanisms of lung–kidney communication are of great interest to the scientific
community and commendable progress has been made [18]. As a respiratory organ, the
functions of the lung are not limited to gas exchange, but also include immunomodula-
tory [19], hematopoietic [20], secretory [21], and metabolic functions, which play a role in
kidney–lung crosstalk under physiological conditions. For example, one of the secreted
factors from pulmonary vascular endothelial cells (PVEC), prostacyclin (PGI2), can directly
or indirectly act on the kidney through a variety of signaling pathways to regulate renal
blood flow (RBF), glomerular filtration rate (GFR), glomerular and tubular development,
renin secretion and other pathophysiological processes [22], suggesting the existence of
kidney–lung crosstalk.

In addition, the lung and kidneys work together to ensure the stability of blood pres-
sure through the renin–angiotensin–aldosterone system (RAAS) [23] and kallikrein–kinin
system [24], and the fluid acid-base equilibrium by regulating bicarbonate and carbon diox-
ide concentration [25]. Moreover, the specific structural similarities of the basement mem-
brane and its compositions in the kidney and lung suggest the possibility of kidney–lung
interaction, which partly explains the pathogenesis of Goodpasture’s syndrome [26]. In-
terestingly, the alveolar and renal tubular epithelium share common characteristics at the
polarizing sites (apical and basolateral) in the localization and distribution of transporters,
ion channels, and tight junctional complexes, which also provide the structural basis for
lung–kidney communication [27].

2.1. Clinical Evidence

Several clinical epidemiological studies have shown that several types of renal dys-
function, including hematuria, proteinuria and AKI, are the most common complication
of acute respiratory distress syndrome (ARDS). An observational study of 8029 critically
ill patients (including 1879 patients with ARDS) found that the incidence rate of AKI in
patients with ARDS was higher than in those without ARSD (44.3% versus 27.4%, p < 0.001),
suggesting that ARSD is an independent risk factor for AKI [28]. Moreover, a meta-analysis
involving 31 studies and 10,333 patients revealed a strong association between the adminis-
tration of invasive mechanical ventilation (IMV) and the risk of developing AKI, the pooled
odds ratio (OR) of which was 3.58 (95% CI 1.85 to 6.92; p < 0.001) [29]. In addition to acute
lung injury (ALI), AKI also occurs in chronic lung diseases, such as chronic obstructive
pulmonary disease (COPD), and its incidence rate is 128/per 100,000 person-years, but the
mortality rate is as high as 521/1000 person-years [30].

Conversely, the adverse effects of AKI on the lung are mainly reflected in the increasing
frequency and duration of IMV and the susceptibility to respiratory complications and
respiratory failure [31–34]. One study found that patients with AKI are more than twice as
likely to develop respiratory failure and nearly three times as likely to die compared with
those without AKI [35]. Additionally, a clinical study found that patients with AKI require
a longer IMV duration and weaning from mechanical ventilation, suggesting that recovery
from lung dysfunction appears to be affected by AKI [31].

2.2. Laboratory Evidence

Besides the clinical research, kidney–lung communication has also been observed in
various animal models and it contributes to the development of lung and kidney disease
individually or synergistically. In the ischemia-reperfusion (IR)-induced AKI mouse model,
Hassoun et al., revealed that 66 apoptosis-related genes and 29 inflammation-related genes
were activated in the lung; moreover, the activated apoptotic genes were mainly located in
pulmonary endothelial cells, indicating that it may be an important mechanism of ALI [36].
Similarly, Rabb et al. also found that bilateral IR and bilateral nephrectomy models were
more prone to lung injury and pulmonary dysfunction, whereas unilateral IR models were
not [37]. Likewise, in a P. aeruginosa-induced pneumonia model, researchers revealed
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strong evidence of tubular injuries, such as elevated plasma creatinine, cystatin C, urinary
NGAL, and the pathological phenomenon of brush-border collapse and mild tubular cell
apoptosis [38]. Similar results were observed in ARDS rat models induced by intratracheal
lipopolysaccharide installation [39], and in ventilator-induced lung injury mice [40].

2.3. Mechanism

Under pathological conditions, the mechanisms of kidney–lung crosstalk involve an
inflammatory response (e.g., imbalanced immune response and increased inflammatory
mediators, etc.) and a fluid homeostasis imbalance caused by kidney or lung injury (e.g.,
fluid overload, uremic toxin retention, hypoxia, and hypercapnia, etc.) [34] (Figure 2).
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Figure 2. Mechanisms of kidney–lung interactions. Fluid homeostasis imbalance, systemic inflam-
matory response syndrome, and some novel agents contribute to AKI-induced acute lung injury
(ALI) or ARSD-induced kidney injury. The main fluid homeostasis imbalance mechanisms include
fluid overload, acid/base imbalance, uremic toxin retention, hypoxia, and hypercapnia. Systemic
inflammatory response syndrome mechanisms include pro-inflammatory factors release and immune
cells response. Moreover, some novel mediators, such as mt-DAMPs and OPN, were identified as
participating in kidney–lung interactions. Abbreviations: ARSD, acute respiratory distress syndrome;
mt-DAMPs, mitochondrial damage associated molecular patterns; OPN, osteopontin.

2.3.1. Inflammation and Immune Imbalance

Systemic inflammatory response syndrome (SIRS) characterized by increased levels of
circulating cytokines and chemokines, including IL-1β, IL-6, IL-8, MCP-1, and TNF-α, was
observed in AKI or ALI patients and animal models, which may cause lung and kidney
inflammation, cell apoptosis, increases in endothelial barrier permeability, oxidative stress,
and aggravation of pulmonary edema [33,34,41]. Among these pro-inflammatory factors,
IL-6 was considered to be a more critical mediator of kidney–lung crosstalk, and IL-6
deficiency protected against AKI-induced lung injury via reductions in the level of IL-8
in lung and serum, thereby diminishing pneumonia and capillary leakage [42]. However,
only circulating IL-6 seemed to have these deleterious effects, whereas direct intratracheal
injection of IL-6 showed an anti-inflammatory effect, further suggesting that IL-6 is involved
in kidney–lung communication [43]. Furthermore, immune cells also play a key role in
kidney–lung communication. Lung histopathological analysis following AKI showed
that renal injury facilitates a series of lung tissue immune responses including monocytes,
neutrophils, and CD8+ T cell invasion [44–46].

