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Abstract: The evolution of AI and data science has aided in mechanizing several aspects of medical
care requiring critical thinking: diagnosis, risk stratification, and management, thus mitigating the
burden of physicians and reducing the likelihood of human error. AI modalities have expanded
feet to the specialty of pediatric cardiology as well. We conducted a scoping review searching the
Scopus, Embase, and PubMed databases covering the recent literature between 2002–2022. We found
that the use of neural networks and machine learning has significantly improved the diagnostic
value of cardiac magnetic resonance imaging, echocardiograms, computer tomography scans, and
electrocardiographs, thus augmenting the clinicians’ diagnostic accuracy of pediatric heart diseases.
The use of AI-based prediction algorithms in pediatric cardiac surgeries improves postoperative
outcomes and prognosis to a great extent. Risk stratification and the prediction of treatment outcomes
are feasible using the key clinical findings of each CHD with appropriate computational algorithms.
Notably, AI can revolutionize prenatal prediction as well as the diagnosis of CHD using the EMR
(electronic medical records) data on maternal risk factors. The use of AI in the diagnostics, risk
stratification, and management of CHD in the near future is a promising possibility with current
advancements in machine learning and neural networks. However, the challenges posed by the
dearth of appropriate algorithms and their nascent nature, limited physician training, fear of over-
mechanization, and apprehension of missing the ‘human touch’ limit the acceptability. Still, AI
proposes to aid the clinician tomorrow with precision cardiology, paving a way for extremely efficient
human-error-free health care.

Keywords: artificial intelligence; pediatric cardiology; pediatric cardiac surgery; machine learning;
congenital heart diseases

J. Clin. Med. 2022, 11, 7072. https://doi.org/10.3390/jcm11237072 https://www.mdpi.com/journal/jcm

https://doi.org/10.3390/jcm11237072
https://doi.org/10.3390/jcm11237072
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0003-0345-3876
https://orcid.org/0000-0003-4002-582X
https://orcid.org/0000-0002-1946-5364
https://orcid.org/0000-0001-8867-7603
https://orcid.org/0000-0003-3772-294X
https://orcid.org/0000-0003-2895-2284
https://orcid.org/0000-0003-3188-2272
https://doi.org/10.3390/jcm11237072
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm11237072?type=check_update&version=1


J. Clin. Med. 2022, 11, 7072 2 of 34

1. Introduction

The discipline of pediatric cardiology has evolved as a specialty over the past 60 years,
deriving its roots from attempts to treat congenital heart diseases [1]. Congenital heart
diseases (CHD), in the wake of the burden of mortality and morbidity they bring in,
have always been an issue of concern. A total of 3.12 million babies in the United States
were born with congenital heart disease, and around 13.3 million individuals are living
with congenital heart anomalies [2]. CHD has a multifactorial etiology that consists of
environmental stressors and genetic factors and accounts for 80% of all forms of CHD [3].
Pediatric heart diseases remain a global burden on health services and are associated with
lifelong comorbidities that carry into adulthood, ultimately decreasing the quality of life
for children [4]. The last decade has seen the increasing prevalence of hypertension and
other ‘adult’ heart diseases among the pediatric population, especially adolescents, which
has counterpoised the falling burden of rheumatic heart disease in the same age group.

Advancements in pediatric cardiology care and surgical technology have helped with
significant reductions in mortality [5,6]. However, while high-income countries saw the
mortality rates of CHD reduce by half, the needs for surgical care and advanced imaging
for pediatric patients are unmet in middle- and lower-income countries [7]. The absence
of a timely diagnosis for suspected pediatric heart diseases significantly delays timely
treatment and often presents a diagnostic dilemma. The clinically suspected diagnosis of
CHD is confirmed by echocardiography, which can even be conducted during pre- and
postnatal screening [8,9]. The diagnosis thus requires adequate clinical suspicion, health
infrastructure, and a skilled workforce [10].

The growth of artificial intelligence (AI) in the context of medicine has contributed
immensely to the streamlining of clinical processes and decision making in health care
since 1960 [11,12]. The concept of machine learning (ML) is integral to the evolution
of AI. ML is defined as the ability of machines to learn tasks from a large amount of
previous data and be able to predict the same for future instances [12]. As a result, AI has
multiple key applications in the diagnosis, surveillance, prevention, and intervention of
congenital heart diseases and has created major advancements in pediatric cardiology as
a specialty [13]. Due to its widespread ability to improve the diagnostic value of cardiac
magnetic resonance imaging (MRI), echocardiograms (ECHO), computer tomography (CT)
scans, and electrocardiographs (ECG), AI can augment the diagnostic accuracy of pediatric
heart diseases [14,15].

While AI has already found its applications in a multitude of specialties, the notion of
its use in almost any medical specialty is conceivable. CHD is an interesting area where AI
can be applied owing to the burden of CHDs in pediatric and adult populations. AI-based
algorithms have expanded their application in various domains of pediatric cardiology
including but not limited to screening, clinical examination, diagnosis, image processing,
prognosis, risk stratification, and precision medicine [12]. Surprisingly, the full extent of AI
applications in all stages of care for patients with congenital heart diseases has not yet been
discussed. Evolving literature has pinpointed the efficiency of machine-learning algorithms
in the interpretation of heart murmurs, a common sign of congenital heart diseases [16–18].
The recent utilization of deep-learning computer networks has demonstrated the ability to
perform MRI segmentation, allowing clinicians to detect valvular defects simultaneously
in all four of the heart’s chambers [19,20].

Based on our knowledge, there is only one systematic analysis of a case series of atrial
septal defect repair with robotic assistance and AI; the full extent of AI applications in
all stages of care for patients with CHD has not yet been discussed. The objective of this
systematic review is to compile all existing literature on AI applications in the specialty
of pediatric cardiology with a focus on CHD. The review will attempt to appraise the
evolving literature and compile clinically relevant data that can serve as a source of health
information for clinicians.
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2. Materials and Methods

We conducted a scoping review in line with the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) guidelines.

2.1. Data Sources and Searches

A literature search was conducted on PubMed, Scopus, and Embase by two authors
(YS, NK) based on the following search terms: (“Artificial intelligence” OR “machine
learning” OR “Deep learning”) AND (“Pediatric cardiology” OR “congenital heart disease”).
The search was also refined using the MeSH Major Topic term “artificial intelligence”.

