Molecular Basis and Rationale for the Use of Targeted Agents and Immunotherapy in Sinonasal Cancers
Abstract
:1. Introduction
2. Squamous Cell Carcinoma
3. Intestinal-Type Adenocarcinoma (ITAC)
4. Non-Intestinal Type Adenocarcinomas (N-ITAC)
5. Sinonasal Neuroendocrine Carcinoma (SNEC)
6. Sinonasal Undifferentiated Carcinomas (SNUC)
7. NUT Carcinoma (NC)
8. Teratocarcinosarcoma (TCS)
9. Sinonasal Lymphoepithelial Carcinoma (SLEC)
10. Immune-Check Point Inhibitors: Rationale and Clinical Applications
10.1. Immuno-Markers in Sinonasal Cancers
10.1.1. Deficient Mismatch Repair Proteins (d-MMR) and Microsatellite Instability (MSI)
10.1.2. PD-L1 Expression
10.1.3. Tumor Microenvironment: Cytokines and Tumor Infiltrating Leucocytes (TILs)
10.2. Clinical Data on the Efficacy of ICIs in Sinonasal Cancers
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Llorente, J.L.; López, F.; Suárez, C.; Hermsen, M.A. Sinonasal carcinoma: Clinical, pathological, genetic and therapeutic advances. Nat. Rev. Clin. Oncol. 2014, 11, 460–472. [Google Scholar] [CrossRef] [PubMed]
- Associazione Italiana Registri Tumori (AIRTUM). Available online: http://www.registri-tumori.it/ (accessed on 31 July 2022).
- Su, S.Y.; Kupferman, M.E.; Demonte, F.; Levine, N.B.; Raza, S.M.; Hanna, E. Endoscopic Resection of Sinonasal Cancers. Curr. Oncol. Rep. 2014, 16, 1–8. [Google Scholar] [CrossRef]
- Duprez, F.; Madani, I.; Morbée, L.; Bonte, K.; Deron, P.; Domján, V.; Boterberg, T.; De Gersem, W.; De Neve, W. IMRT for Sinonasal Tumors Minimizes Severe Late Ocular Toxicity and Preserves Disease Control and Survival. Int. J. Radiat. Oncol. 2012, 83, 252–259. [Google Scholar] [CrossRef]
- Sánchez-Fernández, P.; Riobello, C.; Costales, M.; Vivanco, B.; Cabal, V.N.; García-Marín, R.; Suárez-Fernández, L.; López, F.; Cabanillas, R.; Hermsen, M.A.; et al. Next-generation sequencing for identification of actionable gene mutations in intestinal-type sinonasal adenocarcinoma. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.A.; Vundamati, D.; Farooqi, M.; Repnikova, E.; Zinkus, T.; Hetherington, M.; Paulson, L. Next-Generation Sequencing in the Diagnosis of Rare Pediatric Sinonasal Tumors. Ear Nose Throat J. 2019, 100, NP263–NP268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanghvi, S.; Khan, M.N.; Patel, N.R.; Bs, S.Y.; Baredes, S.; Eloy, J.A. Epidemiology of sinonasal squamous cell carcinoma: A comprehensive analysis of 4994 patients. Laryngoscope 2013, 124, 76–83. [Google Scholar] [CrossRef]
- Pacini, L.; Cabal, V.N.; Hermsen, M.A.; Huang, P.H. EGFR Exon 20 Insertion Mutations in Sinonasal Squamous Cell Carcinoma. Cancers 2022, 14, 394. [Google Scholar] [CrossRef]
- Udager, A.M.; Rolland, D.C.; McHugh, J.B.; Betz, B.L.; Murga-Zamalloa, C.; Carey, T.E.; Marentette, L.J.; Hermsen, M.A.; DuRoss, K.E.; Lim, M.S.; et al. High-Frequency Targetable EGFR Mutations in Sinonasal Squamous Cell Carcinomas Arising from Inverted Sinonasal Papilloma. Cancer Res. 2015, 75, 2600–2606. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, E.; Nishikawa, D.; Hanai, N.; Hasegawa, Y.; Yatabe, Y. Sinonasal squamous cell carcinoma and EGFR mutations: A molecular footprint of a benign lesion. Histopathology 2018, 73, 953–962. [Google Scholar] [CrossRef]
- Park, K.; Haura, E.B.; Leighl, N.B.; Mitchell, P.; Shu, C.A.; Girard, N.; Viteri, S.; Han, J.-Y.; Kim, S.-W.; Lee, C.K.; et al. Amivantamab in EGFR Exon 20 Insertion–Mutated Non–Small-Cell Lung Cancer Progressing on Platinum Chemotherapy: Initial Results from the CHRYSALIS Phase I Study. J. Clin. Oncol. 2021, 39, 3391–3402. [Google Scholar] [CrossRef]
- Riely, G.J.; Neal, J.W.; Camidge, D.R.; Spira, A.I.; Piotrowska, Z.; Costa, D.B.; Tsao, A.S.; Patel, J.D.; Gadgeel, S.M.; Bazhenova, L.; et al. Activity and Safety of Mobocertinib (TAK-788) in Previously Treated Non–Small Cell Lung Cancer with EGFR Exon 20 Insertion Mutations from a Phase I/II Trial. Cancer Discov. 2021, 11, 1688–1699. [Google Scholar] [CrossRef] [PubMed]
- Le, X.; Cornelissen, R.; Garassino, M.; Clarke, J.M.; Tchekmedyian, N.; Goldman, J.W.; Leu, S.-Y.; Bhat, G.; Lebel, F.; Heymach, J.V.; et al. Poziotinib in Non–Small-Cell Lung Cancer Harboring HER2 Exon 20 Insertion Mutations After Prior Therapies: ZENITH20-2 Trial. J. Clin. Oncol. 2022, 40, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Heo, S.G.; Ahn, B.; Hong, M.H.; Cho, B.C.; Lim, S.M.; Kim, H.R. A phase II study of poziotinib in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Cancer Med. 2021, 10, 7012–7020. [Google Scholar] [CrossRef] [PubMed]
- López, F.; Llorente, J.L.; Oviedo, C.M.; Vivanco, B.; Marcos, C.; Msc, C.G.-I.; Scola, B.; Hermsen, M.A. Gene amplification and protein overexpression of EGFR and ERBB2 in sinonasal squamous cell carcinoma. Cancer 2011, 118, 1818–1826. [Google Scholar] [CrossRef] [Green Version]
- Schröck, A.; Göke, F.; Wagner, P.; Bode, M.; Franzen, A.; Huss, S.; Agaimy, A.; Ihrler, S.; Kirsten, R.; Kristiansen, G.; et al. Fibroblast growth factor receptor-1 as a potential therapeutic target in sinonasal cancer. Head Neck 2013, 36, 1253–1257. [Google Scholar] [CrossRef]
- Re, M.; Gioacchini, F.M.; Bajraktari, A.; Tomasetti, M.; Kaleci, S.; Rubini, C.; Bertini, A.; Magliulo, G.; Pasquini, E. Malignant transformation of sinonasal inverted papilloma and related genetic alterations: A systematic review. Eur. Arch. Oto-Rhino-Laryngol. 2017, 274, 2991–3000. [Google Scholar] [CrossRef]