2.3.2. Fluid Overload and Uremic Toxin

There is sufficient evidence to demonstrate that pulmonary edema after AKI is not only
associated with fluid overload caused by renal failure, but also with reduced pulmonary
fluid clearance capacity due to the down-regulation of pulmonary Na, K-ATPase, epithe-
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lial sodium channels (ENaC), and aquaporin-5 expression [37,47]. Several studies have
shown that indoxyl sulfate, a small protein-bound uremic toxin, exacerbated pulmonary
edema and inflammation by downregulating water clearance proteins and inducing IL-6
expression [37,48]. Additionally, during AKI, the retention of uremic toxins negatively
affects lung function, as indicated by vital capacity (VC) and maximal breathing capacity
(MBC) [49].

2.3.3. Hypoxia and Hypercapnia

Furthermore, given that the kidneys are extremely vulnerable to hypoxia, even short-
term hypoxemia can adversely affect renal function, and lung injury-induced hypoxemia
and hypercapnia inevitably influence renal function. Hypoxemia and hypercapnia have
been demonstrated to, directly or indirectly, decrease renal blood flow, resulting in renal
dysfunction [50–52]. On the one hand, hypoxemia and hypercapnia directly stimulate
renal vasoconstriction by promoting the release of norepinephrine [53]; on the other hand,
sustained high plasma CO2 can trigger systemic vasodilation, which then activates the
RAAS in a feedback manner and indirectly reduces renal blood flow to induce AKI [50].

2.3.4. Novel Mediators

Furthermore, increasing numbers of novel mediators have been identified in kidney–lung
interactions (Figure 2). Recently, Hepokoski et al. first discovered that metabolic change
and mitochondrial damage associated molecular patterns (mt-DAMPs), such as the release
of mitochondrial DNA (mt-DNA), play a critical role in kidney–lung interaction. The
mechanism of mt-DAMPs molecules from the injured kidney in aggravating the pulmonary
injury and mitochondrial dysfunction was verified by performing metabolomic analysis
of the kidney, lung, and plasm [54]. Moreover, Khamissi et al. found that the kidney
injury-related molecule osteopontin (OPN) was a novel agent for AKI–ALI communica-
tion [55]. Furthermore, αKlotho, primarily produced and released by the kidney, appears to
play a protective role in renal–lung communication. The deficiency of αKlotho aggravates
lung injury after AKI, exogenous supplementation of αKlotho can improve lung function
by increasing antioxidant capacity [56].

3. Kidney–Heart Crosstalk

As the “engine” of human beings, the heart possesses a strong blood pumping capacity
and constantly provides sufficient blood to the body’s tissues and organs, relying on
rhythmic contraction and relaxation. The normal cardiac output of a healthy adult male at
rest is about 5 L/min, and about 20% of this output is received by the kidney, indicating
a tight functional connection between the heart and kidney [57]. The relationship of
communication between the kidney and heart in regulating blood volume and pressure
has been investigated for well over a century. Under physiological conditions, the function
of the cardiovascular system is largely regulated by the kidney through the synthesis and
release of renin, erythropoietin, endothelin, prostaglandin, and other active substances [58].
Correspondingly, the kidney functions of water and sodium excretion are regulated by
myocardial cells through the release of vasopressin (VAP) [59], atrial natriuretic peptide
(ANP) [60], and brain natriuretic peptide (BNP) [61].

As early as 1836, Robert Bright first observed structural changes in the hearts of
patients with advanced kidney disease [62]. Since then, significant advances have been
made in the clinical epidemiology of cardio–renal communication, and the term “cardiore-
nal syndrome” (CRS) was coined to explain this relationship. According to the different
pathological features of CRS, the Acute Dialysis Quality Initiative (ADQI) outlined a new
classification of CRS with five subtypes based on sequential organ involvement and disease
acuity, respectively (Table 2) [63,64]. Among these subtypes, type 1 CRS describes an AKI
that occurs following acute worsening of cardiac function, and type 3 CRS describes a heart
injury or dysfunction due to AKI [65]; both these types are discussed in this review.
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Table 2. Classification and definition of cardiorenal syndrome based on the ADQI.

Classification Definition Clinical Examples

CRS type 1
(Acute cardiorenal syndrome)

Acute worsening of heart
function resulting in kidney
injury and/or dysfunction

ACS, AHF, and cardiogenic
shock leading to AKI

CRS type 2
(Chronic cardiorenal

syndrome)

Chronic heart failure resulting
in kidney injury or

dysfunction

CHD such as congestive heart
failure and cardiomyopathy

leading to CKD
CRS type 3

(Acute reno-cardiac
syndrome)

Acute worsening of kidney
function resulting in heart
injury and/or dysfunction

AHF, ACS, uremic
cardiomyopathy, and

arrhythmias secondary to AKI
CRS type 4

(Chronic reno-cardiac
syndrome)

CKD resulting in heart injury,
disease, and/or dysfunction

AHF, ACS, and CHD
secondary to CKD

CRS type 5 (Secondary
cardio-renal syndrome)

Systemic disorders resulting
in simultaneous injury and/or

dysfunction of heart
and kidney

Vasculitis, sepsis, and
cirrhosis causing AHF, ACS,

CHD, AKI, and CKD

Abbreviations: ADQI, acute dialysis quality initiative; CRS, cardiorenal syndrome; ACS, acute coronary syndrome;
AHF, acute heart failure; AKI, acute kidney injury; CKD, chronic kidney disease; CHD, chronic heart disease.

3.1. Clinical Evidence

AKI which occurs following acute cardiac events, such as acute decompensated heart
failure (ADHF), acute coronary syndrome (ACS), cardiogenic shock, and cardiac surgery,
is classified as type 1 CRS [66]. A large clinical study involving more than 50,000 adult
patients found that approximately 39% of patients developed AKI after a range of major
surgeries during the index hospitalization [67]. Data from several studies have shown that
approximately 20–40% of patients with ADFP develop kidney injury [68,69]. Furthermore,
AKI in the setting of acute heart failure is associated with longer hospitalization, and higher
readmissions [70], and the mortality at postoperative day 90 of patients with AKI showed a
1.48-fold increase when compared with those who did not develop AKI [67].

