Peak Plasma Levels of mtDNA Serve as a Predictive Biomarker for COVID-19 in-Hospital Mortality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Processing
2.3. Coagulation Analysis
2.4. Laboratory Parameters
2.5. MtDNA Quantification
2.6. Statistical Analysis
3. Results
3.1. ND1 mtDNA Quantification
3.2. Platelet Impedance Aggregometry
3.3. Rotational Thromboelastometry
3.4. Mortality Prediction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organisation. Coronavirus Disease (COVID-19) Weekly Epidemiological Update. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (accessed on 2 September 2022).
- Puelles, V.G.; Lütgehetmann, M.; Lindenmeyer, M.T.; Sperhake, J.P.; Wong, M.N.; Allweiss, L.; Chilla, S.; Heinemann, A.; Wanner, N.; Liu, S.; et al. Multiorgan and Renal Tropism of SARS-CoV-2. N. Engl. J. Med. 2020, 383, 590–592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tecson, K.M.; McCullough, P.A. Endothelial dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy. Rev. Cardiovasc. Med. 2020, 21, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, A.; Vecchié, A.; Dagna, L.; Martinod, K.; Dixon, D.L.; van Tassell, B.W.; Dentali, F.; Montecucco, F.; Massberg, S.; Levi, M.; et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol. 2021, 21, 319–329. [Google Scholar] [CrossRef]
- Evans, P.C.; Rainger, G.E.; Mason, J.C.; Guzik, T.J.; Osto, E.; Stamataki, Z.; Neil, D.; Hoefer, I.E.; Fragiadaki, M.; Waltenberger, J.; et al. Endothelial dysfunction in COVID-19: A position paper of the ESC Working Group for Atherosclerosis and Vascular Biology, and the ESC Council of Basic Cardiovascular Science. Cardiovasc. Res. 2020, 116, 2177–2184. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 2020, 383, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Huang, S.; Yin, L. The cytokine storm and COVID-19. J. Med. Virol. 2021, 93, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Ponti, G.; Maccaferri, M.; Ruini, C.; Tomasi, A.; Ozben, T. Biomarkers associated with COVID-19 disease progression. Crit. Rev. Clin. Lab. Sci. 2020, 57, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Schwab, P.; Mehrjou, A.; Parbhoo, S.; Celi, L.A.; Hetzel, J.; Hofer, M.; Schölkopf, B.; Bauer, S. Real-time prediction of COVID-19 related mortality using electronic health records. Nat. Commun. 2021, 12, 1058. [Google Scholar] [CrossRef]
- Gallo Marin, B.; Aghagoli, G.; Lavine, K.; Yang, L.; Siff, E.J.; Chiang, S.S.; Salazar-Mather, T.P.; Dumenco, L.; Savaria, M.C.; Aung, S.N.; et al. Predictors of COVID-19 severity: A literature review. Rev. Med. Virol. 2021, 31, 1–10. [Google Scholar] [CrossRef]
- Denning, N.-L.; Aziz, M.; Gurien, S.D.; Wang, P. DAMPs and NETs in Sepsis. Front. Immunol. 2019, 10, 2536. [Google Scholar] [CrossRef]
- McIlroy, D.J.; Jarnicki, A.G.; Au, G.G.; Lott, N.; Smith, D.W.; Hansbro, P.M.; Balogh, Z.J. Mitochondrial DNA neutrophil extracellular traps are formed after trauma and subsequent surgery. J. Crit. Care 2014, 29, 1133.e1–1133.e5. [Google Scholar] [CrossRef] [Green Version]