- Bahleda, R.; Italiano, A.; Hierro, C.; Mita, A.; Cervantes, A.; Chan, N.; Awad, M.; Calvo, E.; Moreno, V.; Govindan, R.; et al. Multicenter Phase I Study of Erdafitinib (JNJ-42756493), Oral Pan-Fibroblast Growth Factor Receptor Inhibitor, in Patients with Advanced or Refractory Solid Tumors. Clin. Cancer Res. 2019, 25, 4888–4897. [Google Scholar] [CrossRef]
- Subbiah, V.; Iannotti, N.O.; Gutierrez, M.; Smith, D.C.; Féliz, L.; Lihou, C.F.; Tian, C.; Silverman, I.M.; Ji, T.; Saleh, M. FIGHT-101, a first-in-human study of potent and selective FGFR 1-3 inhibitor pemigatinib in pan-cancer pa-tients with FGF/FGFR alterations and advanced malignancies. Ann. Oncol. 2022, 33, 522–533. [Google Scholar] [CrossRef]
- Muñoz-Cordero, M.G.; López, F.; García-Inclán, C.; López-Hernández, A.; Potes-Ares, S.; Fernández-Vañes, L.; Llorente, J.L.; Hermsen, M. Predictive value of EGFR-PI3K-pAKT-mTOR-pS6 pathway in sinonasal squamous cell carcinomas. Acta Otorrinolaringol. 2019, 70, 16–24. [Google Scholar] [CrossRef]
- Schmid, P.; Abraham, J.; Chan, S.; Wheatley, D.; Brunt, A.M.; Nemsadze, G.; Baird, R.D.; Park, Y.H.; Hall, P.S.; Perren, T.; et al. Capivasertib Plus Paclitaxel Versus Placebo Plus Paclitaxel as First-Line Therapy for Metastatic Triple-Negative Breast Cancer: The PAKT Trial. J. Clin. Oncol. 2020, 38, 423–433. [Google Scholar] [CrossRef]
- Kim, S.-B.; Dent, R.; Im, S.-A.; Espié, M.; Blau, S.; Tan, A.R.; Isakoff, S.J.; Oliveira, M.; Saura, C.; Wongchenko, M.J.; et al. Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS): A multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2017, 18, 1360–1372. [Google Scholar] [CrossRef]
- Crabb, S.J.; Griffiths, G.; Marwood, E.; Dunkley, D.; Downs, N.; Martin, K.; Light, M.; Northey, J.; Wilding, S.; Whitehead, A.; et al. Pan-AKT Inhibitor Capivasertib with Docetaxel and Prednisolone in Metastatic Castration-Resistant Prostate Cancer: A Randomized, Placebo-Controlled Phase II Trial (ProCAID). J. Clin. Oncol. 2021, 39, 190–201. [Google Scholar] [CrossRef]
- Sweeney, C.; Bracarda, S.; Sternberg, C.N.; Chi, K.N.; Olmos, D.; Sandhu, S.; Massard, C.; Matsubara, N.; Alekseev, B.; Parnis, F.; et al. Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): A multicentre, randomised, double-blind, phase 3 trial. Lancet 2021, 398, 131–142. [Google Scholar] [CrossRef]
- Lang, L.; Shay, C.; Zhao, X.; Xiong, Y.; Wang, X.; Teng, Y. Simultaneously inactivating Src and AKT by saracatinib/capivasertib co-delivery nanoparticles to improve the efficacy of anti-Src therapy in head and neck squamous cell carcinoma. J. Hematol. Oncol. 2019, 12, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udager, A.M.; McHugh, J.B.; Betz, B.L.; Montone, K.T.; Livolsi, V.A.; Seethala, R.R.; Yakirevich, E.; Iwenofu, O.H.; Perez-Ordonez, B.; Weigelin, H.C.; et al. Activating KRAS mutations are characteristic of oncocytic sinonasal papilloma and associated sinonasal squamous cell carcinoma. J. Pathol. 2016, 239, 394–398. [Google Scholar] [CrossRef]
- Taverna, C.; Agaimy, A.; Franchi, A. Towards a Molecular Classification of Sinonasal Carcinomas: Clinical Implications and Opportunities. Cancers 2022, 14, 1463. [Google Scholar] [CrossRef]
- Yasukawa, S.; Kano, S.; Hatakeyama, H.; Nakamaru, Y.; Takagi, D.; Mizumachi, T.; Suzuki, M.; Suzuki, T.; Nakazono, A.; Tanaka, S.; et al. Genetic mutation analysis of the malignant transformation of sinonasal inverted papilloma by targeted amplicon sequencing. Int. J. Clin. Oncol. 2018, 23, 835–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, N.A.; Plouffe, K.R.; Yilmaz, O.; Weindorf, S.C.; Betz, B.L.; Carey, T.E.; Seethala, R.R.; McHugh, J.B.; Tomlins, S.A.; Udager, A.M. TP53 mutations and CDKN2A mutations/deletions are highly recurrent molecular alterations in the malignant progression of sinonasal papillomas. Mod. Pathol. 2020, 34, 1133–1142. [Google Scholar] [CrossRef]
- Wang, X.; Lv, W.; Qi, F.; Gao, Z.; Yang, H.; Wang, W.; Gao, Y. Clinical effects of p53 overexpression in squamous cell carcinoma of the sinonasal tract: A systematic meta-analysis with PRISMA guidelines. Medicine 2017, 96, e6424. [Google Scholar] [CrossRef]
- Li, L.; Zhu, L. Expression and clinical significance of TrkB in sinonasal squamous cell carcinoma: A pilot study. Int. J. Oral Maxillofac. Surg. 2016, 46, 144–150. [Google Scholar] [CrossRef]
- Schröck, A.; Göke, F.; Wagner, P.; Bode, M.; Franzen, A.; Braun, M.; Huss, S.; Agaimy, A.; Ihrler, S.; Menon, R.; et al. Sex Determining Region Y-Box 2 (SOX2) Amplification Is an Independent Indicator of Disease Recurrence in Sinonasal Cancer. PLoS ONE 2013, 8, e59201. [Google Scholar] [CrossRef] [PubMed]
- Hieggelke, L.; Heydt, C.; Castiglione, R.; Rehker, J.; Merkelbach-Bruse, S.; Riobello, C.; Llorente, J.L.; Hermsen, M.A.; Buettner, R. Mismatch repair deficiency and somatic mutations in human sinonasal tumors. Cancers 2021, 13, 6081. [Google Scholar] [CrossRef] [PubMed]
- Rooper, L.M.; Agaimy, A.; Dickson, B.C.; Dueber, J.C.; Eberhart, C.G.; Gagan, J.; Hartmann, A.; Khararjian, A.; London, N.R.; MacMillan, C.M.; et al. DEK-AFF2 Carcinoma of the Sinonasal Region and Skull Base. Am. J. Surg. Pathol. 2021, 45, 1682–1693. [Google Scholar] [CrossRef] [PubMed]
- Ruangritchankul, K.; Sandison, A. DEK:AFF2 Fusion Carcinomas of Head and Neck. Adv Anat Pathol. 2022, ahead of print. [Google Scholar] [CrossRef]
