Factors Associated with Early Discharge after Thoracoscopic Lobectomy: Results from the Italian VATS Group Registry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Data Source
2.3. Patient Population and Study Design
2.4. Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Romano, P.; Hussey, P.; Ritley, D. Selecting Quality and Resource Use Measures: A Decision Guide for Community Quality Collaboratives; US Department of Health and Human Services, Agency for Healthcare Research and Quality: Rockville, MD, USA, 2010; pp. 1–106. [Google Scholar]
- Carey, K. Measuring the hospital length of stay/readmission cost trade-off under a bundled payment mechanism. Health Econ. 2015, 24, 790–802. [Google Scholar] [CrossRef] [PubMed]
- Osnabrugge, R.L.; Speir, A.M.; Head, S.J.; Jones, P.G.; Ailawadi, G.; Fonner, C.E.; Fonner, E.; Kappetein, A.P.; Rich, J.B. Prediction of Costs and Length of Stay in Coronary Artery Bypass Grafting. Ann. Thorac. Surg. 2014, 98, 1286–1293. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.D.; Gaissert, H.A.; Grab, J.D.; O’Brien, S.M.; Peterson, E.D.; Allen, M.S. Predictors of Prolonged Length of Stay after Lobectomy for Lung Cancer: A Society of Thoracic Surgeons General Thoracic Surgery Database Risk-Adjustment Model. Ann. Thorac. Surg. 2008, 85, 1857–1865. [Google Scholar] [CrossRef]
- Farjah, F.; Lou, F.; Rusch, V.; Rizk, N.P. The Quality Metric Prolonged Length of Stay Misses Clinically Important Adverse Events. Ann. Thorac. Surg. 2012, 94, 881–888. [Google Scholar] [CrossRef]
- Cattaneo, S.M.; Park, B.J.; Wilton, A.S.; Seshan, V.E.; Bains, M.S.; Downey, R.J.; Flores, R.M.; Rizk, N.; Rusch, V.W. Use of Video-Assisted Thoracic Surgery for Lobectomy in the Elderly Results in Fewer Complications. Ann. Thorac. Surg. 2008, 85, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Francis, N.; Kennedy, R.H.; Ljungqvist, O.; Mythen, M.G. Manual of fast track recovery for colorectal surgery. Ann. R. Coll. Surg. Engl. 2013, 95, 85. [Google Scholar] [CrossRef] [Green Version]
- Giménez-Milà, M.; Klein, A.; Martinez, G. Design and implementation of an enhanced recovery program in thoracic surgery. J. Thorac. Dis. 2016, 8, S37–S45. [Google Scholar] [CrossRef] [PubMed]
- Gonfiotti, A.; Viggiano, D.; Voltolini, L.; Bertani, A.; Bertolaccini, L.; Crisci, R.; Droghetti, A. Enhanced recovery after surgery and vid-eo-assisted thoracic surgery lobectomy: The Italian VATS Group* surgical protocol. J. Thorac. Dis. 2018, 10 (Suppl. S4), S564–S570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, J.R. The international conference on harmonisation Good clinical practice guidelines. Qual. Assur. 1999, 6, 65e74. [Google Scholar]
- Mathew G and Agha R, for the STROCSS Group. STROCSS 2021: Strengthening the Reporting of cohort, cross-sectional and case-control studies in Surgery. Int. J. Surg. 2021, 96, 96:106165. [Google Scholar]