- Schneck, E.; Edinger, F.; Hecker, M.; Sommer, N.; Pak, O.; Weissmann, N.; Hecker, A.; Reichert, M.; Markmann, M.; Sander, M.; et al. Blood Levels of Free-Circulating Mitochondrial DNA in Septic Shock and Postsurgical Systemic Inflammation and Its Influence on Coagulation: A Secondary Analysis of a Prospective Observational Study. J. Clin. Med. 2020, 9, 2056. [Google Scholar] [CrossRef]
- Nakahira, K.; Kyung, S.-Y.; Rogers, A.J.; Gazourian, L.; Youn, S.; Massaro, A.F.; Quintana, C.; Osorio, J.C.; Wang, Z.; Zhao, Y.; et al. Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: Derivation and validation. PLoS Med. 2013, 10, e1001577; discussion e1001577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scozzi, D.; Cano, M.; Ma, L.; Zhou, D.; Zhu, J.H.; O′Halloran, J.A.; Goss, C.; Rauseo, A.M.; Liu, Z.; Sahu, S.K.; et al. Circulating mitochondrial DNA is an early indicator of severe illness and mortality from COVID-19. JCI Insight 2021, 6, e143299. [Google Scholar] [CrossRef] [PubMed]
- van Veenendaal, N.; Scheeren, T.W.L.; Meijer, K.; van der Voort, P.H.J. Rotational thromboelastometry to assess hypercoagulability in COVID-19 patients. Thromb. Res. 2020, 196, 379–381. [Google Scholar] [CrossRef] [PubMed]
- Creel-Bulos, C.; Auld, S.C.; Caridi-Scheible, M.; Barker, N.A.; Friend, S.; Gaddh, M.; Kempton, C.L.; Maier, C.L.; Nahab, F.; Sniecinski, R. Fibrinolysis Shutdown and Thrombosis in a COVID-19 ICU. Shock 2021, 55, 316–320. [Google Scholar] [CrossRef]
- Ibañez, C.; Perdomo, J.; Calvo, A.; Ferrando, C.; Reverter, J.C.; Tassies, D.; Blasi, A. High D dimers and low global fibrinolysis coexist in COVID19 patients: What is going on in there? J. Thromb. Thrombolysis 2021, 51, 308–312. [Google Scholar] [CrossRef]
- Collett, L.W.; Gluck, S.; Strickland, R.M.; Reddi, B.J. Evaluation of coagulation status using viscoelastic testing in intensive care patients with coronavirus disease 2019 (COVID-19): An observational point prevalence cohort study. Aust. Crit. Care 2021, 34, 155–159. [Google Scholar] [CrossRef]
- Kruse, J.M.; Magomedov, A.; Kurreck, A.; Münch, F.H.; Koerner, R.; Kamhieh-Milz, J.; Kahl, A.; Gotthardt, I.; Piper, S.K.; Eckardt, K.-U.; et al. Thromboembolic complications in critically ill COVID-19 patients are associated with impaired fibrinolysis. Crit. Care 2020, 24, 676. [Google Scholar] [CrossRef]
- Mitrovic, M.; Sabljic, N.; Cvetkovic, Z.; Pantic, N.; Zivkovic Dakic, A.; Bukumiric, Z.; Libek, V.; Savic, N.; Milenkovic, B.; Virijevic, M.; et al. Rotational thromboelastometry (ROTEM) profiling of COVID-19 patients. Platelets 2021, 32, 690–696. [Google Scholar] [CrossRef]
- Corrêa, T.D.; Cordioli, R.L.; Campos Guerra, J.C.; Caldin da Silva, B.; Dos Reis Rodrigues, R.; de Souza, G.M.; Midega, T.D.; Campos, N.S.; Carneiro, B.V.; Campos, F.N.D.; et al. Coagulation profile of COVID-19 patients admitted to the ICU: An exploratory study. PLoS ONE 2020, 15, e0243604. [Google Scholar] [CrossRef]