- Kuo, Y.-J.; Lewis, J.S.; Zhai, C.; Chen, Y.-A.; Chernock, R.D.; Hsieh, M.-S.; Lan, M.-Y.; Lee, C.-K.; Weinreb, I.; Hang, J.-F. DEK-AFF2 fusion-associated papillary squamous cell carcinoma of the sinonasal tract: Clinicopathologic characterization of seven cases with deceptively bland morphology. Mod. Pathol. 2021, 34, 1820–1830. [Google Scholar] [CrossRef]
- Svajdler, M.; Nemcova, J.; Dubinsky, P.; Metelkova, A.; Svajdler, P.; Straka, L.; Sakar, R.; Daum, O.; Michal, M.; Skalova, A.; et al. Significance of transcriptionally-active high-risk human papillomavirus in sinonasal squamous cell carcinoma: Case series and a meta-analysis. Neoplasma 2020, 67, 1456–1463. [Google Scholar] [CrossRef]
- López, F.; Lund, V.J.; Suárez, C.; Snyderman, C.H.; Saba, N.F.; Robbins, K.T.; Poorten, V.V.; Strojan, P.; Mendenhall, W.M.; Rinaldo, A.; et al. The Impact of Histologic Phenotype in the Treatment of Sinonasal Cancer. Adv. Ther. 2017, 34, 2181–2198. [Google Scholar] [CrossRef]
- Leivo, I. Sinonasal Adenocarcinoma: Update on Classification, Immunophenotype and Molecular Features. Head Neck Pathol. 2016, 10, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Franchi, A.; Palomba, A.; Miligi, L.; Ranucci, V.; Degli Innocenti, D.R.; Simoni, A.; Pepi, M.; Santucci, M. Intestinal metaplasia of the sinonasal mucosa adjacent to intestinal-type adenocarcinoma. A morphologic, immunohistochemical, and molecular study. Virchows Arch. 2014, 466, 161–168. [Google Scholar] [CrossRef]
- Wu, T.T.; Barnes, L.; Bakker, A.; Swalsky, P.A.; Finkelstein, S.D. K-ras-2 and p53 genotyping of intestinal-type adenocarcinoma of the nasal cavity and paranasal sinuses. Mod. Pathol. 1996, 9, 199–204. [Google Scholar]
- McKinney, C.D.; Mills, S.E.; Franquemont, D.W. Sinonasal intestinal-type adenocarcinoma: Immunohistochemical profile and comparison with colonic adenocarcinoma. Mod. Pathol. 1995, 8, 421–426. [Google Scholar]
- Seligmann, J.F.; Fisher, D.J.; Brown, L.C.; Adams, R.A.; Graham, J.; Quirke, P.; Richman, S.D.; Butler, R.; Domingo, E.; Blake, A.; et al. Inhibition of WEE1 Is Effective in TP53- and RAS-Mutant Metastatic Colorectal Cancer: A Randomized Trial (FOCUS4-C) Comparing Adavosertib (AZD1775) With Active Monitoring. J. Clin. Oncol. 2021, 39, 3705–3715. [Google Scholar] [CrossRef]
- Licitra, L.; Suardi, S.; Bossi, P.; Locati, L.; Mariani, L.; Quattrone, P.; Vullo, S.L.; Oggionni, M.; Olmi, P.; Cantù, G.; et al. Prediction of TP53 Status for Primary Cisplatin, Fluorouracil, and Leucovorin Chemotherapy in Ethmoid Sinus Intestinal-Type Adenocarcinoma. J. Clin. Oncol. 2004, 22, 4901–4906. [Google Scholar] [CrossRef] [PubMed]
- Bossi, P.; Perrone, F.; Miceli, R.; Cantù, G.; Mariani, L.; Orlandi, E.; Fallai, C.; Locati, L.D.; Cortelazzi, B.; Quattrone, P.; et al. Tp53 status as guide for the management of ethmoid sinus intestinal-type adenocarcinoma. Oral Oncol. 2013, 49, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Saber, A.T.; Nielsen, L.R.; Dictor, M.; Hagmar, L.; Mikoczy, Z.; Wallin, H. K-ras mutations in sinonasal adenocarcinomas in patients occupationally exposed to wood or leather dust. Cancer Lett. 1998, 126, 59–65. [Google Scholar] [CrossRef]
- Perez, P.; Dominguez, O.; Gonzalez, S.; Gonzalez, S.; Trivino, A.; Suarez, C. Ras gene mutations in ethmoid sinus adenocarcinoma. Cancer 1999, 86, 255–264. [Google Scholar] [CrossRef]
- Projetti, F.; Durand, K.; Chaunavel, A.; Léobon, S.; Lacorre, S.; Caire, F.; Bessède, J.-P.; Moreau, J.-J.; Coulibaly, B.; Labrousse, F. Epidermal growth factor receptor expression and KRAS and BRAF mutations: Study of 39 sinonasal intestinal-type adenocarcinomas. Hum. Pathol. 2013, 44, 2116–2125. [Google Scholar] [CrossRef] [PubMed]
- Yom, S.; Rashid, A.; Rosenthal, D.; Elliott, D.D.; Hanna, E.; Weber, R.S.; El-Naggar, A.K. Genetic analysis of sinonasal adenocarcinoma phenotypes: Distinct alterations of histogenetic significance. Mod. Pathol. 2004, 18, 315–319. [Google Scholar] [CrossRef] [Green Version]
- Perez-Escuredo, J.; Lopez-Hernandez, A.; Costales, M.; Lopez, F.; Ares, S.P.; Vivanco, B.; Llorente, J.L.; Hermsen, M.A. Recurrent DNA copy number alterations in intestinal type sinonasal adenocarcinoma. Rhinology 2016, 54, 278–286. [Google Scholar] [CrossRef]
- Perrone, F.; Oggionni, M.; Birindelli, S.; Suardi, S.; Tabano, S.; Romano, R.; Moiraghi, M.L.; Bimbi, G.; Quattrone, P.; Cantu, G.; et al. TP53, p14ARF, p16INK4a and H-ras gene molecular analysis in intestinal-type adenocarcinoma of the nasal cavity and paranasal sinuses. Int. J. Cancer 2003, 105, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Ho, A.L.; Brana, I.; Haddad, R.; Bauman, J.; Bible, K.; Oosting, S.; Wong, D.J.; Ahn, M.-J.; Boni, V.; Even, C.; et al. Tipifarnib in Head and Neck Squamous Cell Carcinoma with HRAS Mutations. J. Clin. Oncol. 2021, 39, 1856–1864. [Google Scholar] [CrossRef] [PubMed]
- Riobello, C.; Sánchez-Fernández, P.; Cabal, V.N.; García-Marín, R.; Suárez-Fernández, L.; Vivanco, B.; Blanco-Lorenzo, V.; Álvarez Marcos, C.; López, F.; Llorente, J.L.; et al. Aberrant Signaling Pathways in Sinonasal Intestinal-Type Adenocarcinoma. Cancers 2021, 13, 5022. [Google Scholar] [CrossRef]
- Szablewski, V.; Solassol, J.; Poizat, F.; Larrieux, M.; Crampette, L.; Mange, A.; Bascoul-Mollevi, C.; Costes, V. EGFR Expression and KRAS and BRAF Mutational Status in Intestinal-Type Sinonasal Adenocarcinoma. Int. J. Mol. Sci. 2013, 14, 5170–5181. [Google Scholar] [CrossRef] [PubMed]