- Seely, A.J.; Ivanovic, J.; Threader, J.; Al-Hussaini, A.; Al-Shehab, D.; Ramsay, T.; Gilbert, S.; Maziak, D.E.; Shamji, F.M.; Sundaresan, R.S. Systematic Classification of Morbidity and Mortality After Thoracic Surgery. Ann. Thorac. Surg. 2010, 90, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Rotter, T.; Kinsman, L.; James, E.L.; Machotta, A.; Gothe, H.; Willis, J.; Snow, P.; Kugler, J. Clinical pathways: Effects on professional practice, patient outcomes, length of stay and hospital costs. Cochrane Database Syst. Rev. 2010, 3, CD006632. [Google Scholar] [CrossRef] [PubMed]
- Giambrone, G.P.; Smith, M.C.; Wu, X.; Gaber-Baylis, L.K.; Bhat, A.U.; Zabih, R.; Altorki, N.K.; Fleischut, P.M.; Stiles, B.M. Variability in length of stay after uncomplicated pulmonary lobectomy: Is length of stay a quality metric or a patient metric? Eur. J. Cardiothorac. Surg. 2016, 49, e65–e71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcoz, P.-E.; Puyraveau, M.; Thomas, P.; Decaluwe, H.; Hürtgen, M.; Petersen, R.H.; Hansen, H.; Brunelli, A.; Van Raemdonck, D.; Dahan, M.; et al. Video-assisted thoracoscopic surgery versus open lobectomy for primary non-small-cell lung cancer: A propensity-matched analysis of outcome from the European Society of Thoracic Surgeon database. Eur. J. Cardio-Thoracic Surg. 2015, 49, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, T.J.P.; Rasburn, N.J.; Abdelnour-Berchtold, E.; Brunelli, A.; Cerfolio, R.; Gonzalez, M.; Ljungqvist, O.; Petersen, R.H.; Popescu, W.M.; Slinger, P.D.; et al. Guidelines for enhanced recovery after lung surgery: Recommendations of the Enhanced Recovery After Surgery (ERAS®) Society and the European Society of Thoracic Surgeons (ESTS). Eur. J. Cardio-Thoracic Surg. 2018, 55, 91–115. [Google Scholar] [CrossRef]
- Paton, F.; Chambers, D.; Wilson, P.; Eastwood, A.; Craig, D.; Fox, D.; Jayne, D.; McGinnes, E. Effectiveness and implementation of enhanced recovery after surgery programmes: A rapid evidence synthesis. BMJ Open 2014, 4, e005015. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Lorente, D.; Navarro-Ripoll, R.; Guzman, R.; Moises, J.; Gimeno, E.; Boada, M.; Molins, L. Prehabilitation in thoracic surgery. J. Thorac. Dis. 2018, 10 (Suppl. S22), S2593–S2600. [Google Scholar] [CrossRef]
- Berrisford, R.; Brunelli, A.; Rocco, G.; Treasure, T.; Utley, M. The European thoracic surgery database project; modeling the risk of in-hospital death. Eur. J. Cardiothor. Surg. 2005, 28, 306–311. [Google Scholar] [CrossRef] [Green Version]
- Decaluwe, H.; Petersen, R.H.; Hansen, H.; Piwkowski, C.; Augustin, F.; Brunelli, A.; Schmid, T.; Papagiannopoulos, K.; Moons, J.; Gossot, D. Major intraoperative complications during video-assisted thoracoscopic anatomical lung resections: An intention-to-treat analysis. Eur. J. Cardio-Thorac. Surg. 2015, 48, 588–599. [Google Scholar] [CrossRef] [Green Version]