- Hulshof, A.-M.; Brüggemann, R.A.G.; Mulder, M.M.G.; van de Berg, T.W.; Sels, J.-W.E.M.; Olie, R.H.; Spaetgens, B.; Streng, A.S.; Verhezen, P.; van der Horst, I.C.C.; et al. Serial EXTEM, FIBTEM, and tPA Rotational Thromboelastometry Observations in the Maastricht Intensive Care COVID Cohort-Persistence of Hypercoagulability and Hypofibrinolysis Despite Anticoagulation. Front. Cardiovasc. Med. 2021, 8, 654174. [Google Scholar] [CrossRef]
- Almskog, L.M.; Wikman, A.; Svensson, J.; Wanecek, M.; Bottai, M.; van der Linden, J.; Ågren, A. Rotational thromboelastometry results are associated with care level in COVID-19. J. Thromb. Thrombolysis 2021, 51, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Al-Samkari, H.; Karp Leaf, R.S.; Dzik, W.H.; Carlson, J.C.T.; Fogerty, A.E.; Waheed, A.; Goodarzi, K.; Bendapudi, P.K.; Bornikova, L.; Gupta, S.; et al. COVID-19 and coagulation: Bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood 2020, 136, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Schneck, E.; Muelich, M.; Markmann, M.; Edinger, F.; Cooper, N.; Moeller, A.; Bein, G.; Hecker, A.; Koch, C.; Sander, M.; et al. Combined Administration of Fibrinogen and Factor XIII Concentrate Does Not Improve Dilutional Coagulopathy Superiorly Than Sole Fibrinogen Therapy: Results of an In-Vitro Thrombelastographic Study. J. Clin. Med. 2021, 10, 2068. [Google Scholar] [CrossRef] [PubMed]
- Johansson, P.I.; Nakahira, K.; Rogers, A.J.; McGeachie, M.J.; Baron, R.M.; Fredenburgh, L.E.; Harrington, J.; Choi, A.M.K.; Christopher, K.B. Plasma mitochondrial DNA and metabolomic alterations in severe critical illness. Crit. Care 2018, 22, 360. [Google Scholar] [CrossRef] [Green Version]
- Chiu, R.W.K.; Chan, L.Y.S.; Lam, N.Y.L.; Tsui, N.B.Y.; Ng, E.K.O.; Rainer, T.H.; Lo, Y.M.D. Quantitative analysis of circulating mitochondrial DNA in plasma. Clin. Chem. 2003, 49, 719–726. [Google Scholar] [CrossRef] [Green Version]
- Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar] [CrossRef]
- Hepokoski, M.L.; Odish, M.; Lam, M.T.; Coufal, N.G.; Rolfsen, M.L.; Shadel, G.S.; Moyzis, A.G.; Sainz, A.G.; Takiar, P.G.; Patel, S.; et al. Absolute quantification of plasma mitochondrial DNA by droplet digital PCR marks COVID-19 severity over time during intensive care unit admissions. Am. J. Physiol. -Lung Cell. Mol. Physiol. 2022, 323, L84–L92. [Google Scholar] [CrossRef]
- Andargie, T.E.; Tsuji, N.; Seifuddin, F.; Jang, M.K.; Yuen, P.S.; Kong, H.; Tunc, I.; Singh, K.; Charya, A.; Wilkins, K.; et al. Cell-free DNA maps COVID-19 tissue injury and risk of death and can cause tissue injury. JCI Insight 2021, 6, e147610. [Google Scholar] [CrossRef] [PubMed]
- Borges, L.; Pithon-Curi, T.C.; Curi, R.; Hatanaka, E. COVID-19 and Neutrophils: The Relationship between Hyperinflammation and Neutrophil Extracellular Traps. Mediators Inflamm. 2020, 2020, 8829674. [Google Scholar] [CrossRef] [PubMed]
- Szturmowicz, M.; Demkow, U. Neutrophil Extracellular Traps (NETs) in Severe SARS-CoV-2 Lung Disease. Int. J. Mol. Sci. 2021, 22, 8854. [Google Scholar] [CrossRef] [PubMed]