Conversely, type 3 CRS is clinically used to define cardiac injury caused by various
AKI. As early as 2003, the American Heart Association defined both proteinuria and a
decline in glomerular filtration rate (GFR) as independent risk factors for the development
of cardiovascular disease [71]; however, there are uncertainties in the epidemiology of
type 3 CRS. Currently, epidemiological research suggests that AKI predisposes patients
to cardiac events, such as acute heart failure and acute arrhythmias, via multiple direct or
indirect pathways, including volume overload, metabolic acidosis, and electrolyte disorders
(including but not limited to hyperkalemia and hyperphosphatemia) [72]. More in-depth
studies are needed to elucidate the risk factors of AKI-induced CRS.

3.2. Laboratory Evidence

In addition, the heart–kidney pathophysiological interaction also has been detected in
various animal models. In the rat coronary artery ligation-induced myocardial infarction
(MI) model, Lekawanvijit et al. found increased IL-6, TGF-β, Kim-1 expression, and
macrophage infiltration in the kidney within 1 week [73]. Moreover, in a cardiac arrest and
cardiopulmonary resuscitation rat model, the levels of serum creatinine and BUN rose at
24 h, and histological changes in the kidney such as glomerular collapse, renal tubular cell
swelling, and inflammatory cell infiltration were also observed [74].

On the other hand, in a rat model of ischemia-reperfusion injury (IRI), the apoptotic
myocardial cells were increased in the heart, indicating that AKI results in the alterations
observed in the heart which is important in the morbidity and mortality observed clini-
cally [75].
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3.3. Mechanism
3.3.1. Hemodynamics

Kidney–heart communication is most directly reflected in hemodynamic changes
(Figure 3). The traditional explanation for the regulation and mechanism of CRS mainly fo-
cuses on the low-flow theory, which in this context, is characterized by renal hypoperfusion
because of a low cardiac output and ejection fraction [76]. Inadequate renal afferent blood
flow can trigger neurohormonal mechanisms which further lead to renal afferent arteriole
vasoconstriction and progressive deterioration of renal function [77]. Therefore, improving
renal blood flow by using vasodilators has been recommended for the management of
CRS patients with AKI. However, it should be noted that not all patients with heart failure
suffer from reduced cardiac output, and there are still a significant proportion of patients
who can maintain normal blood pressure or systolic function [70]. Organ congestion and
central venous pressure also play important roles in driving kidney dysfunction in patients
with ADHF [70,78]. Thus, blood hypoperfusion and congestion of the heart and kidney,
individually or simultaneously, contribute to the morbidity of CRS and AKI.
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3.3.2. Neurohormonal Hyperactivity

The kidney and heart are linked through neurohumoral mechanisms involving the
sympathetic nervous system (SNS), RAAS, and AVP (Figure 3). In the early stages of
heart failure, the activation of SNS, RAAS, and VAP is increased, which results in renal
vasoconstriction, sodium retention, and fluid overload. Moreover, the abnormal SNS
activation and high level of angiotensin-II contribute to tubular cell hypertrophy, apoptosis,
necrosis, ROS production, and inflammation occurring in the kidney, eventually triggering
AKI [79]. Angiotensin-II, on the other hand, elicits cardiotoxicity, which is characterized
by increasing cardiac pathological hypertrophy and remodeling, further worsening the
prognosis of CRS [80]. Therefore, angiotensin-converting enzyme (ACE) inhibitors and
angiotensin-receptor blockers (ARBs) can improve AKI and CRS via multiple pathways.

3.3.3. Inflammation and Immune Imbalance

Persistent inflammatory stress is associated with immune imbalance, both of which
play a critical role in the pathological communication between the kidney and heart
(Figure 3). Systemic inflammation, which includes the activation and release of large
quantities of inflammatory factors, such as TNF-α, IL-1β, and IL-6, has been generally
identified as a common pathological characteristic of both acute and chronic heart fail-
ure [81]. In addition, in patients with heart failure, hemodynamic changes characterized
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by high central venous pressure and peritoneal pressure mechanically damage renal en-
dothelial cells, followed by intravascular coagulation, platelet activation, and release of
pro-inflammatory factors, which directly induce renal injury [82]. Notably, Ronco et al.
found lower hemoglobin levels in CRS type 1 patients compared with those without AKI,
suggesting that hyperactivated inflammation damages the hematopoietic function and that
anemia is a risk factor for exacerbating heart failure [83]. On the other hand, in ischemia-
reperfusion and cisplatin-induced AKI models, augmented serum levels of TNF-α, IL-1β,
IL-6, and INF-γ were detected, which hurt myocardial function [74]. In AKI, damaged renal
tubules and endothelial cells release a mass of chemokines to recruit leukocyte infiltration
into heart tissue, which is thought to be a key mechanism in cardiac injury [84]. Hence,
anti-inflammation therapy is an effective strategy for AKI-related CRS.

4. Kidney–Vascular System Crosstalk

The kidney has a rich vascular network (glomerular capillaries and peritubular capil-
laries) and abundant blood flow (20% of cardiac output), which provide sufficient oxygen
and nutrition for tubules to ensure their physiological function. Clinically, most of the
pathogenesis of AKI can be attributed to ischemic injuries, such as kidney transplantation,
cardiac surgery, sepsis, and shock-induced AKI [57,85]. Hence, abnormal vascular function
potentially promotes the progression of AKI.

The physiological connection between renal tubules and blood vessels helps to regulate
renal blood flow. For example, when the renal distal convoluted tubule macula densa
senses a change in the concentration of Na+ in the lumen, it can send a signal, causing the
afferent arteriole contraction or relaxation. This phenomenon is called tubuloglomerular
feedback. In addition, active substances such as renin, endothelin, and prostaglandin
are released from the glomerular complex to the vessels, which also participate in the
regulation of renal blood flow [86].