- Augustin, F.; Maier, H.T.; Weissenbacher, A.; Ng, C.; Lucciarini, P.; Öfner, D.; Ulmer, H.; Schmid, T. Causes, predictors and consequences of conversion from VATS to open lung lobectomy. Surg. Endosc. 2015, 30, 2415–2421. [Google Scholar] [CrossRef]
- Harris, C.G.; James, R.S.; Tian, D.H.; Yan, T.D.; Doyle, M.P.; Gonzalez-Rivas, D.; Cao, C. Systematic review and meta-analysis of uniportal versus multiportal video-assisted thora-coscopic lobectomy for lung cancer. Ann. Cardiothorac. Surg. 2016, 5, 76–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maggino, L.; Liu, J.B.; Ecker, B.L.; Pitt, H.A.; Vollmer, C.M. Impact of Operative Time on Outcomes after Pancreatic Resection: A Risk-Adjusted Analysis Using the American College of Surgeons NSQIP Database. J. Am. Coll. Surg. 2018, 226, 844–857.e3. [Google Scholar] [CrossRef]
- Magee, M.J.; Herbert, M.A.; Tumey, L.; Prince, S.L. Establishing a dedicated general thoracic surgery subspecialty program improves lung cancer outcomes. Ann. Thorac. Surg. 2017, 103, 1063–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otake, H.; Yasunaga, H.; Horiguchi, H.; Matsutani, N.; Matsuda, S.; Ohe, K. Impact of hospital volume on chest tube duration, length of stay, and mortality after lobectomy. Ann. Thorac. Surg. 2011, 92, 1069–1074. [Google Scholar] [CrossRef] [PubMed]
- Infante, M.V.; Benato, C.; Silva, R.; Rocco, G.; Bertani, A.; Bertolaccini, L.; Gonfiotti, A.; Giovannetti, R.; Bonadiman, C.; Lonardoni, A.; et al. What counts more: The patient, the surgical technique, or the hospital? A multivariable analysis of factors affecting perioperative complications of pulmonary lobectomy by video-assisted thoracoscopic surgery from a large nationwide registry. Eur. J. Cardiothorac. Surg. 2019, 56, 1097–1103. [Google Scholar] [CrossRef]
- Kamiyoshihara, M.; Nagashima, T.; Ibe, T.; Atsumi, J.; Shimizu, K.; Takeyoshi, I. Is Epidural Analgesia Necessary after Video-Assisted Thoracoscopic Lobectomy? Asian Cardiovasc. Thorac. Ann. 2010, 18, 464–468. [Google Scholar] [CrossRef]
- Piccioni, F.; Ragazzi, R. Anesthesia and analgesia: How does the role of anesthetists changes in the ERAS program for VATS lo-bectomy. J. Vis. Surg. 2018, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Steinthorsdottir, K.; Wildgaard, L.; Hansen, H.J.; Petersen, R.H.; Wildgaard, K. Regional analgesia for video-assisted thoracic surgery: A systematic review. Eur. J. Cardio-Thoracic Surg. 2013, 45, 959–966. [Google Scholar] [CrossRef] [Green Version]
- Dindo, D.; Demartines, N.; Clavien, P.-A. Classification of Surgical Complications. A New Proposal with Evaluation in a Cohort of 6336 Patients and Results of a Survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
Variables | Overall | LOS > 4 | LOS ≤ 4 | Converted |
---|---|---|---|---|
Age, mean (SD) | 67.6 (9.9) | 68.4 (9.7) | 66.2 (10.1) | 67.9 (10) |
Age, median [1Q–3Q] | 69 [62–75] | 70 [63–75] | 68 [61–73] | 70 [63–75] |
Sex | ||||