2.2. Article Selection

Duplicate studies were eliminated after the initial search, and two reviewers (NK,
YS) independently evaluated the title and abstract to see if the articles qualified for a
full-text review. An adjudicator (NP) overcame any disagreements. Both reviewers further
evaluated the entire article in accordance with the inclusion and exclusion criteria for each
potentially eligible study. A comprehensive review was ensured by screening the references
to include additional studies (Figure 1).
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Figure 1. Flow diagram showing selection process of studies included. Figure 1. Flow diagram showing selection process of studies included.

2.3. Inclusion and Exclusion Criteria

The initial search was narrowed down by limiting the search to the English language
and excluding animal studies. We limited our search to studies published between January
2002 and March 2022 because of the rise in interest in AI in the field of pediatric cardiology
over the last 20 years. The inclusion criteria included observational studies (case–control,
case series, and cross-sectional studies), experimental studies (randomized control trials),
reviews, and expert opinions on the application of AI in pediatric cardiology. Studies were
excluded if they lacked direct relevance to AI or were aimed at a population other than
the pediatric (18 years) age group. Studies with no full text available, conference abstracts,
papers, and book chapters were also excluded.

3. Results

The studies describing the role of AI in pediatric cardiology are compiled in Table 1,
while Table 2 describes AI algorithms in pediatric cardiology.
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Table 1. Pediatric Heart diseases and the role of AI.

Serial
No. Authors Study Design References Pediatric Heart

Diseases Covered

Applications of AI

AI in Diagnosis/Fetal Imaging AI in Prognosis/Risk
Stratification AI in Cardiac Intervention

1 Jef Van den
Eynde et al. Review [12] General description Clinical examination and diagnosis;

image processing

Cardiovascular intervention
planning and management;

prognosis and risk
classification.

Omics and precision
medicine; fetal cardiology

2 Jingjing Lv
et al.

Observational
study [21] CHD

AI–AA platform revealed similar
results to the experts’ face-to-face

auscultation and reported high
auscultation accuracy in detecting

aberrant heart sounds.

- -

3 Rhodri Davies
et al. Editorial [22] General description

Minor discernible fluctuations when
ejection fraction was evaluated by a

cardiac MRI expert were 8.7%,
owing primarily to poor

repeatability.
Deep learning enables more

accurate and precise analysis with
quantifiable levels of confidence in

the outcomes.

- -

4 Sharib Gaffar
et al. Review [15] General description -

With the aid of precise
predictive risk calculators,
ongoing health monitoring

from wearables, and precision
medicine, AI can assist in

providing the best possible
patient care.

-



J. Clin. Med. 2022, 11, 7072 5 of 34

Table 1. Cont.

Serial
No. Authors Study Design References Pediatric Heart

Diseases Covered

Applications of AI

AI in Diagnosis/Fetal Imaging AI in Prognosis/Risk
Stratification AI in Cardiac Intervention

5 Yeo et al. Observational
study [23] General description

FINE is an intelligent navigation
technique that automatically

acquires several anatomical views of
the fetal heart during

echocardiography to identify
anomalies therein. In four cases, the
instrument was able to show fetal

heart structural malformations.

- -

6 Arnaout et al. Observational
study [24] General description

Using 685 echocardiograms of
fetuses between 18 and 24 weeks of

gestation, supervised fully
convolutional DL was used to (1)

identify the 5 most crucial views of
the fetal heart; (2) segment and

measure the cardiac structures; and
(3) differentiate between normal

hearts, tetralogy of Fallot, and
hypoplastic left heart syndrome.

- -

7 Dimitris
Bertsimas et al.

Observational
study [25] CHD -

For patients who underwent
congenital heart surgery,

machine learning (ML) models
can predict mortality,

postoperative mechanical
ventilatory support time

(MVST), and hospital length of
stay (congenital heart

surgery).

-
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Table 1. Cont.

Serial
No. Authors Study Design References Pediatric Heart

Diseases Covered

Applications of AI

AI in Diagnosis/Fetal Imaging AI in Prognosis/Risk
Stratification AI in Cardiac Intervention

8
Ulrich

Bodenhofer
et al.

Editorial [25] CHD -

In comparison with existing
risk scores based on logistic
regression on pre-selected
factors, advanced machine
learning is more accurate at

predicting the results of valve
surgery treatments. This
strategy enables training
models for the cohorts of
certain institutions and is

generalizable to other elective
high-risk procedures.

-

9 Shaine A.
Morris et al. Expert opinion [26] CHD

Congenital illness, the most
prevalent and fatal birth defect,

could be more accurately diagnosed
during pregnancy thanks to recent
developments in machine learning.

- -

10 Siti Nurmaini
et al.

Observational
study [20] CHD

Studies based on 1149 fetal heart
images to predict 24 objects,

including 3 congenital heart defect
instances, 17 heart-chamber objects

in each view, and 4 conventional
fetal heart view shapes showed that

the suggested model worked
satisfactorily for segmenting

standard views, with an intersection
over union of 79.97% and a Dice
coefficient similarity of 89.70%.
Automatic segmentation and

detection methods could
significantly increase the number of

CHD diagnoses.

- -
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Table 1. Cont.

Serial
No. Authors Study Design References Pediatric Heart

Diseases Covered

Applications of AI

AI in Diagnosis/Fetal Imaging AI in Prognosis/Risk
Stratification AI in Cardiac Intervention

11 Ai Dozen et al. Observational
study [27] VSD

To calibrate the output of U-net,
cropping-segmentation-calibration

(CSC) uses the time-series
information of videos and specific

section information. The mean
intersections over union (mIoU) of

0.0224, 0.1519, and 0.5543,
respectively, were used to assess the
segmentation outcomes of DeepLab

v3+, U-net, and CSC.

- -

12 Makoto
Nishimori et al. Scientific report [28] Accessory pathway

and WPW syndrome

A multimodal deep learning model
based on 1D-CNN using ECG

waveforms supported with CXR
showed great accuracy in
identifying AP location.

- -

13 Tao Wang et al. Observational
study [29] General description

The adversarial learning mechanism
focusing on the overall spatial

structure and context consistency of
myocardium showed more accuracy

than the conventional method.

- -

14 Yichen Ding
et al.

Observational
study [30] General description

The complete 3-D imaging of
cardiac architecture and mechanics
is made possible using light-sheet

fluorescence microscopy. This
innovative approach offers a solid

foundation for post-light-sheet
image processing and supports

data-driven machine learning for
the automated measurement of

cardiac ultra-structure.

- -
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Table 1. Cont.

