Immune-Mediated Diseases Following COVID-19 Vaccination: Report of a Teaching Hospital-Based Case-Series
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Case Series
3. Results
4. Discussion
4.1. Relationship between COVID-19 Vaccines and Subsequent IMDs
4.2. Incidence of IMDs after COVID-19 Vaccination
4.3. Types of Incriminated COVID-19 Vaccines
4.4. Patient’s Age of Onset and Gender
4.5. COVID-19 Vaccine-Induced Giant Cell Arteritis or Polymyalgia Rheumatica
4.6. Other Types of COVID-19 Vaccine-Induced Vasculitis
4.7. COVID-19 Vaccine-Induced Immune-Mediated Necrotizing Myopathy or Acute Rhabdomyolysis
4.8. COVID-19 Vaccine-Induced Miscellaneous IMDs
4.9. HLA-DR/DQ and COVID-19 Vaccine-Induced IMDs
4.10. Disease Severity in COVID-19 Vaccine-Induced IMDs
4.11. Revaccination against COVID-19 after COVID-19 Vaccine-Induced IMDs
4.12. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Falsey, A.R.; Sobieszczyk, M.E.; Hirsch, I.; Sproule, S.; Robb, M.L.; Corey, L.; Neuzil, K.M.; Hahn, W.; Hunt, J.; Mulligan, M.J.; et al. Phase 3 Safety and Efficacy of AZD1222 (ChAdOx1 nCoV-19) COVID-19 Vaccine. N. Engl. J. Med. 2021, 385, 2348–2360. [Google Scholar] [CrossRef] [PubMed]
- Connolly, C.M.; Ruddy, J.A.; Boyarsky, B.J.; Avery, R.K.; Werbel, W.A.; Segev, D.L.; Garonzik-Wang, J.; Paik, J.J. Safety of the first dose of mRNA SARS-CoV-2 vaccines in patients with rheumatic and musculoskeletal diseases. Ann. Rheum. Dis. 2021, 80, 1100–1101. [Google Scholar] [CrossRef] [PubMed]
- Furer, V.; Eviatar, T.; Zisman, D.; Peleg, H.; Paran, D.; Levartovsky, D.; Zisapel, M.; Elalouf, O.; Kaufman, I.; Meidan, R.; et al. Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in adult patients with autoimmune inflammatory rheumatic diseases and in the general population: A multicentre study. Ann. Rheum. Dis. 2021, 80, 1330–1338. [Google Scholar] [CrossRef]
- Pavord, S.; Scully, M.; Hunt, B.J.; Lester, W.; Bagot, C.; Craven, B.; Rampotas, A.; Ambler, G.; Makris, M. Clinical Features of Vaccine-Induced Immune Thrombocytopenia and Thrombosis. N. Engl. J. Med. 2021, 385, 1680–1689. [Google Scholar] [CrossRef]
- Guimarães, L.E.; Baker, B.; Perricone, C.; Shoenfeld, Y. Vaccines, adjuvants and autoimmunity. Pharmacol. Res. 2015, 100, 190–209. [Google Scholar] [CrossRef]
- Perricone, C.; Colafrancesco, S.; Mazor, R.D.; Soriano, A.; Agmon-Levin, N.; Shoenfeld, Y. Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) 2013: Unveiling the pathogenic, clinical and diagnostic aspects. J. Autoimmun. 2013, 47, 1–16. [Google Scholar] [CrossRef]
- Liozon, E.; Parreau, S.; Filloux, M.; Dumonteil, S.; Gondran, G.; Bezanahary, H.; Ly, K.; Fauchais, A.L. Giant cell arteritis or polymyalgia rheumatica after influenza vaccination: A study of 12 patients and a literature review. Autoimmun. Rev. 2020, 20, 102732. [Google Scholar] [CrossRef]
- Iyngkaran, P.; Limaye, V.; Hill, C.; Henderson, D.; Pile, K.D.; Rischmueller, M. Rheumatoid vasculitis following influenza vaccination. Rheumatology 2003, 42, 907–909. [Google Scholar] [CrossRef]
- Bonetto, C.; Trotta, F.; Felicetti, P.; Alarcón, G.S.; Santuccio, C.; Bachtiar, N.S.; Pernus, Y.B.; Chandler, R.; Girolomoni, G.; Hadden, R.D.; et al. Vasculitis as an adverse event following immunization–Systematic literature review. Vaccine 2016, 34, 6641–6651. [Google Scholar] [CrossRef] [PubMed]