- Wargodsky, R.; Dela Cruz, P.; LaFleur, J.; Yamane, D.; Kim, J.S.; Benjenk, I.; Heinz, E.; Irondi, O.O.; Farrar, K.; Toma, I.; et al. RNA Sequencing in COVID-19 patients identifies neutrophil activation biomarkers as a promising diagnostic platform for infections. PLoS ONE 2022, 17, e0261679. [Google Scholar] [CrossRef] [PubMed]
- Sabbatinelli, J.; Matacchione, G.; Giuliani, A.; Ramini, D.; Rippo, M.R.; Procopio, A.D.; Bonafè, M.; Olivieri, F. Circulating biomarkers of inflammaging as potential predictors of COVID-19 severe outcomes. Mech. Ageing Dev. 2022, 204, 111667. [Google Scholar] [CrossRef]
- Prével, R.; Dupont, A.; Labrouche-Colomer, S.; Garcia, G.; Dewitte, A.; Rauch, A.; Goutay, J.; Caplan, M.; Jozefowicz, E.; Lanoix, J.-P.; et al. Plasma Markers of Neutrophil Extracellular Trap Are Linked to Survival but Not to Pulmonary Embolism in COVID-19-Related ARDS Patients. Front. Immunol. 2022, 13, 851497. [Google Scholar] [CrossRef]
- Fernández, S.; Moreno-Castaño, A.B.; Palomo, M.; Martinez-Sanchez, J.; Torramadé-Moix, S.; Téllez, A.; Ventosa, H.; Seguí, F.; Escolar, G.; Carreras, E.; et al. Distinctive Biomarker Features in the Endotheliopathy of COVID-19 and Septic Syndromes. Shock 2022, 57, 95–105. [Google Scholar] [CrossRef]
- Engelmann, B.; Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 2013, 13, 34–45. [Google Scholar] [CrossRef]
- Long, G.; Gong, R.; Wang, Q.; Zhang, D.; Huang, C. Role of released mitochondrial DNA in acute lung injury. Front. Immunol. 2022, 13, 973089. [Google Scholar] [CrossRef]
- Riley, J.S.; Tait, S.W. Mitochondrial DNA in inflammation and immunity. EMBO Rep. 2020, 21, e49799. [Google Scholar] [CrossRef]
- Bhagirath, V.C.; Dwivedi, D.J.; Liaw, P.C. Comparison of the Proinflammatory and Procoagulant Properties of Nuclear, Mitochondrial, and Bacterial DNA. Shock 2015, 44, 265–271. [Google Scholar] [CrossRef]
- Schneck, E.; Mallek, F.; Schiederich, J.; Kramer, E.; Markmann, M.; Hecker, M.; Sommer, N.; Weissmann, N.; Pak, O.; Michel, G.; et al. Flow Cytometry-Based Quantification of Neutrophil Extracellular Traps Shows an Association with Hypercoagulation in Septic Shock and Hypocoagulation in Postsurgical Systemic Inflammation-A Proof-of-Concept Study. J. Clin. Med. 2020, 9, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, J.; Notz, Q.; Schlesinger, T.; Stumpner, J.; Kredel, M.; Sitter, M.; Schmid, B.; Kranke, P.; Schulze, H.; Meybohm, P.; et al. Point of care diagnostic of hypercoagulability and platelet function in COVID-19 induced acute respiratory distress syndrome: A retrospective observational study. Thromb. J. 2021, 19, 39. [Google Scholar] [CrossRef] [PubMed]
- Heinz, C.; Miesbach, W.; Herrmann, E.; Sonntagbauer, M.; Raimann, F.J.; Zacharowski, K.; Weber, C.F.; Adam, E.H. Greater Fibrinolysis Resistance but No Greater Platelet Aggregation in Critically Ill COVID-19 Patients. Anesthesiology 2021, 134, 457–467. [Google Scholar] [CrossRef] [PubMed]
Patients with COVID-19 (n = 29) | Controls (n = 29) | ||
---|---|---|---|
General characteristics | |||
Age (year) | 70 (59–80) | 70 (58–79) | |