4.1. Clinical Evidence

Epidemiological studies have shown that vascular injury plays a pivotal role in the
development of AKI caused by various etiologies. Plasma endothelial injury molecules are
strong and independent predictors of AKI incidence and are positively associated with AKI
mortality [87,88]. A study of patients with acute myocardial infarction (AMI) found that
plasma angiopoietin 2 (Ang-2) levels (6338.28 ± 5862.77 versus 2412.03 ± 1256.58 pg/mL)
and thrombomodulin (TM) levels (7.6 ± 2.26 versus 5.34 ± 2.0 ng/mL) were higher in
patients with AKI than in those without AKI [88]. Similar results of plasma Ang-2 level
were seen in patients with AKI following cardiac surgery [89]. Hence, targeting vascular
function may be a new strategy to improve the long-term outcomes of AKI.

4.2. Laboratory Evidence

The communication between the kidney and the vasculature is classically manifested
in sepsis-induced AKI, where interstitial inflammation and thrombosis are the more pre-
dominant pathological changes [90]. In animal models of sepsis-AKI, decreased glomerular
blood flow was attributed to the inhibition of endothelial nitric oxide synthase activation in
arterioles and glomeruli, whereas decreased cortex peritubular capillary perfusion was as-
sociated with epithelial redox stress [87,91]. Moreover, upregulation of adhesion molecules
in the endothelium leads to leukocyte recruitment, and a reduction in circulating sphingo-
sine 1-phosphate and the loss of components of the glycocalyx in glomerular endothelial
cells results in increasing microvascular permeability, both of which further demonstrate
the important role of vascular endothelial system injury in the development of AKI.

4.3. Mechanism
4.3.1. Ischemia and Low Blood Flow

Pre-renal ischemia is considered to be the major mechanism of AKI [77]. Thanks
to renal autoregulation and tubuloglomerular feedback mechanisms, a mild reduction
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in circulating blood volume does not significantly affect renal blood flow and GFR [92].
However, a rapid drop in blood pressure, severe hypovolemia, and dehydration can lead
to renal hypoperfusion, which subsequently triggers renal baroreceptors, then causes renin
release, RAAS activation, renal vasoconstriction, and finally worsens AKI [93]. Besides the
effects on the kidneys, the activation of the sympathetic nervous system and RAAS, and
the secretion of arginine vasopressin potentially increase systemic vasoconstriction and
reduce venous return for blood transfusion, which not only leads to ischemic damage to
other organs but also increases the risk of circulatory dysfunction [94].

4.3.2. Fluid Overload and Venous Hypertension

Although ischemia and low-flow theory can partially explain prerenal AKI, it is
still subject to several clinical challenges. Many studies have demonstrated that high
central and renal venous pressure may play an important role in AKI [95,96]. On the
one hand, elevated central venous pressure leads to renal venous hypertension, which
directly reduces arteriovenous differential pressure and effective glomerular filtration
pressure. On the other hand, the decreased intraglomerular pressure and GFR can trigger
compensatory mechanisms and activate the neurohumoral axis, leading to increased water
and sodium reabsorption, all of which eventually resulting in oliguria and worsening
venous congestion [97].

4.3.3. Endothelial Responses

Endothelial cells are located in the inner layer of blood vessels and are able to mount
rapid and specific responses to various injury stresses in AKI [91,98]. The response of
endothelial cells to AKI mainly includes three aspects: (1) increased vascular permeability
leading to vascular leakage; (2) blood coagulation imbalance leading to vascular embolism;
and (3) inflammation and leukocyte recruitment [91,99].

Vascular endothelial growth factor (VEGF) and its receptors (VEGFR) are important
regulators of angiogenesis and vascular permeability [100]. In sepsis-AKI mice, studies
have shown that increased plasma VEGF levels and decreased local renal VEGFR expres-
sion cause decreased glomerular endothelial fenestrae density and increased systemic
microvascular permeability, suggesting that VEGF-VEGFR are jointly involved in regulat-
ing endothelial injury after AKI [91,101]. In addition, the imbalance of angiopoietin (Ang)
family proteins and the endothelial-specific Tie2 receptor (decreased expression of Tie2 and
Ang1, and increased ANG2) in patients with AKI after cardiac surgery leads to vascular
instability [89]. Pretreatment with Tie2 agonists can improve renal function in sepsis-AKI
mice [102]. Furthermore, the down-regulation of sphingosine 1-phosphate (S1P)-S1PR
signaling pathway is also involved in endothelial permeability impairment in AKI [103].

Thrombosis may occur and aggravate ischemia and hypoxia injury during AKI. No-
tably, coagulation abnormalities may occur in all capillaries and show unique heterogeneity.
For example, the loss of endothelial protein C receptor (EPCR) may occur in arterioles, and
thrombomodulin (TM) is mainly lost in peripheral capillaries, which may partly explain the
failure of single anticoagulant agents to significantly improve renal function [91,104,105].

During AKI, multiple adhesion mediators, such as P-selectin, E-selectin, vascular cell
adhesion molecular 1 (VCAM1), and intercellular adhesion molecule 1 (ICAM1), are upreg-
ulated in the endothelial cells [106,107]. Through these adhesion molecules, neutrophils,
lymphocytes, and macrophages are recruited and accumulate in injured lesions, which
then secrete inflammatory factors to cause local and systemic inflammatory reactions [108].

5. Kidney–Liver Crosstalk

The liver is the largest metabolic organ, whereas the kidney is the major excretory
organ. Fatefully, they cooperate to maintain body homeostasis; in other words, they are
functionally linked. Hence, the metabolites are the major mediators of kidney–liver commu-
nication under physiological conditions. For instance, the energy of the kidney is derived
from fatty acids that are mainly produced in the liver, which means that liver dysfunction
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inevitably affects renal function. Moreover, various toxic or insoluble substances (drugs),
and hormones are increased in solubility or inactivated by the liver and then excreted by
kidneys [109]. When the kidneys are not able to excrete these metabolites immediately, the
liver is under greater metabolic pressure and damage can occur.