Male | 6121 (59.8) | 4002 (62.7) | 2119 (54.9) | 659 (67.9) |
Female | 4119 (40.2) | 2381 (37.3) | 1738 (45.1) | 309 (32.1) |
LOS | 5 [4–7] | 7 [5–9] |
Variables | Overall N (%) | LOS > 4 (6383) N (%) | LOS ≤ 4 (3857) N (%) | p-Value |
---|---|---|---|---|
Myocardial infarction | 1021 (9.9) | 728 (11.4) | 293 (7.6) | <0.001 |
Congestive heart failure | 304 (3) | 232 (3.6) | 72 (1.9) | <0.001 |
Peripheral vascular disease | 1579 (15.4) | 1078 (16.9) | 501 (13) | <0.001 |
Cerebrovascular disease | 598 (5.8) | 421 (6.6) | 177 (4.6) | <0.001 |
Dementia | 54 (0.5) | 41 (0.6) | 13 (0.3) | 0.039 |
COPD | 2160 (21.1) | 1523 (23.7) | 637 (16.5) | <0.001 |
Connective tissue disease | 247 (2.41) | 153 (2.4) | 94 (2.4) | 0.898 |
Peptic ulcer disease | 386 (3.8) | 226 (3.5) | 160 (4.2) | 0.118 |
Diabetes mellitus | 1331 (13) | 865 (13.5) | 466 (12.1) | 0.154 |
Chronic kidney disease | 296 (2.9) | 211 (3.3) | 85 (2.2) | 0.001 |
Malignant lymphoma | 88 (0.9) | 61 (1) | 27 (0.7) | 0.174 |
Solid tumor | 2312 (22.6) | 1473 (23.1) | 839 (21.7) | 0.134 |
Liver impairment | 300 (2.9) | 190 (3) | 110 (2.8) | 0.928 |
Hemiplegia | 17 (0.2) | 13 (0.2) | 4 (0.1) | 0.229 |
Leukemia | 56 (0.5) | 35 (0.6) | 21 (0.5) | 0.979 |
Aids | 15 (0.1) | 8 (0.1) | 7 (0.2) | 0.472 |
Neoadjuvant treatments | 323 (3.1) | 198 (3.1) | 125 (3.2) | 0.697 |
Charlson comorbidity index | 4 [3–6] | 5 [3–6] | 4 [3–5] | <0.001 |
Variables | Overall Median [1Q–3Q] | LOS > 4 Median [1Q–3Q] | LOS ≤ 4 Median [1Q–3Q] | p Value |
---|---|---|---|---|
FEV1 value (L) | 2.3 [1.9–2.8] | 2.3 [1.8–2.8] | 2.3 [1.9–2.8] | <0.001 |
FEV1% | 94 [80–107] | 92 [79–106] | 96 [82–109] | <0.001 |
FVC value (L) | 3.1 [2.5–3.7] | 3.1 [2.5–3.7] | 3.1 [2.5–3.7] | 0.097 |
FVC (%) | 100 [87–113] | 99 [86–112] | 101 [89–114] | <0.001 |
Tiffenau index | 75.8 [68.7–81.9] | 75.5 [67.9–81.6] | 76.6 [69.9–82.5] | <0.001 |
DLCO/VA (%) | 83 [70–96] | 81 [69–94] | 85 [73–98] | <0.001 |
ECOG | 0 [0–1] | 0 [0–1] | 0 [0–1] | <0.001 |
Variables | Overall Median [1Q–3Q] | LOS > 4 Median [1Q–3Q] | LOS ≤ 4 Median [1Q–3Q] | p-Value |
---|---|---|---|---|
Operative time (min) | 175 [135–215] | 180 [141–230] | 160 [125–195] | <0.001 |
Blood loss (mL) | 100 [50–185] | 100 [60–200] | 100 [50–150] | <0.001 |
Harvested lymph nodes (n°) | 11 [8–16] | 11 [7–16] | 12 [8–16] | 0.0113 |
Variables | Overall N (%) | LOS > 4 (6383) N (%) | LOS ≤ 4 (3857) N (%) | p Value | |
---|---|---|---|---|---|
Adhesiolysis | 2370 (23.1) | 1605 (25.1) | 765 (19.8) | <0.001 | |
Conversion | 961 (9.4) | 802 (12.6) | 159 (4.1) | <0.001 | |
Surgical approach | |||||
Uniportal | 1289 (12.6) | 571 (9) | 713 (18.5) | <0.001 | |
Anterior—Copenhagen | 7061 (68.9) | 4544 (71.2) | 2517 (65.3) | <0.001 | |
Lateral—McKenna | 245 (2.4) | 185 (2.9) | 60 (1.6) | <0.001 | |
Anterior—D’Amico | 1420 (13.9) | 920 (14.4) | 500 (13) | 0.038 | |
Totally endoscopic—Gossot | 175 (1.7) | 114 (1.8) | 61 (1.6) | 0.436 | |