Male sex (%) | 65.5 | 65.5 | |
BMI (kg/m2) | 28.4 (24.2–30.5) | 29.7 (26.8–32.0) | |
ARDS | Admission | 7 (24.1%), 7 (24.1%), 9 (31.0%), 6 (20.7%) | NA |
(no, mild) | 24 h | 5 (20.0%), 3 (12.0%), 13 (52.0%), 4 (16.0%) | NA |
(moderate, severe) | 72 h | 5 (20.8%), 4 (16.7%), 13 (54.1%), 2 (8.3%) | NA |
Murray score | Admission | 1.9 (1.3–2.5) | NA |
24 h | 1.8 (1.3–2.5) | NA | |
72 h | 2.3 (1.7–2.6) | NA | |
SOFA score | Admission | 7.0 (5.0–9.0) | NA |
24 h | 6.0 (5.0–8.0) | NA | |
72 h | 6.5 (4.0–8.3) | NA | |
In-hospital mortality | 16 (55.2%) | 0 (0.0%) | |
Pre-existing diseases | |||
CAD | 8 (27.6%) | 8 (27.6%) | |
Arterial hypertension | 25 (86.2%) | 25 (86.2%) | |
Diabetes mellitus | 14 (48.3%) | 14 (48.3%) | |
Chronic kidney disease | 5 (17.2%) | 5 (17.2%) | |
Anticoagulation | |||
Prophylactic | Admission | 16 (55.2%) | 0 (0.0%) |
24 h | 9 (36.0%) | NA | |
72 h | 8 (33.3%) | NA | |
Therapeutic | Admission | 13 (44.8%) | 0 (0.0%) |
24 h | 16 (64.0%) | NA | |
72 h | 13 (54.2%) | NA | |
Heparin | Admission | 5.7 (5.0–10.0) | 0 (0–0) |
(I.U./kg/d) | 24 h | 7.3 (4.8–11.4) | NA |
72 h | 8.7 (4.3–12.3) | NA | |
Enoxaparin | Admission | 1.1 (0.8–1.5) | 0 (0–0) |
(mg/kg/d) | 24 h | 1.4 (1.0–1.8) | NA |
72 h | 1.4 (1.1–1.9) | NA | |
ICU treatment | |||
NIV | Admission | 11 (37.9%) | |
24 h | 11 (44.0%) | ||
72 h | 5 (20.8%) | ||
INV | Admission | 7 (24.1%) | |
24 h | 9 (36.0%) | ||
72 h | 14 (58.3%) | ||
ECMO | Admission | 1 (3.4%) | |
24 h | 2 (8.0%) | ||
72 h | 3 (12.5%) | ||
Dialysis | Admission | 3 (10.3%) | |
24 h | 5 (20.0%) | ||
72 h | 7 (29.2%) |
Parameter | Timepoint | AUC | Cut off | Specificity | Sensitivity |
---|---|---|---|---|---|
mtDNA level | All | 0.73 (0.61–0.73) | 638 | 0.88 | 0.48 |
mtDNA level | t0 | 0.73 (0.54–0.73) | 681 | 0.92 | 0.50 |
mtDNA level | t24 | 0.90 (0.75–0.90) | 420 | 1.00 | 0.86 |
mtDNA level | t72 | 0.50 (0.25–0.50) | 467 | 0.60 | 0.57 |
FIBTEM MCF | All | 0.63 (0.50–0.63) | 42 | 0.44 | 0.79 |
FIBTEM MCF | t0 | 0.65 (0.43–0.65) | 32 | 0.73 | 0.57 |
FIBTEM MCF | t24 | 0.58 (0.35–0.58) | 21 | 1.00 | 0.21 |
FIBTEM MCF | t72 | 0.66 (0.42–0.66) | 38 | 0.70 | 0.64 |
EXTEM MCF | All | 0.66 (0.54–0.66) | 71 | 0.91 | 0.45 |
EXTEM MCF | t0 | 0.66 (0.43–0.66) | 71 | 0.91 | 0.50 |
EXTEM MCF | t24 | 0.67 (0.46–0.67) | 71 | 0.91 | 0.50 |
EXTEM MCF | t72 | 0.65 (0.42–0.65) | 79 | 0.40 | 0.86 |
ASPI | All | 0.62 (0.43–0.62) | 49 | 0.88 | 0.50 |
ASPI | t0 | 0.51 (0.15–0.51) | 48 | 0.80 | 0.43 |
ASPI | t24 | 0.57 (0.22–0.57) | 38 | 0.83 | 0.57 |
ASPI | t72 | 0.75 (0.46–0.75) | 53 | 1.00 | 0.50 |
ADP | All | 0.58 (0.44–0.58) | 34 | 0.94 | 0.28 |
ADP | t0 | 0.55 (0.29–0.55) | 108 | 0.91 | 0.36 |
ADP | t24 | 0.38 (0.12–0.38) | 79 | 0.55 | 0.55 |
ADP | t72 | 0.72 (0.48–0.72) | 51 | 0.89 | 0.60 |
TRAP | All | 0.58 (0.44–0.58) | 73 | 0.84 | 0.37 |
TRAP | t0 | 0.50 (0.26–0.50) | 81 | 0.73 | 0.43 |
TRAP | t24 | 0.46 (0.22–0.46) | 60 | 0.18 | 0.93 |
TRAP | t72 | 0.75 (0.54–0.75) | 74 | 1.00 | 0.54 |
mtDNA × FIBTEM MCF | All | 0.69 (0.57–0.69) | 9617 | 0.66 | 0.71 |