- Stübgen, J.-P. A review on the association between inflammatory myopathies and vaccination. Autoimmun. Rev. 2014, 13, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Perricone, C.; Ceccarelli, F.; Nesher, G.; Borella, E.; Odeh, Q.; Conti, F.; Shoenfeld, Y.; Valesini, G. Immune thrombocytopenic purpura (ITP) associated with vaccinations: A review of reported cases. Immunol. Res. 2014, 60, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Watad, A.; De Marco, G.; Mahajna, H.; Druyan, A.; Eltity, M.; Hijazi, N.; Haddad, A.; Elias, M.; Zisman, D.; Naffaa, M.; et al. Immune-Mediated Disease Flares or New-Onset Disease in 27 Subjects Following mRNA/DNA SARS-CoV-2 Vaccination. Vaccines 2021, 9, 435. [Google Scholar] [CrossRef]
- Hočevar, A.; Tomšič, M. Immune mediated events timely associated with COVID-19 vaccine. A comment on article by Badier; et al.: “IgA vasculitis in adult patients following vaccination by ChadOx1 nCoV-19”. Autoimmun. Rev. 2021, 21, 102989. [Google Scholar] [CrossRef]
- Kaulen, L.D.; Doubrovinskaia, S.; Mooshage, C.; Jordan, B.; Purrucker, J.; Haubner, C.; Seliger, C.; Lorenz, H.; Nagel, S.; Wildemann, B.; et al. Neurological autoimmune diseases following vaccinations against SARS-CoV-2: A case series. Eur. J. Neurol. 2021, 29, 555–563. [Google Scholar] [CrossRef]
- Ottaviani, S.; Juge, P.-A.; Forien, M.; Ebstein, E.; Palazzo, E.; Dieudé, P. Polymyalgia rheumatica following COVID-19 vaccination: A case-series of ten patients. Jt. Bone Spine 2021, 89, 105334. [Google Scholar] [CrossRef]
- Hunder, G.G.; Bloch, D.A.; Michel, B.A.; Stevens, M.B.; Arend, W.P.; Calabrese, L.H.; Edworthy, S.M.; Fauci, A.S.; Leavitt, R.Y.; Lie, J.T.; et al. The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum. 1990, 33, 1122–1128. [Google Scholar] [CrossRef]
- Dasgupta, B.; Cimmino, M.A.; Maradit-Kremers, H.; Schmidt, W.A.; Schirmer, M.; Salvarani, C.; Bachta, A.; Dejaco, C.; Duftner, C.; Jensen, H.S.; et al. 2012 provisional classification criteria for polymyalgia rheumatica: A European League Against Rheumatism/American College of Rheumatology collaborative initiative. Ann. Rheum. Dis. 2012, 71, 484–492. [Google Scholar] [CrossRef] [Green Version]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., III; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef]
- Lundberg, I.E.; Tjarnlund, A.; Bottai, M.; Werth, V.P.; Pilkington, C.; de Visser, M.; Alfredsson, L.; Amato, A.A.; Barohn, R.J.; Liang, M.H.; et al. EULAR/ACR classifica-tion criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups. Ann. Rheum. Dis. 2017, 76, 1955–1964. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.; Ohta, A.; Tsunematsu, T.; Kasukawa, R.; Mizushima, Y.; Kashiwagi, H.; Kashiwazaki, S.; Tanimoto, K.; Matsumoto, Y.; Ota, T. Preliminary criteria for classification of adult Still’s disease. J. Rheumatol. 1992, 19, 424–430. [Google Scholar] [PubMed]
- Mills, J.A.; Michel, B.A.; Bloch, D.A.; Calabrese, L.H.; Hunder, G.G.; Arend, W.P.; Edworthy, S.M.; Fauci, A.S.; Leavitt, R.Y.; Lie, J.T.; et al. The American College of Rheumatology 1990 criteria for the classification of henoch-schönlein purpura. Arthritis Rheum. 1990, 33, 1114–1121. [Google Scholar] [CrossRef]
- Schulz, J.B.; Berlit, P.; Diener, H.-C.; Gerloff, C.; Greinacher, A.; Klein, C.; Petzold, G.C.; Piccininni, M.; Poli, S.; Röhrig, R.; et al. COVID-19 Vaccine-Associated Cerebral Venous Thrombosis in Germany. Ann. Neurol. 2021, 90, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Elnahry, A.G.; Al-Nawaflh, M.Y.; Eldin, A.A.G.; Solyman, O.; Sallam, A.B.; Phillips, P.H.; Elhusseiny, A.M. COVID-19 Vaccine-Associated Optic Neuropathy: A Systematic Review of 45 Patients. Vaccines 2022, 10, 1758. [Google Scholar] [CrossRef]