5.1. Clinical Evidence

Hepatorenal syndrome (HRS) describes a kidney function impairment in patients
with severe liver disease, particularly advanced cirrhosis, without substantial alterations
in kidney histology. In HRS, there is a notable reduction in GFR and an increase in serum
creatinine levels. According to the rate of renal function decline, the HRS is subclassified
into two clinical types. Type 1 is defined as a rapid reduction in renal function via a
50% reduction in creatinine clearance in less than two weeks, and in the initial 24 h, below
20 mL/min or an increase in initial serum creatinine to a concentration of at least 2.5 mg/dL.
This pattern of HRS is now known as acute kidney injury (AKI)-HRS. Type 2 is the chronic
impairment of kidney function, and this pattern of HRS is now known as chronic kidney
disease (CKD)-HRS [110,111]. In a 10-year follow-up study of 234 patients with cirrhosis
and ascites, the incidence of hepatorenal syndrome was 18% at 1 year and 39% at 5 years;
moreover, there was an up to a 40% probability of developing AKI-HRS within 5 years [112].
In a prospective observational study of 547 patients who were admitted for cirrhosis with
acute decompensation, a total of 290 patients had AKI (53%). Among those with AKI, 65%
had AKI at the time of admission and 35% developed AKI during their hospitalization [113].
Notably, the development of AKI in cirrhosis patients is associated with high mortality,
and the 90 days survival of patients with AKI-HRS is usually less than 20% [114]. Early
diagnosis and intervention are necessary.

Unlike the prominent clinical manifestations of HRS, there are limited clinical reports
explicitly describing the effects of AKI on the liver. The abnormal liver function that appears
in patients with critically AKI is associated with high in-hospital mortality [11]. In addition,
many clinical observations have shown that AKI does affect the normal drug metabolism
of the liver, which may be one of the reasons for the high mortality of AKI complicated
with liver dysfunction [11,16].

5.2. Laboratory Evidence

Although the changes in renal injury markers (serum creatinine, BUN, Kim-1, and
pro-inflammatory factor expression) with time can be observed in a mouse liver cirrhosis
model induced by bile-duct ligation (BDL) [115], human HRS, especially AKI-HRS, cannot
be completely replicated. Though Shah et al. successfully established an AKI in a rodent
model of cirrhosis through treatment with BDL and LPS [116], scientists still face challenges
in establishing an AKI-HRS model without direct nephrotoxicity.

However, several experimental studies have shown that AKI promotes oxidative
stress, inflammation, apoptosis, and tissue damage in hepatocytes and increases vascular
permeability and leukocyte infiltration into the liver [117–120]. Furthermore, AKI signif-
icantly impacts the hepatic function of drug metabolism. For example, the normal liver
clearance rate of vancomycin is 40 mL/min, but it was reduced to 15 mL/min after AKI [14].
These results suggest the close interaction between the kidney and liver.

5.3. Mechanism
5.3.1. Circulatory Dysfunction

A series of vasodilators and vasoconstrictors play a role in the communication of
the liver and kidney in HRS. Under cirrhosis conditions, intrahepatic vascular resistance
is elevated and the vasodilators, such as nitric oxide, carbon monoxide, prostaglandins,
and endocannabinoids, are increased, resulting in splanchnic arterial vasodilation and
effective arterial blood volume (EABV) reduction. Consequently, systemic vasoconstrictor
pathways, such as the RAAS, sympathetic nervous system, and arginine vasopressin (AVP),
are activated as compensatory mechanisms for increasing the EABV. These mechanisms
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result in reductions in renal blood flow and the glomerular filtration fraction, eventually,
leading to AKI [111,115,121].

5.3.2. Bile Acid and Bilirubin

Bile acid and its related metabolites, cytokines and chemokines, are mediators of
kidney–liver crosstalk. Histopathologic studies have shown that 18–75% of patients with
AKI-HRS present intratubular bile acid casts which can directly poison tubular cells and
elicit tubulointerstitial inflammation, lipid peroxidation, and oxidative stress in the kid-
ney [11,122,123]. In addition, serum bilirubin levels, urinary bilirubin, and urobilinogen
are elevated in most patients, and serum bilirubin concentrations above 10 mg/dL are
associated with a worse prognosis in patients with AKI-HRS compared with patients with
serum bilirubin below 10 mg/dL [124,125]. Thus, changes in bile acid and bilirubin are not
negligible points in the management of AKI-HRS patients.

5.3.3. Systemic Inflammation

Systemic inflammation occurs in almost half of the patients with AKI-HRS, indepen-
dent of the presence of infection [126]. The increase of serum cytokines and chemokines,
including IL-6, TNF-α, and MCP-1, promote tubular injury, and neutrophil, macrophages
infiltrate into the kidney. Accordingly, patients with AKI-HRS show increased expression
of toll-like receptor 4 (TLR4) and caspase-3 in tubular cells, and reducing TLR4 expression
markedly elicits the nephroprotective effect [127]. On the other hand, AKI-induced liver in-
jury also occurs due to various cytokines, such as IL-6, and IL-17A. Park et al. suggests that
in wild-type mice, treatment with neutralizing antibodies against TNF-α, IL-17A or IL-6 has
a protective effect on hepatic and small intestine injury because of ischemic or non-ischemic
AKI [119]. However, the mechanism of AKI-induced liver dysfunction of drug metabolism
is still unclear. It may be related to the decreased expression of the drug-metabolizing
enzyme CYP3A11, and drug transporters, such as MDR1a, MRP2, and OATP3, in the liver
and intestine [128]. Nevertheless, efforts are needed in further investigation.

6. Kidney–Gut Crosstalk

A healthy gut contains the largest absorptive surface in the body, 70–80% of the
body’s immune cells, and at least 1000 genera of bacteria, which together form three
barriers including the physical, immune, and biological barriers [129,130]. These barriers
play an important role in protecting against foreign antigens, microbes, and potentially
harmful elements entering systemic circulation. Gut injury may lead to impaired gut barrier
function, which may result in multiple organ dysfunction. Early in the 2000s, multiple
studies drew a link between the gut and multiple organ dysfunction syndromes (MODS)
and proposed that the gut acts as a motor of organ dysfunction [131,132].