Serial
No. Authors Study Design References Pediatric Heart

Diseases Covered

Applications of AI

AI in Diagnosis/Fetal Imaging AI in Prognosis/Risk
Stratification AI in Cardiac Intervention

15 C Decourt et al. Observational
study [31] General description

The identification of the left
ventricle in pediatric MRI using a

generative adversarial network
(GAN) segmentation approach was
useful for the automatic analysis of
cardiac MRI and for carrying out

large-scale investigations based on
MRI reading with a limited amount

of training data.

- -

16 Aapo L. Aro
et al. Editorial [32] ECG

Based on a single 12-lead
electrocardiogram, AI may identify
structural heart problems (AI-ECG).

- -

17 W. Reid
Thompson et al.

Observational
study [33] CHD

An objective evaluation of an
AI-based murmur detection

algorithm showed promising results
with a Sensitivity of 93% (CI

90–95%), specificity of 81% (CI
75–85%), with accuracy 88% (CI

85–91%) for the detection of
pathologic cases. They also

suggested that it could be used to
compare the efficacy of other

algorithms on the same particular
dataset.

- -

18
Saeed Karimi-

Bidhendi
et al.

Observational
study [34] CHD

A GAN was devised that could
accurately to synthetically augment
the training dataset via generating
synthetic CMR images and their

corresponding chamber
segmentations successfully.

- -
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Table 1. Cont.

Serial
No. Authors Study Design References Pediatric Heart

Diseases Covered

Applications of AI

AI in Diagnosis/Fetal Imaging AI in Prognosis/Risk
Stratification AI in Cardiac Intervention

19 Hiroki Mori
et al.

Observational
study [35]

Using a deep learning model
comprising a CNN and LTSMs, the

researchers identified that the AI
algorithm could identify the disease
accurately with more sensitivity and

specificity than pediatric
cardiologists using
electrocardiograms.

- -

20 Benovoy M
et al.

Observational
study [36] Kawasaki disease

The degree of optical
coherence tomography (OCT)
observations of KD-related CA

damage correlates with the
degree of distensibility

changes in the coronary artery
(CA) of Kawasaki disease (KD)

patients. When observed
longitudinally, this reduced

distensibility peaks at 1 year in
KD patients and is more

severe in those with persisting
CA aneurysms.

-

21 Sweatt et al. Observational
study [37] Pulmonary arterial

hypertension

Patients are categorized using
machine learning (consensus

clustering) into proteomic immune
groups (cytokines, chemokines, and

factors using multiplex
immunoassay).

-

Different PAH
immunological phenotypes
with varying clinical risks

are identified by blood
cytokine patterns. These
characteristics may help

with mechanistic research on
the pathobiology of disease
and offer a framework for

analysing patient responses
to newly developed

immunotherapy treatments.
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Table 1. Cont.

Serial
No. Authors Study Design References Pediatric Heart

Diseases Covered

Applications of AI

AI in Diagnosis/Fetal Imaging AI in Prognosis/Risk
Stratification AI in Cardiac Intervention

22 Diller et al. Observational
study [38]

CHD (transposition
of great

arteries—after atrial
switch procedure or

congenitally
corrected TGA).

Use of deep machine learning
algorithms trained on routine

echocardiographic to detect the
diagnosis.

-

Using machine learning
algorithms that have been

trained on common
echocardiographic datasets,
it is possible to determine
the underlying cause of

complex CHD and to
perform a continuous,

automated evaluation of
ventricular function.

23 Li et al. Observational
study [39] CHD -

To find the predictors that
were substantially linked with

CHD, ANN models such as
univariate logistic regression

studies and the traditional
feed-forward

back-propagation neural
network (BPNN) model were
used. Additionally, BPNN can

be utilized to forecast a
person’s risk of CHD.

-

24 Liu et al. Observational
study [7] CHD -

An RCRnet model can
preliminarily identify specific

types of left-to-right shunt
CHD and improve screening

detection rate.

-

25 Tandon et al. Observational
study [40] CHD (rTOF) - -

The new mostly structurally
normal (MSN) algorithm

+ rTOF algorithm showed
improvements in LV

epicardial and RV
endocardial contours
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Table 1. Cont.

Serial
No. Authors Study Design References Pediatric Heart

Diseases Covered

Applications of AI

AI in Diagnosis/Fetal Imaging AI in Prognosis/Risk
Stratification AI in Cardiac Intervention

26 Samad et al. Observational
study [41] CHD (rTOF) -

Regression analysis previously
failed to recognize the value of

baseline variables, but
machine learning pipeline did.
Predictive models could help

organise early interventions in
high-risk individuals.

-

27 Diller et al. Observational
study [42] CHD

Deep learning (DL) algorithms
enhance the de-noising of

transthoracic echocardiographic
images and removing acoustic

shadowing artefacts.

- -

28
Montalt-
Tordera

et al.

Observational
study [43] CHD

Deep learning can improve contrast
in LD cardiovascular magnetic
resonance angiography (MRA)

without sacrificing clinical utility.

- -

29 Junior et al. Observational
study [44] CHD -

Random forest (0.902) (a
statistical model to ascertain

mortality risk) gave top
performing area under the
curve and gave predictive
variables that represented

67.8% of importance for the
risk of mortality in the random

forest algorithm.

-

30 Siontis et al. Observational
study [45] Hypertrophic

cardiomyopathy

A deep-learning AI model can
accurately identify juvenile HCM

using a typical 12 lead ECG.
- -
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Table 1. Cont.

Serial
No. Authors Study Design References Pediatric Heart

Diseases Covered

Applications of AI

AI in Diagnosis/Fetal Imaging AI in Prognosis/Risk
Stratification AI in Cardiac Intervention

31 Tan et al. Observational
study [46] CHD

It is anticipated that a novel
convolution neural network-based
classification algorithm for CHD
will be used in machine-assisted

auscultation because it has
increased heart sound classification
accuracy, specificity, and robustness.

- -

32 Baris Bozkurt
et al.

Observational
study [47] CHD

For automatic structural heart
abnormality risk detection from
digital phonocardiogram (PCG)
signals, sub-band envelopes are

preferred to the most often utilized
features, and period synchronous

windowing is preferred over
asynchronous windowing.

- -

33 Shaan
Khurshid et al.

Observational
study [48] General description

Estimates of the left ventricle’s
mass-produced by deep learning

from 12-lead ECGs and associated
with incident cardiovascular

disease.