- García–Inclán, C.; López, F.; Pérez–Escuredo, J.; Cuesta-Albalad, M.P.; Vivanco, B.; Centano, I.; Balbin, M.; Suarez, C.; Llorente, J.L.; Hermsen, M.A. EGFR status and KRAS/BRAF mutations in intestinal-type sinonasal adeno-carcinomas. Cell. Oncol. 2012, 35, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.-S.; Park, J.-I. Wnt signaling in cancer: Therapeutic targeting of Wnt signaling beyond β-catenin and the destruction complex. Exp. Mol. Med. 2020, 52, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Shah, K.; Panchal, S.; Patel, B. Porcupine inhibitors: Novel and emerging anti-cancer therapeutics targeting the Wnt signaling pathway. Pharmacol. Res. 2021, 167, 105532. [Google Scholar] [CrossRef]
- Maffeis, V.; Cappellesso, R.; Zanon, A.; Cazzador, D.; Emanuelli, E.; Martini, A.; Fassina, A. HER2 status in sinonasal intestinal-type adenocarcinoma. Pathol. Res. Pr. 2019, 215, 152432. [Google Scholar] [CrossRef]
- Purgina, B.; Bastaki, J.M.; Duvvuri, U.; Seethala, R.R. A subset of sinonasal non-intestinal type adenocarcinomas are truly sero-mucinous adenocarcinomas: A morphologic and immunophenotypic assessment and description of a novel pitfall. Head Neck Pathol. 2015, 9, 436–446. [Google Scholar] [CrossRef] [Green Version]
- El-Naggar, A.K.; Chan, J.K.C.; Grandis, J.R.; Takata, T.; Slootweg, P.J. WHO Classification of Head and Neck Tumours; IARC Press: Lyon, France, 2017. [Google Scholar]
- Kubik, M.; Barasch, N.; Choby, G.; Seethala, R.; Snyderman, C. Sinonasal Renal Cell-Like Carcinoma: Case Report and Review of the Literature. Head Neck Pathol. 2016, 11, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Stelow, E.B.; Jo, V.Y.; Millis, S.E.; Carlson, D.L. A histologic and immunohistochemical study describing the diversity of tumors classified as sinonasal high-grade nonintestinal adenocarcinoma. Am. J. Surg. Pathol. 2011, 35, 97110–97180. [Google Scholar] [CrossRef]
- Franchi, A.; Degli Innocenti, D.R.; Palomba, A.; Miligi, L.; Paiar, F.; Franzese, C.; Santucci, M. Low Prevalence of K-RAS, EGF-R and BRAF Mutations in Sinonasal Adenocarcinomas. Implications for Anti-EGFR Treatments. Pathol. Oncol. Res. 2013, 20, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, S.; Skálová, A.; Agaimy, A.; Bishop, J.A.; Laco, J.; Leivo, I.; Franchi, A.; Larsen, S.R.; Erentaite, D.; Ulhøi, B.P.; et al. ETV6 Gene Rearrangements Characterize a Morphologically Distinct Subset of Sinonasal Low-grade Non–intestinal-type Adenocarcinoma: A novel translocation-associated carcinoma restricted to the sinonasal tract. Am. J. Surg. Pathol. 2017, 41, 1552–1560. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, S.; Kiss, K.; Melchior, L.C.; Laco, J. The ETV6-RET Gene Fusion Is Found in ETV6-rearranged Low-grade Sinonasal Adenocarcinoma Without NTRK3 Involvement. Am. J. Surg. Pathol. 2018, 42, 985–988. [Google Scholar] [CrossRef] [PubMed]
- Skalova, A.; Vanecek, T.; Martinek, P.; Weinreb, I.; Stevens, T.M.; Simpson, R.H.; Hyrcza, M.; Rupp, N.J.; Baneckova, M.; Michal, M.; et al. Molecular Profiling of Mammary Analog Secretory Carcinoma Revealed a Subset of Tumors Harboring a Novel ETV6-RET Translocation. Am. J. Surg. Pathol. 2018, 42, 234–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mete, O.; Wenig, B.M. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Overview of the 2022 WHO Classification of Head and Neck Neuroendocrine Neoplasms. Head Neck Pathol. 2022, 16, 123–142. [Google Scholar] [CrossRef]
- Fitzek, M.M.; Thornton, A.F.; Varvares, M.; Ancukiewicz, M.; Mcintyre, J.; Adams, J.; Rosenthal, S.; Joseph, M.; Amrein, P. Neuroendocrine tumors of the sinonasal tract. Results of a prospective study incorporating chemotherapy, surgery, and combined proton-photon radiotherapy. Cancer 2002, 94, 2623–2634. [Google Scholar] [CrossRef]
- Riobello, C.; López-Hernández, A.; Cabal, V.N.; García-Marín, R.; Suárez-Fernández, L.; Sánchez-Fernández, P.; Vivanco, B.; Blanco, V.; López, F.; Franchi, A.; et al. IDH2 Mutation Analysis in Undifferentiated and Poorly Differentiated Sinonasal Carcinomas for Diagnosis and Clinical Management. Am. J. Surg. Pathol. 2019, 44, 396–405. [Google Scholar] [CrossRef]
- Glöss, S.; Jurmeister, P.; Thieme, A.; Schmid, S.; Cai, W.Y.; Serrette, R.N.; Perner, S.; Ribbat-Idel, J.; Pagenstecher, A.; Bläker, H.; et al. IDH2 R172 Mutations Across Poorly Differentiated Sinonasal Tract Malignancies. Am. J. Surg. Pathol. 2021, 45, 1190–1204. [Google Scholar] [CrossRef]
- Dogan, S.; Vasudevaraja, V.; Xu, B.; Serrano, J.; Ptashkin, R.N.; Jung, H.J.; Chiang, S.; Jungbluth, A.A.; Cohen, M.A.; Ganly, I.; et al. DNA methylation-based classification of sinonasal undifferentiated carcinoma. Mod. Pathol. 2019, 32, 1447–1459. [Google Scholar] [CrossRef]
- Kim, E.S. Enasidenib: First Global Approval. Drugs 2017, 77, 1705–1711. [Google Scholar] [CrossRef]
- Bitler, B.G.; Fatkhutdinov, N.; Zhang, R. Potential therapeutic targets in ARID1A-mutated cancers. Expert Opin. Ther. Targets 2015, 19, 1419–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dogan, S.; Cotzia, P.; Ptashkin, R.N.; Nanjangud, G.J.; Xu, B.; Boroujeni, A.M.; Cohen, M.A.; Pfister, D.G.; Prasad, M.L.; Antonescu, C.R.; et al. Genetic basis of SMARCB1 protein loss in 22 sinonasal carcinomas. Hum. Pathol. 2020, 104, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Kohashi, K.; Oda, Y. Oncogenic roles of SMARCB1/INI1 and its deficient tumors. Cancer Sci. 2017, 108, 547–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sápi, Z. Epigenetic regulation of SMARCB1 By miR-206, -381 and -671-5p is evident in a variety of SMARCB1 im-munonegative soft tissue sarcomas, while miR-765 appears specific for epithelioid sarcoma. A miRNA study of 223 soft tissue sarcomas. Genes Chromosomes Cancer 2016, 55, 786–802. [Google Scholar] [CrossRef]