- Echaide, M.; Labiano, I.; Delgado, M.; de Lascoiti, A.F.; Ochoa, P.; Garnica, M.; Ramos, P.; Chocarro, L.; Fernández, L.; Arasanz, H.; et al. Immune Profiling Uncovers Memory T-Cell Responses with a Th17 Signature in Cancer Patients with Previous SARS-CoV-2 Infection Followed by mRNA Vaccination. Cancers 2022, 14, 4464. [Google Scholar] [CrossRef]
- Hotez, P.J.; Bottazzi, M.E.; Corry, D.B. The potential role of Th17 immune responses in coronavirus immunopathology and vaccine-induced immune enhancement. Microbes Infect. 2020, 22, 165–167. [Google Scholar] [CrossRef]
- Huang, Y.-W.; Tsai, T.-F. Exacerbation of Psoriasis Following COVID-19 Vaccination: Report from a Single Center. Front. Med. 2021, 8, 812010. [Google Scholar] [CrossRef]
- Mejren, A.; Sørensen, C.; Gormsen, L.; Tougaard, R.; Nielsen, B. Large-vessel giant cell arteritis after COVID-19 vaccine. Scand. J. Rheumatol. 2021, 51, 154–155. [Google Scholar] [CrossRef]
- Cadiou, S.; Perdriger, A.; Ardois, S.; Albert, J.D.; Berthoud, O.; Lescoat, A.; Guggenbuhl, P.; Robin, F. SARS-CoV-2, polymyalgia rheumatica and giant cell arteritis: COVID19 vaccine shot as a trigger? Comments on “Can SARS-CoV-2 trigger relapse of polymyalgia rheumatica?” by Manzo et al. Joint Bone Spine 2021;88:105150. Jt. Bone Spine 2022, 89, 105282. [Google Scholar] [CrossRef]
- Sauret, A.; Stievenart, J.; Smets, P.; Olagne, L.; Guelon, B.; Aumaitre, O.; André, M.; Trefond, L. Case of giant cell arteritis after SARS-CoV-2 vaccination: A particular phenotype? J. Rheumatol. 2021, 49, 120. [Google Scholar] [CrossRef]
- Gambichler, T.; Krogias, C.; Tischoff, I.; Tannapfel, A.; Gold, R.; Susok, L. Bilateral giant cell arteritis with skin necrosis following SARS-CoV-2 vaccination. Br. J. Dermatol. 2022, 186, e83. [Google Scholar] [CrossRef] [PubMed]
- Anzola, A.M.; Trives, L.; Martínez-Barrio, J.; Pinilla, B.; Álvaro-Gracia, J.M.; Molina-Collada, J. New-onset giant cell arteritis following COVID-19 mRNA (BioNTech/Pfizer) vaccine: A double-edged sword? Clin. Rheumatol. 2022, 41, 1623–1625. [Google Scholar] [CrossRef] [PubMed]
- Ishizuka, K.; Katayama, K.; Ohira, Y. Giant cell arteritis presenting with chronic cough and headache after BNT162b2 mRNA COVID-19 vaccination. QJM Int. J. Med. 2022, 115, 621–622. [Google Scholar] [CrossRef]
- Vanni, E.; Ciaffi, J.; Mancarella, L.; Ursini, F. A report of conjugal polymyalgia rheumatica after SARS-CoV-2 vaccination. Rheumatology 2021, 1, 17–21. [Google Scholar]
- Manzo, C.; Natale, M.; Castagna, A. Polymyalgia rheumatica as uncommon adverse event following immunization with COVID-19 vaccine: A case report and review of literature. Aging Med. 2021, 4, 234–238. [Google Scholar] [CrossRef]
- Shakoor, M.T.; Birkenbach, M.P.; Lynch, M. ANCA-associated vasculitis following Pizer-BioNTech COVID-19 vaccine. Am. J. Kidney Dis. 2021, 78, 611–613. [Google Scholar] [CrossRef] [PubMed]
- Villa, M.; Diaz-Crespo, F.; Perez de Jose, A.; Verdalles, U.; Verde, E.; Ruiz, F.A.; Acosta, A.; Mijaylova, A.; Goicoechea, M. A case of ANCA-associated vasculitis after AZD1222 (Oxford-AstraZeneca) SARS-CoV-2 vaccination: Casualty or causality? Kidney Int. 2021, 100, 937. [Google Scholar] [CrossRef]
- Prabhahar, A.; Naidu, G.S.R.S.N.K.; Chauhan, P.; Sekar, A.; Shama, A.; Sharma, A.; Kumar, A.; Nada, R.; Rathi, M.; Kohli, H.S.; et al. ANCA-associated vasculitis following ChAdOx1 nCoV19 vaccination: Case-based review. Rheumatol. Int. 2022, 42, 749–758. [Google Scholar] [CrossRef]
- Chan-Chung, C.; Ong, C.S.; Chan, L.L.; Tan, E.K. Eosinophilic granulomatosis with polyangiitis after COVID-19 vaccination. QJM Int. J. Med. 2022, 114, 807–809. [Google Scholar] [CrossRef]