6.1. Clinical Evidence

Recent clinical and experimental studies have shown communication between the
kidney and gut, which has sparked new research and much debate concerning the patho-
physiology and treatments. However, most studies have mainly tackled the development
and progression of CKD or ESRD, and limited research is available regarding the relation-
ship between AKI and gut dysbiosis [133,134]. Gut dysbiosis is the most common source
of secondary infections in septic AKI patients, particularly those in ICU [135]. After gut
injury, the intestinal epithelium permeability is increased, which results in the translocation
of bacteria, toxins, and microbiota-derived metabolites from the intestinal lumen to the
mesenteric lymph and systemic circulation, slowing renal recovery and increasing mortality.

Moreover, Nakade et al. have revealed that the level of serum D-serine significantly
correlates with decreased kidney function in AKI patients [136]. A prospective cohort
study showed that when compared with healthy subjects, serum indoxyl sulfate (IS) is
significantly elevated in patients with hospital-acquired AKI and is associated with a poor
prognosis [137]. Notably, accumulating clinical data about the immunomodulatory role
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of the gut microbiome in patients with CKD suggests the potential role of the intestinal
microbiota in kidney–gut crosstalk in AKI patients [129,138], but more related clinical
research is needed.

6.2. Laboratory Evidence

AKI-induced gastrointestinal homeostasis disruption has been confirmed in the labo-
ratory. Recently, Yang et al. found that the gut microbiota Escherichia coli and Enterobacter
were increased, but Lactobacillus, Ruminococcaceae, Faecalibacterium, and Lachnospiraceae were
decreased in an IRI-AKI model. Moreover, the germ-free mice which received the post-AKI
microbiota exhibited more serious kidney injury and inflammation after an ischemia-
reperfusion operation compared with the mice which received the microbiota from a sham
group [139]. On the other hand, some metabolic products of microbiota, such as short-chain
fatty acids (SCFAs), have a protective effect on AKI. Administration of the three main
SCFAs, acetate, propionate and butyrate, can improve kidney injury in AKI by decreasing
local and systemic inflammation, oxidative stress, inflammatory cell infiltration, and cell
apoptosis [140]. Zou et al. also found that the gut microbiota facilitates the therapeutic
effect of Qiong-Yu-Gao, a traditional Chinese medicine, on cisplatin-induced AKI [141].
These results indicate the dual relationship between the intestine and kidneys and suggest
that intestinal microbiota may be a potential target for AKI treatment.

6.3. Mechanism
6.3.1. Intestinal Microbiota and Its Products

Increasingly, it is recognized that the intestinal microbiota plays a crucial role in the
gut–kidney axis. In the process of AKI, the microbiota can produce compounds that have
protective or harmful effects on the kidneys. SCFAs, including acetate, propionate, and
butyrate, are one kind of nephroprotective compound produced from indigestible food in
the colon by the gut microbiota [142]. The protective effects of SCFAs mainly rely on the
activation of G-protein-coupled receptors (GPCRs), GPR41, GPR43, Olfr78, and GPR109,
and the inhibition of histone deacetylase (HDAC) [143–145]. Both in vivo and in vitro
studies have revealed that treatment with SCFAs not only decreases the production of
reactive oxygen species (ROS), and cytokines, such as IL-1β, IL-6, TNF-α, and MCP-1,
but also improves mitochondrial biogenesis in tubular epithelial cells. In addition, the
activation of NF-κB signaling and the expression of TLR4 are inhibited [140]. Furthermore,
in vitro research has shown that SCFAs inhibit dendritic cell maturation and block the
capacity of these cells to induce CD4 and CD8 T cell proliferation [146,147]. These findings
indicate that SCFAs may be a novel therapeutic strategy for AKI.

On the other hand, microbiota-derived uremic toxins can cause further kidney damage
in AKI. Several uremic toxins have been identified, such as indoxyl sulfate (IS), para-cresyl
sulfate (PCS), Trimethylamine-N-oxide (TMAO), indole-3 acetic acid (IAA), etc. [148,149].
Normally, circulatory uremic toxins are excreted from the kidney through organic anion
transporters (OATs), but kidney dysfunction leads to their accumulation in the kidney.
Accumulated uremic toxins are responsible for endothelial dysfunction, ROS production,
pro-inflammatory factor expression, and leukocyte extravasation, eventually exacerbating
kidney damage [150].

6.3.2. Inflammation

During AKI, increased inflammatory cytokines and activated immune cells can cause
gut barrier function damage and increase permeability. Intestinal hyper-permeability is a
common reason for aggravating kidney failure in AKI patients. The intestinal epithelium
apical tight junctions and junctional adhesion molecules (JAM) contribute to the integrated
gut’s barrier function, which prevents the luminal contents from escaping into the inter-
nal environment. In septic AKI, the expression of zonulaoccludens-1 (ZO-1), one of the
multiple claudin isoforms in the tight junction complex, is downregulated, leading to
intestinal hyper-permeability [151]. In addition, the cytokines released from neutrophils or
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macrophages can activate myosin light chain kinase (MLCK) which phosphorylates the
myosin light chain, causing the further opening of the tight apical junction [152].

6.3.3. Urea Accumulation

Furthermore, urea accumulation caused by kidney dysfunction is another cause of
increased intestinal permeability. Urea diffuses from the blood into the gut lumen, where
it is converted to ammonia by gut bacterial urease (CO(NH2)2 + H2O→ CO2 + 2NH3).
The ammonia is transformed into caustic ammonium hydroxide (NH3 + H2O→ NH4OH),
which can destroy the tight junction proteins that keep epithelial cells together [135,153].
Hence, the toxins and bacteria in the intestinal lumen tend to transfer into the systemic
circulation, which in turn triggers a more severe inflammatory response, further inducing
kidney injury, organ failure, and higher mortality (Figure 4).
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7. Kidney–Brain Crosstalk

The function of the kidney in controlling sodium and water reabsorption is largely
regulated by the brain. Under physiological conditions, the neurons in the supraspinal
nucleus and paraventricular nucleus of the hypothalamus secrete AVP, which acts on
distal convoluted tubules and collects duct epithelial cells to promote the absorption of
water [154]. In addition, renal blood flow and glomerular filtration rate are mediated by
changes in the sympathetic nervous system via renal vasoconstriction and the RAAS [155].
These phenomena indicate the existence of kidney–brain crosstalk.