- Libera, L.; Ottini, G.; Sahnane, N.; Pettenon, F.; Turri-Zanoni, M.; Lambertoni, A.; Chiaravalli, A.M.; Leone, F.; Battaglia, P.; Castelnuovo, P.; et al. Methylation Drivers and Prognostic Implications in Sinonasal Poorly Differentiated Carcinomas. Cancers 2021, 13, 5030. [Google Scholar] [CrossRef]
- Gounder, M.; Schöffski, P.; Jones, R.L.; Agulnik, M.; Cote, G.M.; Villalobos, V.M.; Attia, S.; Chugh, R.; Chen, T.W.W.; Jahan, T.; et al. Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: An international, open-label, phase 2 basket study. Lancet Oncol. 2020, 21, 1423–1432. [Google Scholar] [CrossRef]
- Abdelmeguid, A.S.; Bell, D.; Hanna, E.Y. Sinonasal Undifferentiated Carcinoma. Curr. Oncol. Rep. 2019, 21, 1–6. [Google Scholar] [CrossRef]
- Gray, S.T.; Herr, M.W.; Bs, R.K.V.S.; Diercks, G.; Lee, L.; Curry, W.; Chan, A.; Clark, J.; Holbrook, E.H.; Rocco, J.; et al. Treatment outcomes and prognostic factors, including human papillomavirus, for sinonasal undifferentiated carcinoma: A retrospective review. Head Neck 2014, 37, 366–374. [Google Scholar] [CrossRef]
- Musy, P.Y.; Reibel, J.F.; Levine, P.A. Sinonasal Undifferentiated Carcinoma: The Search for a Better Outcome. Laryngoscope 2002, 112, 1450–1455. [Google Scholar] [CrossRef]
- Mody, M.D.; Saba, N.F. Multimodal Therapy for Sinonasal Malignancies: Updates and Review of Current Treatment. Curr. Treat. Options Oncol. 2020, 21, 1–14. [Google Scholar] [CrossRef]
- Lehmann, A.E.; Remenschneider, A.; Dedmon, M.; Meier, J.; Gray, S.T.; Lin, D.T.; Chambers, K.J. Incidence and Survival Patterns of Sinonasal Undifferentiated Carcinoma in the United States. J. Neurol. Surg. Part B Skull Base 2014, 76, 094–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dogan, S.; Frosina, D.; Fayad, M.; De Oliveira, T.B.; Alemar, B.; Rosenblum, M.; Tang, L.H.; Hameed, M.R.; Xu, B.; Ghossein, R.A.; et al. The role of a monoclonal antibody 11C8B1 as a diagnostic marker of IDH2-mutated sinonasal undifferentiated carcinoma. Mod. Pathol. 2018, 32, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Ward, P.S.; Kapoor, G.S.; Rohle, D.; Turcan, S.; Abdel-Wahab, O.; Edwards, C.R.; Khanin, R.; Figueroa, M.E.; Melnick, A.; et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 2012, 483, 474–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, V.Y.; Chau, N.G.; Hornick, J.; Krane, J.F.; Sholl, L.M. Recurrent IDH2 R172X mutations in sinonasal undifferentiated carcinoma. Mod. Pathol. 2017, 30, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Shaverdashvili, K.; Azimi-Nekoo, E.; Cohen, P.; Akbar, N.; Ow, T.J.; Halmos, B.; Castellucci, E. INI-1 (SMARCB1)–Deficient Undifferentiated Sinonasal Carcinoma: Novel Paradigm of Molecular Testing in the Diagnosis and Management of Sinonasal Malignancies. Oncology 2020, 25, 738–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agaimy, A.; Hartmann, A.; Antonescu, C.R.; Chiosea, S.; El-Mofty, S.K.; Geddert, H.; Iro, H.; Lewis, J.S.; Märkl, B.; Mills, S.E.; et al. SMARCB1 (INI-1)-deficient Sinonasal Carcinoma. Am. J. Surg. Pathol. 2017, 41, 458–471. [Google Scholar] [CrossRef] [Green Version]
- Kakkar, A.; Antony, V.M.; Pramanik, R.; Sakthivel, P.; Singh, C.A.; Jain, D. SMARCB1 (INI1)–deficient sinonasal carcinoma: A series of 13 cases with assessment of histologic patterns. Hum. Pathol. 2018, 83, 59–67. [Google Scholar] [CrossRef]
- Chitguppi, C.; Rabinowitz, M.R.; Johnson, J.; Bar-Ad, V.; Fastenberg, J.H.; Molligan, J.; Berman, E.; Nyquist, G.G.; Rosen, M.R.; Evans, J.E.; et al. Loss of SMARCB1 Expression Confers Poor Prognosis to Sinonasal Undifferentiated Carcinoma. J. Neurol. Surg. Part B Skull Base 2019, 81, 610–619. [Google Scholar] [CrossRef]
- Saleh, K.; Classe, M.; Nguyen, F.; Moya-Plana, A.; Even, C. Tazemetostat for the treatment of INI-1-deficient sinonasal tumor. Eur. J. Cancer 2022, 172, 329–331. [Google Scholar] [CrossRef]
- Chernock, R.D.; Perry, A.; Pfeifer, J.D.; Holden, J.A.; Lewis, J.S. Receptor tyrosine kinases in sinonasal undifferentiated carcinomas-Evaluation for EGFR, c-KIT, and HER2/neu expression. Head Neck 2009, 31, 919–927. [Google Scholar] [CrossRef]
- Gelbard, A.; Hale, K.S.; Takahashi, Y.; Davies, M.; Kupferman, M.E.; El-Naggar, A.K.; Myers, J.N.; Hanna, E.Y. Molecular profiling of sinonasal undifferentiated carcinoma. Head Neck 2013, 36, 15–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, Y.; Lee, J.; Pickering, C.; Bell, D.; Jiffar, T.W.; Myers, J.N.; Hanna, E.Y.; Kupferman, M.E. Human epidermal growth factor receptor 2/neu as a novel therapeutic target in sinonasal undifferentiated carcinoma. Head Neck 2016, 38 (Suppl. 1), E1926–E1934. [Google Scholar] [CrossRef] [PubMed]
- Salati, M.; Baldessari, C.; Bonetti, L.R.; Messina, C.; Merz, V.; Cerbelli, B.; Botticelli, A. NUT midline carcinoma: Current concepts and future perspectives of a novel tumour entity. Crit. Rev. Oncol. 2019, 144, 102826. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, T.; Harms, A.; Roessler, S.; Goeppert, B. NUT carcinoma in a nutshell: A diagnosis to be considered more frequently. Pathol. Res. Pr. 2019, 215, 152347. [Google Scholar] [CrossRef]