Posterior Edinburgh—Walker | 50 (0.5) | 44 (0.7) | 6 (0.2) | <0.001 | |
Nodal dissection | |||||
Radical node dissection | 6330 (61.8) | 3943 (61.8) | 2387 (61.9) | 0.908 | |
Sampling node dissection | 3693 (36.1) | 2322 (36.4) | 1371 (35.5) | 0.395 | |
No lymph node dissection | 217 (2.1) | 118 (1.8) | 99 (2.6) | 0.014 | |
Interlobar Fissures division (Technique) | |||||
Stapler | 8219 (88.1) | 5246 (90.6) | 2973 (84) | <0.001 | |
Electro cautery | 419 (4.5) | 292 (5.1) | 127 (3.6) | 0.001 | |
Bioenergy sealer | 690 (7.4) | 249 (4.3) | 441 (12.4) | <0.001 | |
Type of lobectomy | |||||
Middle lobectomy | 796 (8.1) | 387 (6.3) | 409 (11.3) | <0.001 | |
Lower lobectomy | 3466 (35.4) | 2175 (35.2) | 1291 (35.7) | 0.249 | |
Upper lobectomy | 5350 (54.6) | 3473 (56.2) | 1877 (51.9) | <0.001 | |
Lower or upper bilobectomy | 185 (1.9) | 38 (1.1) | 147 (2.4) | <0.001 | |
Pathology—Benign | 367 (3.6) | 206 (3.2) | 161 (4.2) | 0.013 | |
Pathology—Malignant | Metastasis | 456 (4.5) | 214 (3.3) | 242 (6.3) | <0.001 |
Pain relief techniques | |||||
Intercostal block | 2981 (30.9) | 1803 (30.2) | 1178 (32.2) | 0.041 | |
Pericostal catheters | 350 (3.6) | 231 (3.9) | 119 (3.3) | 0.116 | |
Peridural catheters | 2317 (24.1) | 1620 (27.1) | 697 (19) | <0.001 | |
Continuous opioids infusion | 3985 (41.4) | 2318 (38.8) | 1667 (45.5) | <0.001 | |
P stage | |||||
IA | 2379 (23.2) | 1475 (23.1) | 904 (23.4) | 0.028 | |
IB | 2238 (21.9) | 1370 (21.5) | 868 (22.5) | 0.003 | |
IIA | 2495 (24.4) | 1647 (25.8) | 848 (22) | 0.007 | |
IIB | 523 (5.1) | 354 (5.6) | 169 (4.4) | 0.059 | |
III | 611 (6) | 410 (6.4) | 201 (5.2) | 0.081 | |
IV | 144 (1.4) | 100 (1.6) | 44 (1.1) | 0.228 | |
missing | 1850 (18.1) | 1027 (16.1) | 823 (21.3) |
Total | LOS ≤ 4 | LOS > 4 | p-Value | |
---|---|---|---|---|
Atrial fibrillation | 721 (7%) | 88 (2.3) | 633 (9.9) | <0.001 |
Prolonged air leak (>7 days) | 830 (8.1) | 25 (0.6) | 805 (12.6) | <0.001 |
Persistent pleural space | 268 (2.6) | 22 (0.6) | 246 (3.8) | <0.001 |
Pneumonia, pleural effusion, empyema | 333 (3.2) | 24 (0.6) | 309 (4.8) | <0.001 |
Atelectasis | 199 (1.9) | 15 (0.4) | 184 (2.9) | <0.001 |
Sputum retention | 267 (2.6) | 16 (0.4) | 251 (3.9) | <0.001 |
Hemothorax | 131 (1.3) | 12 (0.3) | 119 (1.9) | <0.001 |
Blood transfusion | 215 (2.1) | 17 (0.2) | 198 (3.1) | <0.001 |
Acute renal failure, | 56 (0.5) | 0 (0) | 56 (0.9) | <0.001 |
Diarrhea, pancreatitis, etc. | 27 (0.3) | 4 (0.1) | 23 (0.4) | 0.014 |
Postoperative ICU | 441 (4.3) | 79 (2) | 362 (5.7) | <0.001 |
Pain day 1, median [1Q–3Q] | 3 [2–4] | 3 [2–3] | 3 [2–4] | <0.001 |
Pain day 2, median [1Q–3Q] | 2 [1–3] | 2 [1–3] | 2 [1–4] | <0.001 |
Pain day 3, median [1Q–3Q] | 2 [1–3] | 2 [1–2] | 2 [1–3] | <0.001 |
Pain discharge day, median [1Q–3Q] | 1 [1–2] | 1 [1–2] | 1 [1–2] | 0.8103 |
Chest drains duration, median [1Q–3Q] | 4 [3–5] | 3 [2–4] | 4.5 [3–6] | <0.001 |
Air leak duration, median [1Q–3Q] | 0 [0–2] | 0 [0–0] | 1 [0–3] | <0.001 |