7.1. Clinical Evidence

AKI is a frequently encountered complication in patients with brain injury such as
stroke. A meta-analysis of 12 studies, which included 4,532,181 acute ischemic stroke
patients and 615,636 intracerebral hemorrhage patients, found that the pooled prevalence
rate of AKI after all stroke types was 11.6%, and that AKI is associated with an increased
mortality rate [156]. In a 10-year follow-up study of a large cohort of first-ever acute stroke
patients (involving 2155 patients), approximately 27% of patients developed AKI after
acute stroke, and the probability of 10-year mortality of patients with AKI was 75.9% [157].
Moreover, stroke patients with severe neurological deficits and cardiac abnormalities such
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as heart failure, atrial fibrillation, ischemic heart disease, hyperglycemia, hypertension, low
eGFR, or advanced age were more susceptible to developing AKI [158].

In turn, encephalopathy and mental disorders including somnolence, epileptic, coma
and chorea are common complications of AKI, which may occur simultaneously with
AKI or develop subsequently [159]. Several clinical studies have identified the long-term
neurologic deficits of AKI. A nationwide population study involving 4315 AKI-recovery
patients and 4315 non-AKI control subjects revealed that the AKI-recovery patients had a
higher risk, a higher severity of stroke events and, moreover, a higher risk of mortality than
the non-AKI group, regardless of progression to subsequent chronic kidney disease [160].
This impact was similar to diabetes.

7.2. Laboratory Evidence

Several experimental studies have demonstrated the communication between the
kidney and brain in animal models. Rabb et al. revealed that when compared with a sham
group, a mouse renal IRI AKI model increased neuronal pyknosis and microgliosis in the
brain and disrupted the blood-brain barrier. In addition, AKI led to the accumulation of
proinflammatory chemokines, including keratinocyte-derived chemoattractant and G-CSF,
in the cerebral cortex and hippocampus, and increased expression of glial fibrillary acidic
protein in astrocytes in the cortex and corpus callosum [161]. In an SD rat IRI model, TLR4
in the hippocampus and striatum were significantly upregulated, suggesting that TLR4
plays a critical role in AKI-induced neuroinflammation [162]. Moreover, the turnover of
dopamine in the striatum, mesencephalon, and hypothalamus was decreased in IRI rats,
which impaired the motor activity of rats [163].

7.3. Mechanism
7.3.1. Uremic Toxins

Patients with AKI are more susceptible to encephalopathy compared with patients
with CKD, probably due to high uremic toxins [164,165]. In an IRI model, accumulated ure-
mic toxins impaired motor activity and led to abnormal behavior in rats [163]. However, the
mechanism of these pathological changes in the brain during AKI is still awaiting clarification.

7.3.2. Inflammation

In addition, animal studies have identified that inflammation is activated in the brain
following AKI, and these changes are accompanied by increased vascular permeability
in the brain [161,164], suggesting a disruption of the blood-brain barrier (BBB). Injury to
the kidney increases the release of cytokines and chemokines, such as TNF-α, IL-6, IFN-
γ, MCP-1, and CXCL-1, which then infiltrate into the brain through the disrupted BBB,
leading to brain injury [166,167]. On the other hand, the injured brain releases the pro-
inflammatory molecules into the blood which then promote the infiltration of macrophages
and neutrophils into the kidney. Notably, the recruitment of inflammatory cells is a hallmark
of AKI pathogenesis and an important cause of renal tubular cell apoptosis [107].

7.3.3. Exosomes

Exosomes are endogenously produced, membrane-bound vesicles that contain various
molecules, including mRNA, miRNA, lncRNA, and small molecular proteins. Moreover,
exosomes have been implicated in the pathogenesis of AKI, CKD, renal fibrosis, end-
stage renal disease (ESRD), glomerular diseases, and diabetic nephropathy [168]. One basic
research study demonstrated that AKI and CKD mice secreted high levels of exosomes from
kidneys and in urine, which contained elevated levels of inflammatory cytokine mRNA
when compared with normal mice [166,169], suggesting that exosomes may participate in
cell or organ communication. However, further studies are needed in this area.
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8. Therapeutic Strategy and Management

Depending on its severity, the long-term outcomes of AKI include GFR decreases,
nephron loss, and increased risk of CKD, cardiovascular disease, and kidney cancer [2,170,171].
When AKI follows other organ failures, thanks to the potential self-repairing capability
of the kidney, the symptoms of AKI can recover after removal of the pathogeny in other
organs (within 24–48 h) [172]. If AKI persists for ≥72 h, these patients have considerably
worse outcomes [173].

The concept of kidney lifespan can be used to indicate the prognosis of AKI. The
number of healthy nephrons determines the individual kidney lifespan. Notably, the
number of nephrons is set at birth and starts to decline with age around the age of 25 [174].
By age 70, healthy individuals have only half of original nephron number left [175]. AKI
can cause irreversible loss of nephrons. Once the number of nephrons drops to a certain
level, kidney lifespan shortens and renal dysfunction occurs [2,176]. Hence, for patients
with a high nephron endowment or those at a young age, there may be no consequence
after AKI. Patients with fewer nephrons or at an older age may have a poor outcome.

Suitable therapeutic strategy and management probably improve the outcome of
AKI. However, no specific drug has been consistently and reproducibly shown to have a
protective effect on the kidneys. In the setting of AKI-induced distant dysfunction, anti-
oxidants, anti-inflammatory agents, and renal replacement therapy are consequentially
helpful based on the mechanisms discussed above.

8.1. Therapeutic Strategy
8.1.1. Anti-Oxidants

Several groups have revealed that the administration of anti-oxidants, such as prostaglandin
E1 (PGE1), glutathione, vitamin E, and thymoquinone, significantly alleviates lung and
liver injury after AKI [117,177–179]. In addition, improving the activation of endogenous
anti-oxidant factors, including superoxide dismutase (SOD), heme oxygenase 1 (HO-1),
glutathione-S-transferase (GST), and glutathione peroxidase (GPX), is considered a promis-
ing therapeutic strategy in AKI-induced distant dysfunction [180,181]. The critical role of
these anti-oxidative enzymes in organic injury has been widely studied and summarized
in other reviews.