- -

34 Sabine Ernst
et al.

Observational
study [49] Intra-atrial baffle

anatomy - -

SVTs might be safely and
effectively eliminated using
remote-controlled catheter

ablation by magnetic
navigation employing a
retrograde strategy and

precise 3D image
integration.

35 Thomas Ernest
Perry et al.

Observational
study [49] General description

To effectively and efficiently utilize
the potential of textual predictors,
the Laplacian eigenmap technique
embeds textual predictors into a

low-dimensional Euclidean space.

- -
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Table 1. Cont.

Serial
No. Authors Study Design References Pediatric Heart

Diseases Covered

Applications of AI

AI in Diagnosis/Fetal Imaging AI in Prognosis/Risk
Stratification AI in Cardiac Intervention

36
Nikolaos

Papoutsidakis
et al.

Observational
study [50] Inherited

Cardiomyopathies

In order to effectively keep
providers informed about

pathogenicity assessments for any
previously found genetic variant,
the Machine-Assisted Genotype

Update System (MAGUS) method
of accessing ClinVar without

specification to any specific gene or
variant is proposed.

- -

37 Shu-Hui Yao
et al.

Observational
study [51] PDA - -

When therapeutic drug
monitoring is unavailable,
the nine-parameter ANN

model is the best alternative
to predict serum digoxin
concentrations in PDA.

38 Zhoupeng Ren
et al.

Observational
study [52] CHD - -

This study’s use of two
machine models reveals a

link between CHDs in
Beijing and maternal
exposure to ambient

particulate matter with an
aerodynamic diameter of

less than 10 m (PM10).

39 Hui Shi et al. Observational
study [53] CHD -

The ML model assists in
deciding on specific therapy

and nutritional follow-up
strategies while making early

forecasts of malnutrition in
children with CHD at 1 year

postoperative.

-
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Table 1. Cont.

Serial
No. Authors Study Design References Pediatric Heart

Diseases Covered

Applications of AI

AI in Diagnosis/Fetal Imaging AI in Prognosis/Risk
Stratification AI in Cardiac Intervention

40 Lei Huang et al. Observational
study [54] CHD - -

In post-Glenn shunt patients
with suspected mean

pulmonary arterial pressure
>15 mmHg, the preoperative

cardiac computed
tomography (CT)-based RF

model exhibits good
performance in the
prediction of mean

pulmonary arterial pressure,
potentially reducing the

requirement for right heart
catheterization.

41
Andreas

Hauptmann
et al.

Observational
study [55] CHD

Real-time radial data artefact
suppression using a residual U-Net
could aid in the widespread use of
real-time CMR in clinical settings.
Children and sick people who are
unable to hold their breath would

benefit most from this.

- -

42 Gerhard-Paul
Diller et al.

Observational
study [56] ACHD - -

Machine learning algorithms
that have been trained on

big datasets can be useful for
estimating prognosis and

possibly directing therapy in
ACHD.
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Table 1. Cont.

Serial
No. Authors Study Design References Pediatric Heart

Diseases Covered

Applications of AI

AI in Diagnosis/Fetal Imaging AI in Prognosis/Risk
Stratification AI in Cardiac Intervention

43 Weize Xu et al. Observational
study [57] CHD

The precise classification of CHD is
completed using a heart sound
segmentation method based on

PCG segment to achieve the
segmentation of cardiac cycles. The
accuracy, sensitivity, specificity, and

f1-score of classification for CHD
are, respectively, 0.953, 0.946, 0.961,
and 0.953, which demonstrate that
the suggested technique performs

competitively.

- -

44
Daniel Ruiz-
Fernández

et al.

Observational
study [58] Pediatric cardiac

surgery -

Future difficulties, or even
death, could be prevented
with the use of AI-based

decision support algorithms
when classifying the risk of

congenital heart surgery.

-

45 Sukrit Narula
et al.

Observational
study [59] HOCM

Using echocardiographic data,
machine learning algorithms can

help distinguish between
physiological and pathological

remodelling patterns in
hypertrophic cardiomyopathy

(HCM) and physiological
hypertrophy seen in athletes (ATH).

- -

46 Sumeet Gandhi
et al. Review [60] Cardiology

Automation has been introduced
into many vendor software systems

to increase the precision and
effectiveness of human

echocardiogram tracings.

- -
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Table 1. Cont.

Serial
No. Authors Study Design References Pediatric Heart

Diseases Covered

Applications of AI

AI in Diagnosis/Fetal Imaging AI in Prognosis/Risk
Stratification AI in Cardiac Intervention

47 Kipp W
Johnson et al. Review [61] Cardiology

Because doctors will be able to
analyze a greater volume of data in
greater depth than ever before, AI

will result in better patient care.
Physicians will benefit from the
streamlined clinical treatment

provided by reinforcement learning
algorithms. Unsupervised learning
developments will allow for a far

more thorough definition of
patients’ problems, which will

ultimately result in a better choice of
treatments and better results.

- -

48 Peter Kokol
et al. Review [62]

Pediatric
developmental

disorders, oncology,
emergencies

The use of AI in pediatrics led to
better clinical outcomes, more

precise and swifter diagnoses, better
decision making, and more sensitive

and specific identification of
high-risk patients.

- -

49 Chen Chen
et al. Review [63] General

Different cardiac anatomical
features, such as the heart ventricle,
atria, and vessels, can be segmented
using deep learning algorithms that
are applied in three main imaging

modalities: MRI, CT, and
ultrasound.

- -

50 Chang AC et al. Editorial [64] Pediatric heart
diseases

The subspecialty that will gain the
most from future technologies and

AI approaches is pediatric
cardiology, hands down.

- -
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Table 1. Cont.

Serial
No. Authors Study Design References Pediatric Heart

Diseases Covered

Applications of AI

AI in Diagnosis/Fetal Imaging AI in Prognosis/Risk
Stratification AI in Cardiac Intervention

51 Diller GP et al. Observational
study [65] TOF -

Automated evaluation of
cardiac magnetic resonance
(CMR) imaging parameters

using machine learning
techniques based in two

dimensions to predict
prognosis in TOF.

In patients with corrected
tetralogy of Fallot,

automated analysis using
machine learning algorithms

may replace
labor-intensively obtained
imaging parameters from

cardiac magnetic resonance
(CMR) (ToF).

52 Eynde J et al. Perspective article [12] CHD -

When AI is combined with
mechanistic models to
describe complicated

interactions among variables,
medically based data can be

utilized to identify trends and
predict late problems such

arrhythmias and congestive
heart failure as well as

survival.