- Parikh, S.A.; French, C.A.; Costello, B.A.; Marks, R.S.; Dronca, R.S.; Nerby, C.L.; Roden, A.C.; Peddareddigari, V.G.; Hilton, J.; Shapiro, G.I.; et al. NUT Midline Carcinoma: An Aggressive Intrathoracic Neoplasm. J. Thorac. Oncol. 2013, 8, 1335–1338. [Google Scholar] [CrossRef] [Green Version]
- Stathis, A.; Zucca, E.; Bekradda, M.; Gomez-Roca, C.; Delord, J.P.; de La Motte Rouge, T.; Uro-Coste, E.; de Braud, F.; Pelosi, G.; French, C.A. Clinical response of carcinomas harboring the BRD4–NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Discov. 2016, 6, 492–500. [Google Scholar] [CrossRef] [Green Version]
- Massard, C.; Soria, J.C.; Stathis, A.; Delord, J.P.; Awada, A.; Peters, S.; Lewis, J.; Bekradda, M.; Rezai, K.; Zeng, Z.; et al. A phase Ib trial with MK-8628/OTX015, a small molecule inhibitor of bromodomain (BRD) and extra-terminal (BET) proteins, in patients with selected advanced solid tumors. Eur. J. Cancer 2016, 1, S2–S3. [Google Scholar] [CrossRef]
- Lewin, J.; Soria, J.C.; Stathis, A.; Delord, J.P.; Peters, S.; Awada, A.; Aftimos, P.G.; Bekradda, M.; Rezai, K.; Zeng, Z.; et al. Phase Ib Trial with Birabresib, a Small-Molecule Inhibitor of Bromodomain and Extraterminal Proteins, in Patients with Selected Advanced Solid Tumors. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 3007–3014. [Google Scholar] [CrossRef]
- Piha-Paul, S.A.; Hann, C.L.; French, C.A.; Cousin, S.; Braña, I.; Cassier, P.A.; Moreno, V.; De Bono, J.S.; Harward, S.D.; Ferron-Brady, G.; et al. Phase 1 Study of Molibresib (GSK525762), a Bromodomain and Extra-Terminal Domain Protein Inhibitor, in NUT Carcinoma and Other Solid Tumors. JNCI Cancer Spectr. 2019, 4, pkz093. [Google Scholar] [CrossRef]
- Liao SMaertens, O.; Cichowski, K.; Elledge, S.J. Genetic modifiers of the BRD4-NUT dependency of NUT midline carcinoma uncovers a synergism between BETis and CDK4/6is. Genes Dev. 2018, 32, 1188–1200. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, B.E.; Hofer, M.D.; Lemieux, M.E.; Bauer, D.E.; Cameron, M.J.; West, N.H.; Agoston, E.S.; Reynoird, N.; Khochbin, S.; Ince, T.A.; et al. Differentiation of NUT Midline Carcinoma by Epigenomic Reprogramming. Cancer Res. 2011, 71, 2686–2696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tonouchi, E.; Gen, Y.; Muramatsu, T.; Hiramoto, H.; Tanimoto, K.; Inoue, J.; Inazawa, J. MiR-3140 suppresses tumor cell growth by targeting BRD4 via its coding sequence and downregulates the BRD4-NUT fusion oncoprotein. Sci. Rep. 2018, 8, 4482. [Google Scholar] [CrossRef] [PubMed]
- Maher, O.M.; Christensen, A.M.; Yedururi, S.; Bell, D.; Tarek, N. Histone deacetylase inhibitor for NUT midline carcinoma. Pediatr. Blood Cancer 2015, 62, 715–717. [Google Scholar] [CrossRef]
- FDA. Romidepsin (Istodax) Label; FDA: Washington, DC, USA, 2009. [Google Scholar]
- FDA. BELEODAQ® (Belinostat) for; FDA: Washington, DC, USA, 2014. [Google Scholar]
- Fatima, S.S.; Minhas, K.; Din, N.U.; Fatima, S.; Ahmed, A.; Ahmad, Z. Sinonasal teratocarcinosarcoma: A clinicopathologic and im-munohistochemical study of 6 cases. Ann. Diagn Pathol. 2013, 17, 313–318. [Google Scholar] [CrossRef]
- Rooper, L.M.; Uddin, N.; Gagan, J.; Brosens, L.A.; Magliocca, K.R.; Edgar, M.A.; Thompson, L.D.; Agaimy, A.; Bishop, J.A. Recurrent Loss of SMARCA4 in Sinonasal Teratocarcinosarcoma. Am. J. Surg. Pathol. 2020, 44, 1331–1339. [Google Scholar] [CrossRef] [PubMed]
- Chan-Penebre, E.; Armstrong, K.; Drew, A.; Grassian, A.R.; Feldman, I.; Knutson, S.K.; Kuplast-Barr, K.; Roche, M.; Campbell, J.; Ho, P.; et al. Selective Killing of SMARCA2- and SMARCA4-deficient Small Cell Carcinoma of the Ovary, Hypercalcemic Type Cells by Inhibition of EZH2: In Vitro and In Vivo Preclinical Models. Mol. Cancer Ther. 2017, 16, 850–860. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Shen, J.; Liu, J.; Fang, W.; Zhang, L. Efficacy of Immune Checkpoint Inhibitors in SMARCA4-Mutant NSCLC. J. Thorac. Oncol. 2020, 15, e133–e136. [Google Scholar] [CrossRef]
- Belardinilli, F.; De Vincentiis, L.; D’Ecclesia, A.; Giannini, G.; Giangaspero, F.; Corsi, A. PIK3CA somatic mutation in sinonasal teratocarcinosarcoma. Auris Nasus Larynx 2020, 48, 530–534. [Google Scholar] [CrossRef]
- Schmincke, A. Über lymphoepitheliale Geschwülste. Beitr. Pathol. Anat. 1921, 68, 161–170. [Google Scholar]
- Regaud, C. Lympho-epitheliome de l’hypopharynx traité par la roentgenthérapie. Bull. Soc. Franc. Otorhinolaryngol. 1921, 34, 209–214. [Google Scholar]
- Tsang, W.Y.W.; Chan, J.K.C. Lymphoepithelial Carcinoma. In World Health Organization Classification of Tumours. Pathology and Genetics of Head and Neck Tumours; Barnes, L., Eveson, J.W., Reichart, P., Sidransky, D., Eds.; IARC Press: Lyon, France, 2005; pp. 18–19. [Google Scholar]