8.1.2. Anti-Inflammatory Agents

Severe inflammation mediates the damage to organs induced by AKI. Hence, anti-
inflammation is one of the main therapeutic approaches to treat organ injury. Deliv-
ering IL-10, or blocking IL-6, CXCL1, and TNF-α have been demonstrated to alleviate
AKI-induced lung injury [182–184]. Moreover, NF-κB signaling activated by DAMP lig-
ation of pattern recognition receptors (PRRs) also results in pro-inflammatory cytokines
and perpetuating the inflammatory response, making TLR4 another attractive therapeutic
target for distant organs dysfunction induced by AKI [185].

8.1.3. Renal Replacement Therapy

Renal replacement therapy (hemodialysis) is commonly applied to provide renal sup-
port for critically ill patients with AKI, especially those with hemodynamic instability [186].
Renal replacement therapy can aid in the removal of metabolic acidosis, electrolyte distur-
bances, volume overload, and uremic toxins. Thus, renal replacement therapy has many
theoretical advantages in relieving the injury of distant organs caused by AKI [187]. Indeed,
renal replacement therapy may enable support of not only the kidney, but also the heart,
the lung, and the liver. However, the optimal time to start renal replacement therapy in
patients with AKI remains controversial, especially in specific populations [188]. Therefore,
its effect should be further evaluated in the future.
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8.1.4. Other Therapies

Other therapeutic strategies including interventions with RAAS inhibitors, atrial
natriuretic peptide (ANP), probiotics, and prebiotics, could be promising approaches
targeting the crosstalk between injured kidneys and other organs.

8.2. Management

Considering AKI is not a disease but rather a loose collection of syndromes, the first
step in managing AKI is to determine its cause [2]. However, the importance of AKI
management is often overlooked. An audit in the UK showed that more than 50% of
patients with AKI were managed badly, and 43% of AKI cases were recognized late or
not at all [189]. Notably, a clinical observation including 1893 patients undergoing partial
nephrectomy found that 20% of patients experienced AKI after surgery. The rate of patients
recovering 90% of baseline function was lower, and the CKD upstaging proportion was
higher in the AKI group compared with those without AKI. Moreover, longer AKI (≥4 days)
increases the risk of functional deterioration and CKD development [190], suggesting early
intervention in AKI is critical. The establishment of fully equipped AKI management is an
important measure to prevent the development of AKI-induced distal organ dysfunction
into multiple organ failure (MOF).

8.2.1. Volume Status and Hemodynamic Management

Volume status and hemodynamics should be carefully reviewed in patients with
severe AKI. When the renal hypoperfusion (e.g., cardiac dysfunction) is sustained and the
adaptive response is inadequate, renal damage can occur due to inadequate oxygen and
nutrient delivery, and epithelial cell injury or death [191,192]. On the other hand, patients
with AKI can suffer fluid overload due to reductions in urine output, which can directly
damage the kidney parenchyma and have considerably harmful effects on other organs
(e.g., pulmonary edema) [2].

In physiological conditions, the kidneys and other organs are adequately perfused at a
mean arterial pressure of 65 mmHg [193]. Normal arterial pressure is critical for maintaining
the blood perfusion of the kidneys. It is notable that hypotension frequently indicates
kidney hypoperfusion despite apparent hypervolaemia, in which fluid redistributes to the
venous system or into tissue interstitium (e.g., congestive heart failure, capillary leakage
during systemic inflammatory response syndrome (SRIS)) [2,7]. Thus, an increase in mean
arterial pressure should be considered in some cases.

8.2.2. Nephrotoxic Agent and Drugs Management

Clinically, the phenomenon that drugs aggravate AKI should not be ignored. All poten-
tial nephrotoxic agents that can be stopped should be avoided. Indispensable drugs should
only be used at the required dose for the time needed and carefully monitored. If possible,
drug concentration monitoring should be established [194]. Contrast or radiocontrast
agents (e.g., iodinated contrast medium, paramagnetic ion complexes, or superparamag-
netic magnetite particles) are widely used in medical imaging [195]. Excessive exposure to
contrast agent will directly cause tubular injury and renal hypoperfusion [196]; therefore,
their use should be limited in patients with severe AKI. Although contrast-associated AKI
is becoming less common thanks to reduced toxicity and lower amounts of contrast media
used for imaging techniques [197,198], their potential nephrotoxicity cannot be ignored.

8.2.3. Additional Notes

Blood electrolyte solution imbalances should be noted, especially in critically ill pa-
tients. Non-physiologic ratios of sodium and chloride may worsen AKI [199]. In addition,
a cohort study including 1132 patients with urinary tract infections found that about 14% of
these patients developed AKI, suggesting urinary tract infection may be a potential factor
for aggravating AKI [200]. Obstructive nephropathy or nephrolithiasis is also a common
cause of AKI, especially in young children (up to 30%) [201]. Thus, for these patients, the
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first step should be to remove the cause of AKI, and if necessary, clinicians must personalize
the care of patients. Considering renal scintigraphy is a powerful imaging method with
unique advantages for assessing renal function [202,203] independent of changes in plasma
creatinine and fluid volume, it is potentially useful in the management of AKI patients.

9. Conclusions

AKI is not only a common complication following other organ failures, but also causes
distant organ dysfunction and is an important cause of high mortality in hospitalized
patients. In this review, we examined the clinical and laboratory evidence concerning organ
crosstalk in AKI, and summarized the underlying mechanisms of AKI-induced distant dys-
function and organ failure-induced AKI based on the current findings. These mechanisms
include inflammation, immune responses, hemodynamic change, fluid homeostasis, hor-
mone secretion, nerve reflex regulation, uremic toxins and oxidative stress. Besides these
factors, exosomes have been demonstrated to participate in mediating muscle–kidney [204],
adipose tissue–pancreas, retina, hippocampus, and hypothalamus crosstalk [205], but evi-
dence for the potential role of exosomes in AKI is still sparse and should be a particular
focus of future research. Understanding the complex interactions between kidneys and
other organs may help to develop new diagnostic approaches and therapeutic strategies to
improve outcomes in patients with AKI.
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