53 Zhang et al. Observational
study [66] TOF - -

The patch size, shape, and
position optimization

technique used in
pulmonary artery-enlarging

repair surgery using
generative adversarial

networks (GANs) is more
accurate and produces

superior clinical results.
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Table 1. Cont.

Serial
No. Authors Study Design References Pediatric Heart

Diseases Covered

Applications of AI

AI in Diagnosis/Fetal Imaging AI in Prognosis/Risk
Stratification AI in Cardiac Intervention

54 Asmare MH
et al.

Observational
study [67] RHD

The automatic auscultation and
categorization of the heart sound as

being normal or rheumatic is
performed using a deep learning
method based on convolutional

neural networks. It is not necessary
to extract the first, second, or

systolic and diastolic heart sounds
when classifying un-segmented

data.

- -

55 Lakhe A et al. Observational
study [68] CHD

An adaptive line enhancement
approach is used by a digital

stethoscope to digitally amplify,
record, examine, play back, and

process heart sounds.

- -

56 A. Arafati Review [69] CHD
AI-based methods for analyzing

cardiac MRI data have the potential
to be very effective and error-free.

- -

57 Pyles Lee at al Observational
study [70] CHD

The viability of using the
cloud-based HeartLink system to
distinguish between pathologic
murmurs caused by CHD and

typical functional cardiac murmurs
was demonstrated in the
proof-of-concept study.

- -

58 Andrisevic N
et al. RCT [71] CHD

With a specificity of 70.5% and a
sensitivity of 64.7%, an AI-based

diagnostic system can distinguish
between healthy, normal heart

sounds and abnormal heart sounds.

- -
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Table 1. Cont.

Serial
No. Authors Study Design References Pediatric Heart

Diseases Covered

Applications of AI

AI in Diagnosis/Fetal Imaging AI in Prognosis/Risk
Stratification AI in Cardiac Intervention

59 M El-Segaier
et al. RCT [72] CHD

First and second heart sounds are
detected by an AI algorithm. As

benchmarks for detection, R- and
T-waves were used.

- -

60 Sukryool Kang
et al.

Observational
study [73] CHD

With 84–93% sensitivity and 91–99%
specificity, the discussed AI

algorithm correctly diagnosed Still’s
murmur using the jackknife
approach based on 87 Still’s

murmurs and 170 non-murmurs.

- -

61
Patricia Garcia-

Canadilla
et al.

Observational
study [74] CHD

By enhancing picture capture,
quantification, and segmentation,

ML methods can enhance the
evaluation of fetal cardiac function
and help with the early detection of

fetal cardiac anomalies and
remodelling.

- -

62 Hong S et al. Review [75] General

ECG tasks including disease
diagnosis, localization, sleep

staging, biometric human
identification, and denoising have

all been tackled using deep learning
systems.

- -

63 Bodenhofer U
et al.

Observational
study [76] CHD

Machine learning technologies can
more accurately predict the results

of valve surgery treatments.
-

Machine learning
technologies can more

accurately predict the results
of valve surgery treatments.

64 Sravani
Gampala et al. Review [77] CHD AI may be useful to radiologists, but

it will not replace them. - -

65 J. van den
Eynde et al. Perspective [78] CHD

Medicine-based evidence has the
potential to transform medical

decision making.
- -
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Table 1. Cont.

Serial
No. Authors Study Design References Pediatric Heart

Diseases Covered

Applications of AI

AI in Diagnosis/Fetal Imaging AI in Prognosis/Risk
Stratification AI in Cardiac Intervention

66 Mingming Ma
et al.

Observational
study [79] Dilated Obstructed

Right Ventricle

Using intelligent navigation
technology to STIC volume datasets,
FINE can produce and show three

unique aberrant fetal
echocardiogram images with

display rates of 84.0%, 76.0%, and
84.0%, respectively, and therefore
may be utilised for screening and

remote consultation of fetal DORV.

- -

67 Zeng X et al. Review [80] CHD - -

For effectively predicting
problems during pediatric

congenital heart surgery, the
machine-learning-based

model incorporates patient
demographics, surgical

factors, and intraoperative
blood pressure data.

68 Lo Muzio FP
et al.

Observational
study [81] CHD - -

AI algorithms can assist
surgeons in making

decisions during open-chest
surgery.

69 Simona Aufiero
et al. [82] Congenital long QT

syndrome
DL models have the potential to

help cardiologists diagnose LQTS. - -

70 Dias RD et al. Review [83] Cardiology

Machine learning will be used in
high-tech operating rooms to
improve intra-operative and

post-operative outcomes.

- -
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Table 1. Cont.

Serial
No. Authors Study Design References Pediatric Heart

Diseases Covered

Applications of AI

AI in Diagnosis/Fetal Imaging AI in Prognosis/Risk
Stratification AI in Cardiac Intervention

71 Wang T et al. Observational
study [84] Kawasaki Disease

A machine learning-based model
based on patient data predicts
intravenous immunoglobulin

resistance in Kawasaki disease.

- -

72
João Francisco

B S Martins
et al.

Observational
study [85] RHD

When the advantage of a 3D
convolutional neural network was
compared with the benefit of 2D

convolutional neural network, the
accuracy was 72.77%.

- -

73 Ghosh P et al. Review [86] MIS-C and Kawasaki
disease

Targetable cytokine pathways
revealed by the ViP signatures in

MIS-C and Kawasaki pinpoint
crucial clinical (reduced cardiac

function) and laboratory
(thrombocytopenia and

eosinopenia) indicators to assist
monitor severity.

- -
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Table 2. AI algorithms in Pediatric Cardiology.