mtDNA × FIBTEM MCF | t0 | 0.69 (0.47–0.69) | 8477 | 0.64 | 0.79 |
mtDNA × FIBTEM MCF | t24 | 0.88 (0.73–0.88) | 17,869 | 1.00 | 0.79 |
mtDNA × FIBTEM MCF | t72 | 0.55 (0.30–0.55) | 9186 | 0.80 | 0.43 |
mtDNA × EXTEM MCF | All | 0.72 (0.60–0.72) | 21,970 | 0.69 | 0.69 |
mtDNA × EXTEM MCF | t0 | 0.71 (0.50–0.71) | 42,896 | 0.82 | 0.57 |
mtDNA × EXTEM MCF | t24 | 0.90 (0.75–0.90) | 33,617 | 1.00 | 0.86 |
mtDNA × EXTEM MCF | t72 | 0.51 (0.26–0.51) | 35,936 | 0.60 | 0.57 |
mtDNA × ASPI | All | 0.57 (0.38–0.57) | 47,136 | 0.81 | 0.45 |
mtDNA × ASPI | t0 | 0.60 (0.25–0.60) | 56,470 | 0.80 | 0.57 |
mtDNA × ASPI | t24 | 0.71 (0.40–0.71) | 45,868 | 1.00 | 0.57 |
mtDNA × ASPI | t72 | 0.68 (0.36–0.68) | 14,943 | 1.00 | 0.38 |
mtDNA × ADP | All | 0.68 (0.55–0.68) | 32,492 | 0.81 | 0.63 |
mtDNA × ADP | t0 | 0.73 (0.49–0.73) | 34,491 | 0.82 | 0.73 |
mtDNA × ADP | t24 | 0.83 (0.63–0.83) | 33,900 | 1.00 | 0.73 |
mtDNA × ADP | t72 | 0.60 (0.32–0.60) | 22,243 | 0.78 | 0.60 |
mtDNA × TRAP | All | 0.70 (0.57–0.70) | 48,917 | 0.81 | 0.61 |
mtDNA × TRAP | t0 | 0.72 (0.51–0.72) | 48,989 | 0.91 | 0.57 |
mtDNA × TRAP | t24 | 0.88 (0.72–0.88) | 43,012 | 1.00 | 0.86 |
mtDNA × TRAP | t72 | 0.60 (0.35–0.60) | 30,562 | 0.78 | 0.54 |
Parameter | Timepoint | ARDS-Group | AUC | Cut Off | Specificity | Sensitivity |
---|---|---|---|---|---|---|
mtDNA level | All | no/mild | 0.62 (0.43–0.62) | 70 | 0.32 | 0.94 |
mtDNA level | t0 | no/mild | 0.59 (0.28–0.59) | 68 | 0.44 | 0.86 |
mtDNA level | t24 | no/mild | 0.88 (0.62–0.88) | 369 | 1.00 | 0.83 |
mtDNA level | t72 | no/mild | 0.70 (0.35–0.70) | 533 | 0.50 | 1.00 |
mtDNA level | All | severe/moderate | 0.78 (0.63–0.78) | 282 | 0.73 | 0.81 |
mtDNA level | t0 | severe/moderate | 0.83 (0.55–0.83) | 275 | 0.75 | 0.89 |
mtDNA level | t24 | severe/moderate | 0.91 (0.73–0.91) | 420 | 1.00 | 0.88 |
mtDNA level | t72 | severe/moderate | 0.58 (0.17–0.58) | 224 | 0.50 | 0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edinger, F.; Edinger, S.; Koch, C.; Markmann, M.; Hecker, M.; Sander, M.; Schneck, E. Peak Plasma Levels of mtDNA Serve as a Predictive Biomarker for COVID-19 in-Hospital Mortality. J. Clin. Med. 2022, 11, 7161. https://doi.org/10.3390/jcm11237161
Edinger F, Edinger S, Koch C, Markmann M, Hecker M, Sander M, Schneck E. Peak Plasma Levels of mtDNA Serve as a Predictive Biomarker for COVID-19 in-Hospital Mortality. Journal of Clinical Medicine. 2022; 11(23):7161. https://doi.org/10.3390/jcm11237161
Chicago/Turabian StyleEdinger, Fabian, Sophia Edinger, Christian Koch, Melanie Markmann, Matthias Hecker, Michael Sander, and Emmanuel Schneck. 2022. "Peak Plasma Levels of mtDNA Serve as a Predictive Biomarker for COVID-19 in-Hospital Mortality" Journal of Clinical Medicine 11, no. 23: 7161. https://doi.org/10.3390/jcm11237161
APA StyleEdinger, F., Edinger, S., Koch, C., Markmann, M., Hecker, M., Sander, M., & Schneck, E. (2022). Peak Plasma Levels of mtDNA Serve as a Predictive Biomarker for COVID-19 in-Hospital Mortality. Journal of Clinical Medicine, 11(23), 7161. https://doi.org/10.3390/jcm11237161