- Kumar, V.; Dave, V.; Harris, J.; Huang, Y. Response of advanced stage recurrent lymphoepithelioma-like carcinoma to nivolumab. Immunotherapy 2017, 9, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; Xia, R.H.; Hu, Y.H.; Tian, Z.; Wang, L.Z.; Zhang, C.Y.; Li, J. Programmed death ligand 1 expression and CD8+T lymphocyte infil-tration in salivary gland lymphoepithelial carcinoma. Zhonghua Bing Li Xue Za Zhi 2021, 50, 1222–1227. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Martínez, J.G.; Pérez-Escuredo, J.; López, F.; Suárez, C.; Álvarez-Marcos, C.; Llorente, J.L.; Hermsen, M.A. Microsatellite instability analysis of sinonasal carcinomas. Otolaryngol. Neck Surg. 2009, 140, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Uryu, H.; Oda, Y.; Shiratsuchi, H.; Oda, S.; Yamamoto, H.; Komune, S.; Tsuneyoshi, M. Microsatellite instability and proliferating activity in sinonasal carcinoma: Molecular genetic and immunohistochemical comparison with oral squamous cell carcinoma. Oncol. Rep. 2005, 14, 1133–1142. [Google Scholar] [CrossRef] [PubMed]
- Hongo, T.; Yamamoto, H.; Jiromaru, R.; Yasumatsu, R.; Kuga, R.; Nozaki, Y.; Hashimoto, K.; Matsuo, M.; Wakasaki, T.; Tamae, A.; et al. PD-L1 expression, tumor-infiltrating lymphocytes, mismatch repair deficiency, EGFR alteration and HPV infection in sinonasal squamous cell carcinoma. Mod. Pathol. 2021, 34, 1966–1978. [Google Scholar] [CrossRef] [PubMed]
- Hermsen, M.A.; Llorente, J.L.; Msc, J.P.-E.; López, F.; Ylstra, B.; Álvarez-Marcos, C.; Suárez, C. Genome-wide analysis of genetic changes in intestinal-type sinonasal adenocarcinoma. Head Neck 2009, 31, 290–297. [Google Scholar] [CrossRef]
- Riobello, C.; Vivanco, B.; Reda, S.; López-Hernández, A.; García-Inclán, C.; Potes-Ares, S.; Cabal, V.N.; López, F.; Llorente, J.L.; Hermsen, M.A. Programmed death ligand-1 expression as immunotherapeutic target in sinonasal cancer. Head Neck 2018, 40, 818–827. [Google Scholar] [CrossRef]
- García-Marín, R.; Reda, S.; Riobello, C.; Cabal, V.N.; Suárez-Fernández, L.; Vivanco, B.; López, F.; Llorente, J.L.; Hermsen, M.A. CD8+ Tumour-Infiltrating Lymphocytes and Tumour Microenvironment Immune Types as Biomarkers for Immunotherapy in Sinonasal Intestinal-Type Adenocarcinoma. Vaccines 2020, 8, 202. [Google Scholar] [CrossRef]
- García-Marín, R.; Reda, S.; Riobello, C.; Cabal, V.; Suárez-Fernández, L.; Vivanco, B.; Álvarez-Marcos, C.; López, F.; Llorente, J.; Hermsen, M. Prognostic and Therapeutic Implications of Immune Classification by CD8+ Tumor-Infiltrating Lymphocytes and PD-L1 Expression in Sinonasal Squamous Cell Carcinoma. Int. J. Mol. Sci. 2021, 22, 6926. [Google Scholar] [CrossRef]
- Quan, H.; Yan, L.; Wang, S.; Wang, S. Clinical relevance and significance of programmed death-ligand 1 expression, tumor-infiltrating lymphocytes, and p16 status in sinonasal squamous cell carcinoma. Cancer Manag. Res. 2019, 11, 4335–4345. [Google Scholar] [CrossRef] [Green Version]
- Bell, D.; Bell, A.; Ferrarotto, R.; Glisson, B.; Takahashi, Y.; Fuller, G.; Weber, R.; Hanna, E. High-grade sinonasal carcinomas and sur-veillance of differential expression in immune related transcriptome. Ann. Diagn. Pathol. 2020, 49, 151622. [Google Scholar] [CrossRef] [PubMed]
- Ock, C.-Y.; Keam, B.; Kim, S.; Lee, J.-S.; Kim, M.; Kim, T.M.; Jeon, Y.K.; Kim, D.-W.; Chung, D.H.; Heo, D.S. Pan-Cancer Immunogenomic Perspective on the Tumor Microenvironment Based on PD-L1 and CD8 T-Cell Infiltration. Clin. Cancer Res. 2016, 22, 2261–2270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yazici, G.; Gullu, I.; Cengiz, M.; Elmali, A.; Yilmaz, M.T.; Aksoy, S.; Sari, S.Y.; Ozyigit, G. The Synergistic Effect of Immune Checkpoint Blockade and Radiotherapy in Recurrent/Metastatic Sinonasal Cancer. Cureus 2018, 10, e3519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Denaro, N.; Merlano, M.; Numico, G.; Garrone, O.; Bossi, P. Complete response to immunotherapy in sinonasal undifferentiated carcinoma. Tumori J. 2021, 107, NP101–NP104. [Google Scholar] [CrossRef] [PubMed]
- Park, J.C.; Faquin, W.C.; Durbeck, J.; Faden, D.L. Immune checkpoint inhibitors in sinonasal squamous cell carcinoma. Oral Oncol. 2020, 109, 104776. [Google Scholar] [CrossRef] [PubMed]
Gene | Findings | References | Types of Alterations | Variant Classification of Alterations | Target Drugs (Approved at Least by One Regulatory Agency in Other Cancer Settings) | Principal Treatment Indications |
---|---|---|---|---|---|---|
EGFR | ≈14% de novo SNSCCC (9/63) ≈77% of ISP-associated SNSCC (17/22) | Udager et al. 2015 [9] Sasaki et al. 2018 [10] | Exon 20ins | Insertion In frame | Amivantamab Mobocertinib | NSCLC |
ERBB2 | 21% (8/38) | Lòpez et al. 2011 [15] | CNG | Amplification | Trastuzumab, Lapatinib, Pertuzumab, Ado-trastuzumab emtansine, Fam-trastuzumab deruxtecan, Margetuximab, Neratinib | Breast cancer, gastric cancer |
Gene | Findings | References | Types of Alterations | Variant Classification of Alterations | Target Drugs (Approved at Least by One Regulatory Agency in Other Cancer Settings) | Principal Treatment Indication (Tumors for Which Are Approved) |
---|---|---|---|---|---|---|
MET | 0–64% (46/72) | Projetti et al. 2015. [48] | 20 CNG | Amplification | Capmatinib | NSCLC |
(S156L) | (Missense) | (No drugs) | ||||
EGFR | 2–63% (27/43) | Szablewski et al., 2013 [54] | 5 CNG | Amplification | Afatinib | NSCLC |
PIK3CA | 10–22% (5/48; 11/50) | Sánchez-Fernández et al., 2021 [5]; Riobello et al., 2021 [53] | Q546R, H1047R, K111E | Missense | Alpelisib | Breast cancer |
(D939G), (E726K), (V1534M), (D454G) | (Missense) | (No drugs) | ||||
NRAS | 8% (4/48) | Sánchez-Fernández et al., 2021 [5] | G12T | Missense | Bimetinib | Melanoma |
(6-10CNG) | (Amplification) | (No drugs) | ||||