Serial No. Authors Reference AI Algorithms Algorithm Functions Pediatric Pathology
Assessed

1 Rima Arnaout et. al [68] DL Classifier A deep learning classifier model predicting probable diagnostic outcomes
based on real-time imaging or retrospective data Congenital heart diseases

2 Mori H, Inai K, et. al. [35]

Convolutional Neural
Networks (CNN) & Long

Short-term Memory Models
(LSTM)

ECG data utilized by CNN to extract waveform shapes that are further
classified by LSTM to find ECG features predicting pathology Atrial septal defect

3 Zuercher M, Ufkes S,
et.al. [69] Echo-Net Dynamic Model Using an echocardiogram databank with other cardiac parameter data, the

model predicts left ventricular ejection fractions.
LVEF defects in dilated

cardiomyopathies

4 Sepehri AA, Hancq J,
et. al. [70] Arash-Band Method Specific frequency bands, Arash bands, are used to analyze heart sound

energy from pathological murmurs to predict CHDs. Congenital heart diseases

5 Wang SH, Wu K,
Chu T, et al. [29]

Structurally optimized
Stochastic pooling

convolutional neural network

Cardiac magnetic imaging data are classified based on a trained
convolutional neural network that allows TOF diagnosis. Tetralogy of Fallot

6 Ko WY, Siontis KC,
Attia ZI, et al. [71] Convolutional Neural

Network enabled ECG
Utilizing 12-lead ECG data to train a convolutional neural network

resulting in a model that ascertains HCM diagnosis
Hypertrophic

cardiomyopathy

7 DeGroff CG,
Bhatikar S, et al. [72] Artificial Neural Network

(ANN)
Auscultatory data fed into a trained artificial neural network allows

classification of normal vs. pathological heart sounds Pediatric heart murmurs

8 Na JY, Kim D, Kwon
AM, et al. [73] Light Gradient-Boosting

machine (L-GBM)
A decision tree-based algorithm that utilizes prior weaker models to

classify data and predict a diagnosis Patent ductus arteriosus

9 Sepehri AA,
Gharehbaghi A, et. al. [74] Multi-layer Perceptron (MLP)

Neural Network Classifier

An artificial neural network that processes input data through hidden
layers to extract and sort data leading to precise segmentation of heart

sounds
Pediatric heart sounds

10 Chou, FS., Ghimire,
L.V. [75] Random Forest Algorithm A supervised ML algorithm that uses decision trees that are trained using

a combination of learning models to aid in precision diagnostic indicators Pediatric myocarditis

11 Ali F, Hasan B,
Ahmad H, et al. [76]

Long short-term memory
(LSTM) recurrent neural

network

A recurrent neural network which is trained to retain and utilize past
input with concurrent data to recognize patterns for diagnostic predictions

Pediatric rheumatic heart
disease
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3.1. AI and Heart Murmurs

AI has the potential to improve the validity of auscultatory findings for diagnosing
CHD [87–89]. The limitations of objective performance data have restricted wide accept-
ability so far [90–92]. The auscultatory findings of CHD are integral to the clinical diagnosis
and have the benefit of being a low-cost tool, but are subject to clinical expertise, which
becomes a limitation in resource-limited countries and creates a need for support to the clin-
ician [93–96] that is objective and reportable by even peripheral health workers. The lack of
trained cardiologists at the peripheral level leads to an unavoidable miss of a timely clinical
diagnosis of CHD, contributing to delayed intervention and thus a poor prognosis [97].
The emergence of AI-based digital stethoscopes and cloud reporting for telemedicine has
helped with the timely diagnosis and early intervention of CHD in reported samples [68,70].
The AI-based technologies also seem affordable, helping the current interest. The use of an
intelligent diagnostic system based on AI algorithms such as wavelet analysis and artificial
neural networks (Figure 2) has shown a specificity of 70.5% and a sensitivity of 64.7% [71,72].
The developments in AI for detecting cardiac murmurs have shown promise in terms of
sensitivity but still require clinical validation before wide clinical recommendation [73,98].
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3.2. Image Processing with AI
3.2.1. Chest X-ray

CHDs present with some classical chest x-ray signs that can help with suspicion of
the disease, including boot-shaped heart (Tetralogy of Fallot), egg-on-string (Transposition
of Great Arteries), snowman sign (Total Anomalous Pulmonary Venous Return), scim-
itar sign (Partial Anomalous Pulmonary Venous Return), gooseneck sign (Endocardial
cushion defects), a figure of three (Coarctation of Aorta) and box-shaped hear (Ebstein
anomaly) [99]. Chest radiography being easy, cost-effective, and readily available allows a
direct or collaborative diagnostic approach to CHD. The evolution of deep learning models
and machine learning models and the establishment of defined pediatric datasets have
allowed the entry of AI for use in the pediatric population [74]. AI can be immensely
beneficial in various steps of imaging such as ordering tests, reporting communication,
enhancing the quality of images, and aiding radiologists in interpreting images [77].

3.2.2. MRI

Cardiac MRI has evolved as a precise method for structural and functional evaluations
of the heart [100]. The technology has evolved over the years from traditional techniques
such as cardiac gating and the suspension of breathing to newer advanced techniques
of high-field-strength magnets, high-performance gradient hardware and ultrafast pulse
sequences. In the discipline of magnetic resonance imaging, the advancement of AI has
allowed for shorter scan times, resulting in higher patient satisfaction; it also reduces errors
by minimizing motion artefacts caused by patient movement. The segmentation of cardiac
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chambers helps visualize them better and aids in diagnosis. Currently, we do this manually,
and a shift to AI will help with a faster diagnosis and reduce variation between different
analysts [69].

3.2.3. Echocardiography

New AI-based technologies have revolutionized modern medicine in obtaining fe-
tal echocardiograms with improved precision and accuracy. Combining it with machine
learning has been quintessential in making predictions of future variables associated with
disease progression using retrospective patient data. It has helped in eliminating limi-
tations associated with a lack of expertise in fetal echocardiology, fetal movements, and
fetal heart size [19,74]. Machine learning-based systems have been useful in differentiat-
ing pathological versus physiological hypertrophic remodeling of the heart [59]. Deep
learning models have demonstrated superiority in terms of sensitivity and specificity up
to 76% and 88%, respectively, in diagnosing atrial septal defect (ASD) compared with
pediatric cardiologists who demonstrated sensitivity and specificity of 53% ± 0.04 and
67% ± 0.10 respectively [35]. Automation, AI, and machine learning are game-changing as
complementary tools to physicians and in areas with limited expert medical personnel or
cardiologists [60]. Fetal intelligent navigation echocardiography (FINE) has presented as
a novel method for fetal echocardiography using “intelligent navigation” technology to
obtain nine standard views—four-chamber, aortic arch, three vessels, and trachea—and
display abnormalities with great sensitivity helping to detect CHD [23,79].