Variable | p Value |
---|---|
Activity Volume (ref < 200) | 0.250 |
Age | 0.17 |
COPD | 0.28 |
FEV1% | 0.46 |
DLCO/VA% | 0.98 |
Conversion | 0.034 |
Operative time (min) | 0.19 |
Blood loss (mL) | 0.354 |
Uniportal approach | 0.52 |
Variable | Patients without Complications | Patients with Complications | |||||
---|---|---|---|---|---|---|---|
OR | 95% CI | p Value | OR | 95% CI | p Value | ||
Activity Volume (ref < 200) | 200–365 | 0.913 | 0.78–1.07 | 0.250 | 0.918 | 0.62–1.36 | 0.668 |
>365 | 0.458 | 0.40–0.53 | <0.001 | 0.566 | 0.40–0.81 | 0.002 | |
Age | ≥70 | 1.453 | 1.29–1.64 | <0.001 | 1.661 | 1.24–2.22 | 0.001 |
COPD | ref.no | 1.230 | 1.05–1.44 | 0.010 | 1.395 | 0.98–1.99 | 0.066 |
FEV1 (%) | ≥70% | 0.899 | 0.72–1.13 | 0.353 | 0.720 | 0.45–1.15 | 0.169 |
DLCO/VA (%) | 0.992 | 0.98–0.99 | <0.001 | 0.990 | 0.98–1.00 | 0.005 | |
Conversion | ref. no | 2.768 | 2.15–3.56 | <0.001 | 1.331 | 0.78–2.27 | 0.249 |
Operative time (min) | ≥240 min | 1.510 | 1.25–1.83 | <0.001 | 1.252 | 0.84–1.86 | 0.266 |
Blood loss (mL) | ≥600 mL | 3.922 | 1.13–13.60 | 0.031 | 1.266 | 0.42–3.85 | 0.678 |
Uniportal approach | ref.no | 0.504 | 0.41–0.61 | <0.001 | 0.260 | 0.18–0.37 | <0.001 |
Bioenergy sealer use | ref.no | 0.478 | 0.38–0.60 | <0.001 | 0.576 | 0.34–0.98 | 0.043 |
Intercostal block | ref.no | 0.744 | 0.66–0.84 | <0.001 | 1.233 | 0.89–1.70 | 0.201 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maniscalco, P.; Tamburini, N.; Fabbri, N.; Quarantotto, F.; Rizzardi, G.; Amore, D.; Lopez, C.; Crisci, R.; Spaggiari, L.; Valpiani, G.; et al. Factors Associated with Early Discharge after Thoracoscopic Lobectomy: Results from the Italian VATS Group Registry. J. Clin. Med. 2022, 11, 7356. https://doi.org/10.3390/jcm11247356
Maniscalco P, Tamburini N, Fabbri N, Quarantotto F, Rizzardi G, Amore D, Lopez C, Crisci R, Spaggiari L, Valpiani G, et al. Factors Associated with Early Discharge after Thoracoscopic Lobectomy: Results from the Italian VATS Group Registry. Journal of Clinical Medicine. 2022; 11(24):7356. https://doi.org/10.3390/jcm11247356
Chicago/Turabian StyleManiscalco, Pio, Nicola Tamburini, Nicolò Fabbri, Francesco Quarantotto, Giovanna Rizzardi, Dario Amore, Camillo Lopez, Roberto Crisci, Lorenzo Spaggiari, Giorgia Valpiani, and et al. 2022. "Factors Associated with Early Discharge after Thoracoscopic Lobectomy: Results from the Italian VATS Group Registry" Journal of Clinical Medicine 11, no. 24: 7356. https://doi.org/10.3390/jcm11247356
APA StyleManiscalco, P., Tamburini, N., Fabbri, N., Quarantotto, F., Rizzardi, G., Amore, D., Lopez, C., Crisci, R., Spaggiari, L., Valpiani, G., Bertolaccini, L., Cavallesco, G., & on behalf of the VATS Group. (2022). Factors Associated with Early Discharge after Thoracoscopic Lobectomy: Results from the Italian VATS Group Registry. Journal of Clinical Medicine, 11(24), 7356. https://doi.org/10.3390/jcm11247356