BRCA 1 and BRCA 2 | 8–14% (4/48) (7/50) | Sánchez-Fernández et al., 2021 [5]. Riobello et al., 2021 [53] | R1347G | Missense | Olaparib, talazoparib, niraparib | Breast cancer, ovarian cancer, prostatic cancer |
L3326*, K3226* | Nonsense | |||||
5 CNG | Amplification | |||||
(P1603Rfs*13), (Q1111Nfs*5) | (Frameshift) | (No drugs) | ||||
(V1534M) | (Missense) | (No drugs) | ||||
ATM | 8–16% (4/48) (8/50) | Sánchez-Fernández et al., 2021 [5]. Riobello et al., 2021 [53] | Q684P, P1054R, D1853V, V410A | Missense | Olaparib | Prostatic cancer |
AR | 0–20% (10/50) | Riobello et al., 2021 [53] | Q79–Q80 dupl., | Inframe duplication | Bicalutamide, leuprolina | Salivary glands cancer |
(Q77–Q80 del.), (Q79–Q80 del.,) | (Deletion) | (No drugs) | ||||
ERBB2 | 0–6% (3/50) | Riobello et al., 2021 [53] | S310F | Missense | Trastuzumab, Pertuzumab, Ado-trastuzumab emtansine, Fam-trastuzumab deruxtecan, Margetuximab, Neratinib, Lapatinib | Breast cancer, Gastric cancer |
BRAF | 0–6% (1/18) | Franchi et al., 2014 [40] | V600E | Missense | Dabrafenib, cobimetinib +MEK inhibitors | Melanoma |
(D594N) | (Missense) | (No drugs) | ||||
IDH1 | sporadic | Riobello et al., 2021 [53] | R132C | Missense | Ivosidenib | Ductal bile carcinoma |
Gene | Findings | References | Type of Alterations | Variant Classification of Alterations | Target Drugs (Approved at Least by One Regulatory Agency in Other Cancer Settings) | Principal Treatment Indications |
---|---|---|---|---|---|---|
BRAF | 16% (2/12) | Franchi et al., 2013 [63] | V600E | Missense | Dabrafenib + trametinib | Melanoma |
NTRK3 | Case report (1 patient.) | Andreasen et al., 2017 [64] | ETV6-NTRK3 fusions | Translocation | Entrectenib, larotrectinib | All NTRK rearranged cancers |
RET | Case report (1 patient.) | Andreasen et al., 2018 [65] | ETV6-RET fusions | Translocation | Selpercatinib, pralsetinib | All RET rearranged cancers |
Gene | Findings | References | Types of Alterations | Variant Classification of Alterations | Target Drugs (Approved at Least by One Regulatory Agency in Other Cancer Settings) | Principal Treatment Indication (Tumors for Which Are Approved) |
---|---|---|---|---|---|---|
SMARCB1 | 14% (2/14) | Libera et al. 2021. [77] | Deletions, Nonsense | Tazemetostat | Epithelioid Sarcoma | |
IDH2 | 11–83% (1/9; 8/39; 5/6) * | Gloss et al. 2021. [70] Riobello et al. 2019 [69]. Dogan et al. 2019. [71] | R172S, R172G, R172M, (R127T), (CNG). | Insertions, deletions | Enasidenib | Acute myeloid leukemia |
Gene | Findings (%) | References | Types of Alterations | Variant Classification of Alterations | Target Drugs (Approved at Least by One Regulatory Agency in Other Cancer Settings) | Principal Treatment Indication (Tumors for Which Are Approved) |
---|---|---|---|---|---|---|
IDH2 | 31–88% (11/36, 14/16) | Dogan et al. 2019, Riobello et al. 2019 [69,71] | R172S, R172G, R172T, R172M, copy number gains | Insertions Deletions | Enasidenib | Acute myeloid leukemia |
SMARCB1/INI 1 | 43% (6/14), case report (1 patient) | Chitguppi et al. 2020 [90], Saleh et al. 2022 [91] | Deletions | Tazemetostat | Epithelioid Sarcoma | |
ERBB2 | Highly | Takahashi et al. 2016 [94] | Overexpression (by Western blot) | Trastuzumab-emtansine, Trastuzumab-deruxtecan, Trastuzumab, pertuzumab, lapatinib, margetuximab, Neratinib, | Breast cancer, Adenocarcinoma of gastroesophageal junction | |
EGFR | 27% (3/11) | Chernock et al. 2009 [92] | Overexpression | Cetuximab, Panitumumab | NSCLC, colorectal cancer, Head and neck SCC |
Immune-Markers in SNC | Findings | References |
---|---|---|
d-MMR/MSI | 2% ITAC 2–21% SNSCC | Martínez et al. 2009. Uryu et al. 2006, Hongo et al. 2021, Hermsen et al. 2009 [118,119,120,121] |
PD-L1 expression by IHC > 5% | 34% (18/53) SNSCC 17% (22/126) ITAC | Riobello et al. 2018 [122] |
PD-L1 expression by IHC > 50% | 26% (14/53) SNSCC 3% (4/126) ITAC | Riobello et al. 2018 [122] |
PD-L1 expression by CPS ≥ 1 | 67.2% (88/131) SNSCC | Hongo et al. 2021 [120] |
CD8high/PD-L1pos | 6% (8/133) ITAC 19% (11/57) SNSCC | Garca-Marín et al. 2020 and 2021 [123,124] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, A.; Stucchi, E.; Baronchelli, M.; Di Mauro, P.; Ferrari, M.; Lorini, L.; Gurizzan, C.; London, N.R.J.; Hermsen, M.; Lechner, M.; et al. Molecular Basis and Rationale for the Use of Targeted Agents and Immunotherapy in Sinonasal Cancers. J. Clin. Med. 2022, 11, 6787. https://doi.org/10.3390/jcm11226787
Esposito A, Stucchi E, Baronchelli M, Di Mauro P, Ferrari M, Lorini L, Gurizzan C, London NRJ, Hermsen M, Lechner M, et al. Molecular Basis and Rationale for the Use of Targeted Agents and Immunotherapy in Sinonasal Cancers. Journal of Clinical Medicine. 2022; 11(22):6787. https://doi.org/10.3390/jcm11226787
Chicago/Turabian StyleEsposito, Andrea, Erika Stucchi, Maria Baronchelli, Pierluigi Di Mauro, Marco Ferrari, Luigi Lorini, Cristina Gurizzan, Nyall Robert Jr London, Mario Hermsen, Matt Lechner, and et al. 2022. "Molecular Basis and Rationale for the Use of Targeted Agents and Immunotherapy in Sinonasal Cancers" Journal of Clinical Medicine 11, no. 22: 6787. https://doi.org/10.3390/jcm11226787
APA StyleEsposito, A., Stucchi, E., Baronchelli, M., Di Mauro, P., Ferrari, M., Lorini, L., Gurizzan, C., London, N. R. J., Hermsen, M., Lechner, M., & Bossi, P. (2022). Molecular Basis and Rationale for the Use of Targeted Agents and Immunotherapy in Sinonasal Cancers. Journal of Clinical Medicine, 11(22), 6787. https://doi.org/10.3390/jcm11226787