3.2.4. ECG

The use of deep learning (DL), an application of AI, in the field of adult cardiology has
been well studied [64]. Its application in pediatric cardiology has become especially relevant
due to its potential for allowing early diagnosis, and thus better prognosis, in congenital
heart diseases (CHDs). DL models such as convolutional neural network (CNN) and
recurrent neural network (RNN) are used in conjunction with electrocardiograms, which
remain the staple diagnostic tool for CHDs, to provide enhanced diagnostic information
that is otherwise only deduced with input from specialists [35]. Convolutional neural
networks can perform image processing and classification, providing an advantage of
extracting additional ECG information that would otherwise either be undetected [82].
While the efficiency and utility of using AI models with ECGs for CHDs is evident, the
enhancement of the interpretability and training of deep learning models is still needed for
widespread implementation [75].

3.3. Prognosis and Risk Stratification

AI-based algorithms have proven to be of great help for pediatric cardiology in
the clinical examination, diagnosis, procedural planning, and management of cardiac
interventions [12]. AI models have also aided with the extraction of patient data for risk
stratification and ambulatory health monitoring from wearables [15]. Machine learning
(ML)-based models such as optimal classification trees (OCTs) have accurately predicted
mortality, postoperative mechanical ventilatory support time (MVST), and hospital length
of stay (LOS) even with nonlinear data in patients with a history of congenital heart
surgery [25]. Similarly, ML algorithm-based models, extreme gradient boosting (XGBoost),
and RCRnet have accurately predicted preoperative mortality odds in patients with CHDs
and statistically significant prognostic indicators along with risk stratification markers
in patients with Tetralogy of Fallot and left-to-right shunt CHDs, respectively [41,53].
Importantly, the far-reaching utility of AI-based models in risk stratification and prognostic
predictions is the trainability of models to work with various data cohorts [76].

3.4. Planning and Management of Cardiac Interventions

The current approach to planning and the execution of interventions in CHD relies
primarily on generic treatment protocols derived from biological data and set guidelines.
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As such, there is a lack of tailor-made interventions based on each patient, which would
drastically improve outcomes and post-intervention prognosis [78]. Artificial intelligence
(AI), with its applications in the form of machine learning (ML) and deep learning (DL)
among many, has emerged as a tool aiding the creation of personalized intervention plans
as well as an accurate data extractor to ascertain potential post-operative sequelae [80].
The supervised machine learning models such as k-nearest neighbor classifier (KNN) and
support vector machine classifier (SVM) have also aided in the intra-operative assessment
of cardiac fluid kinematics, which are significant determinants of successful congenital
heart surgeries [81]. The subsequent post-operative management of CHDs is imperative
for maintaining the structural fluid dynamics and thus the prognosis. This could be done
seamlessly with the help of recurrent neural networks based on ML models and deep
learning models, allowing for an integrated system that can enhance survival outcomes in
pediatric patients [101].

3.5. AI in Cardiac Surgeries

AI can revolutionize pediatric surgery in all stages of surgery: preoperative, intraoper-
ative and post-operative. Preoperative risk assessment and decision-making can be made
easier by the tremendous processing and analyzing capacity of AI-enabled algorithms. Sur-
gical decision support systems using ANN can predict post-op outcomes and can prevent
morbidity and mortality arising from poor risk assessment pre-operatively.

Tech-enhanced (Hitech) operation theaters can enable intraoperative interventions and
decision support [83,102] and bring about a paradigm shift in telesurgery; it is especially
useful in cardiac surgeries, where manual segmentation of retrieved images (CT/MRI)
can take an unreasonable amount of time. Humans embarked on this path successfully
when Xiaowei Xu et al. utilized AI to perform a cardiac surgery remotely in a patient
having complications of long-standing ASD through the backbone of 5G technology. This
was possible since AI replaced manual segmentation and provided accurate results in just
two minutes compared to the traditional manual segmentation which takes 2–3 h even by
experts [69]. In this situation, the authors helped a patient who could not be transported to
another hospital due to her frail condition; we can extend the same advantage to a remote
inaccessible location especially in rural areas and developing countries [103].

Postoperative AI can help in various aspects such as ambulatory patient monitoring
post-discharge with AI wearables and automated risk stratification of patients to enable
stricter follow-ups. Mahayni AA et al. described an ECG based AI algorithm that predicts
ventricular dysfunction post-surgery, predicts long-term mortality in cardiac surgeries.
Such algorithms can be developed and implemented for pediatric surgical procedures and
drastically improve surgical outcomes [104].

3.6. AI in other Pediatric Heart Diseases

Kawasaki disease (KD) is an acquired pediatric vasculitis that can lead to coronary
artery aneurysms and acute coronary syndrome [105]. Very little is known about the
pathogenesis of Kawasaki disease but a recent study using AI-guided signatures reveals a
shared pathology with Multisystem inflammatory syndrome in children (MIS-C), COVID-
19 associated vasculitis in children. Both these syndromes share systemic inflammatory
storm with similar cytokines such as IL15/IL15RA. Such AI-based investigative approaches
will further elucidate its complex pathogenesis and help decipher novel diagnostic and
therapeutic targets [86].

The appropriate and timely management of Kawasaki disease can significantly reduce
the coronary complications associated with Kawasaki disease which contribute greatly to
mortality in adulthood [106]. AI-based approaches can prove to be extremely crucial in
predicting the risk of developing a coronary aneurysm. It is widely known that Kawasaki
patients with intravenous immunoglobulin resistance are at a higher risk of developing
coronary artery aneurysms, but most scoring models present for predicting the resistance
are impractical. Wang T et al. describe a machine learning-based model on patient data
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that can predict intravenous immunoglobulin resistance in Kawasaki disease patients
successfully. The scope for several such prediction models is possible with the advent of AI
and can support clinical decisions to improve patient outcomes [84].

Distensibility changes in a coronary artery can be used to predict acute coronary
disease in these patients. Benovoy M et al. calculated these changes in KD using an
automated deep learning approach and correlated it with the severity of OCT (Optical
coherence tomography) findings of KD-related CA damage [36]. Despite, the limited
studies using AI-based approaches, AI has the potential to revolutionize risk stratification
and prognosis estimation of Kawasaki disease as well as paving way for newer drug targets
by elucidating the pathogenesis.

RHD—The screening of RHD requires the clinician’s expertise, and hence the grass-
root level is limited by a lack of skilled human resources. Automatic diagnosis of echo-
detected RHD is feasible and can form the core of the screening programs of the future
covering the workload of experts [85]. Recent data has also shown promise for a convolu-
tional neural network-based deep learning algorithm to identify heart sounds as ‘rheumatic’
with an overall accuracy of 96.1% having 94.0% sensitivity and 98.1% specificity [67]. There-
fore, AI can form the backbone of future global screening programs for RHD.

3.7. AI Algorithms in Pediatric Cardiology

In many areas of pediatric cardiology, AI-based algorithms can be beneficial, including:
(1) clinical examination and diagnosis, (2) image processing, (3) fetal cardiology, (4) prog-
nosis and risk stratification, (5) precision cardiology, and (6) planning and management
of cardiac interventions. Machine learning algorithms are a very promising tool for di-
agnosing and assessing critical and non-critical CHD; however, extensive research is still
required to develop interpretable, robust, and generalizable models for clinical application,
especially in light of the extreme heterogeneity of complex CHD. Various such AI algorithm
models have gained interest over the past decade, and the present time has seen many
motivating developments. The most relevant ones for our discussion are summarized in
Table 2 and Figure 3.
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4. Discussion

AI is rapidly growing, and its significance in clinical practice cannot be negated. It
plays a crucial part in augmenting and standardizing care by adding to a physician’s skills
and expertise. The role of AI in pediatric cardiology has greatly evolved over the past
two decades (Figure 4). It picks up subtle or unrecognizable features, preventing missed
diagnoses and leading to a better prognosis. Physicians can combine their clinical expertise
with AI to enhance their outputs in the domains of prevention, predictive intervention, and
health maintenance. AI can make use of continuous data received from wearable devices
to offer insight into patients’ behaviors and health trends. These features of AI empower
the professional to provide the best care to the patient earlier in the course of the disease,
helping to improve prognosis and leading to better outcomes.
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The current AI-based applications have greatly enhanced the diagnostics and prognos-
tic areas of pediatric cardiology. The applications with the most promising potential are:

(1) AI prediction algorithms: AI prediction algorithms can help assess patients’ risk based
on left ventricular ejection fraction and predict post-surgery mortality outcomes based
on predefined criteria.

(2) Wearables: Wearables and mobile monitoring devices can help with ambulatory
monitoring and early diagnosis. They can also help in educating patients about
lifestyle modifications and health promotion.

(3) EMR: Real-time analysis and the clustering of patients through EMR can help formu-
late research questions and aid the applicability of precision medicine.
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(4) Electrocardiography: ECG processing and classification based on deep learning-based
algorithms can aid diagnosis.

(5) Echocardiography: Deep learning-based programs such as FINE can also help process
echo images to enhance the precision of detection of abnormalities.

(6) Auscultation: AI algorithms such as wavelet analysis and ANN with digital stetho-
scopes promise to improve the accuracy of detecting abnormal heart sounds
(murmurs).

AI seems to be the tool of rich and economically advanced countries, but it can be
the magic wand for risk stratification troubles in lower- and middle-income countries
(LMICs). AI has the potential to reduce global health inequalities [107]. It can help serve
LMICs by bridging gaps in equity, availability, affordability, and accessibility [108]. For
instance, the major addition of AI is a reduction in the costs of dimensions requiring
expensive equipment and specialized expertise, including tools of screening and planning
that are unavailable in most hospitals, especially in LMICs. AI-based innovations can help
overcome resource-constrained environments.

The advent of AI has allowed smart tools to assist peripheral health workers in helping
with a rough screening at the doorstep and in peripheral areas having poor doctor–patient
ratios [60]. The availability of skilled cardiologists to diagnose CHD in remote locations
will require a giant leap in these countries. AI-based medical equipment can aid peripheral
health care providers in helping with screening and referral. It can also help in terms
of teleconsultation and remote radiology [109]. Furthermore, with the availability of AI-
based chatbots or virtual avatars and characters, we can offer greater help to populations
suffering from stigmatizing pathologies (such as HIV/AIDS and psychiatric pathologies).
This therefore can aid in improving access to health care and follow-up services. One of the
biggest challenges to health care is language, with improving translation tools, AI can help
cover this area well too [110].

4.1. AI: An Efficient Physician Assistant

The full-blown implementation of AI still is resisted by physicians and health care
staff fearing inaccuracies, the exclusion of social variables, and possible unemployment.
The mechanization of health care, loss of empathy, and human touch to this extent often
invite skepticism from the traditional medical community. Despite the fear-mongering
and skepticism of loss of human touch and jobs, we opine AI can be an efficient aid to
physicians rather than a replacement [111]. It can streamline insurance reviews, provide
real-time data analysis, and assist in research. It can reduce the burden on physicians
and burnout rates in the medical community. Thus, application in appropriate areas can
contribute to the overall enhancement of health care delivery and experience [13].

4.2. Challenges to AI in Pediatric Cardiology

The incorporation of AI into pediatric cardiology has several challenges. The data
available for pediatric cardiology is still very limited which is necessary to train AI algo-
rithms to identify, assess and reduce inherent biases and overfitting. Furthermore, the
heterogeneity in cardiac anatomy and the rarity of individual disease entities make data
accessibility and AI incorporation into pediatric cardiology difficult. We can cater to this
limitation by pooling data from all the different hospitals to get a large data set [19]. Imag-
ing in the pediatric population has another challenge owing to their smaller size and
frequent movements during imaging, which lead to higher motion artifacts. This poses a
technical challenge, for instance, requiring higher spatial resolution in the MRI [69].

The doctor and patient may hesitate to use AI to replace the current protocols. The
incorporation of AI will require health care providers to learn interpret data and accurately
understand the many model parameters or model architectures. This challenge is being
tackled in different ways. For example, some works have incorporated more intuitive
interfaces in the models aiding easier interpretation [75].
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Additionally, AI is evolving and several ethical concerns are arising. These concerns
include informed consent to data access, data security and privacy, algorithm fairness and
biases, and transparency [112]. Currently, there are no well-defined laws or regulations
in place to address the legal and ethical issues that may arise with AI use in health care
settings. However, as AI continues to grow and be used, laws and regulations can certainly
be explored to ensure algorithmic transparency and protect data privacy.

5. Conclusions

AI can be touted as the next revolution in medicine. From making physicians’ lives
easier to enabling research with ease, it has variegated applications in the working en-
vironment as well as in the management of patients. Pediatric cardiology is a specialty
requiring a great skill set in cognition and interpretation which makes it an ideal candidate
for AI incorporation. AI has been successfully integrated into clinical examination, image
interpretation, diagnoses, prognosis, risk stratification, precision medicine, and treatment
in pediatric cardiology. The advent of AI has facilitated medicine to be more accurate
and precise, but it is still a work in progress with challenges and limitations. Despite the
roadblocks, we optimistically opine that AI with its current pace will streamline approaches
in pediatric cardiology.
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