- Ibrahim, H.; Alkhatib, A.; Meysami, A. Eosinophilic Granulomatosis with Polyangiitis Diagnosed in an Elderly Female After the Second Dose of mRNA Vaccine Against COVID-19. Cureus 2022, 14, e21176. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Lee, C.H.; Kim, K.M.; Yoo, W.-H. Sudden Onset of IgA Vasculitis Affecting Vital Organs in Adult Patients following SARS-CoV-2 Vaccines. Vaccines 2022, 10, 923. [Google Scholar] [CrossRef]
- Badier, L.; Toledano, A.; Porel, T.; Dumond, S.; Jouglen, J.; Sailler, L.; Bagheri, H.; Moulis, G.; Lafaurie, M. IgA vasculitis in adult patient following vaccination by ChadOx1 nCoV-19. Autoimmun. Rev. 2021, 20, 102951. [Google Scholar] [CrossRef] [PubMed]
- Mettler, C.; Terrier, B.; Treluyer, J.-M.; Chouchana, L. Risk of systemic vasculitis following mRNA COVID-19 vaccination: A pharmacovigilance study. Rheumatology 2022, 61, e363–e365. [Google Scholar] [CrossRef] [PubMed]
- Theodorou, D.J.; Axiotis, A.; Gianniki, M.; Tsifetaki, N. COVID-19 vaccine-related myositis. QJM Int. J. Med. 2021, 114, 424–425. [Google Scholar] [CrossRef] [PubMed]
- Ajmera, K.M. Fatal Case of Rhabdomyolysis Post-COVID-19 Vaccine. Infect. Drug Resist. 2021, 14, 3929–3935. [Google Scholar] [CrossRef]
- Maramattom, B.V.; Philips, G.; Thomas, J.; Santhamma, S.G.N. Inflammatory myositis after ChAdOx1 vaccination. Lancet Rheumatol. 2021, 3, e747–e749. [Google Scholar] [CrossRef]
- Tan, A.; Stepien, K.M.; Narayana, S.T.K. Carnitine palmitoyltransferase II deficiency and post-COVID vaccination rhabdomyolysis. QJM Int. J. Med. 2021, 114, 596–597. [Google Scholar] [CrossRef]
- Al-Rasbi, S.; Al-Maqbali, J.S.; Al-Farsi, R.; Al Shukaili, M.A.; Al-Riyami, M.H.; Al Falahi, Z.; Al Farhan, H.; Al Alawi, A.M. Myocarditis, Pulmonary Hemorrhage, and Extensive Myositis with Rhabdomyolysis 12 Days After First Dose of Pfizer-BioNTech BNT162b2 mRNA COVID-19 Vaccine: A Case Report. Am. J. Case Rep. 2022, 23, e934399. [Google Scholar] [CrossRef]
- Cirillo, E.; Esposito, C.; Giardino, G.; Azan, G.; Fecarotta, S.; Pittaluga, S.; Ruggiero, L.; Barretta, F.; Frisso, G.; Notarangelo, L.D.; et al. Case Report: Severe Rhabdomyolysis and Multiorgan Failure After ChAdOx1 nCoV-19 Vaccination. Front. Immunol. 2022, 13, 845496. [Google Scholar] [CrossRef]
- Kamura, Y.; Terao, T.; Akao, S.; Kono, Y.; Honma, K.; Matsue, K. Fatal thrombotic microangiopathy with rhabdomyolysis as an initial symptom after the first dose of mRNA–1273 vaccine: A case report. Int. J. Infect. Dis. 2022, 117, 322–325. [Google Scholar] [CrossRef] [PubMed]
- Orbach, H.; Tanay, A. Vaccines as a trigger for myopathies. Lupus 2009, 18, 1213–1216. [Google Scholar] [CrossRef] [PubMed]
- Kono, A.; Yoshioka, R.; Hawke, P.; Iwashina, K.; Inoue, D.; Suzuki, M.; Narita, C.; Haruta, K.; Miyake, A.; Yoshida, H.; et al. Correction to: A case of severe interstitial lung disease after COVID-19 vaccination. QJM Int. J. Med. 2021, 114, 805. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Kim, J.-H.; Lee, I.J.; Kim, H.I.; Park, S.; Hwang, Y.I.; Jang, S.H.; Jung, K.-S. COVID-19 vaccine-related interstitial lung disease: A case study. Thorax 2022, 77, 102–104. [Google Scholar] [CrossRef] [PubMed]
- Baimukhamedov, C.; Makhmudov, S.; Botabkova, A. Seropositive rheumatoid arthritis after vaccination against SARS-CoV-2 infection. Int. J. Rheum. Dis. 2021, 24, 1440–1441. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Kaur, U.; Singh, A.; Chakrabarti, S.S. Refractory hypereosinophilia associated with newly diagnosed rheumatoid arthritis following inactivated BBV152 COVID-19 vaccine. J. Med. Virol. 2022, 94, 3482–3487. [Google Scholar] [CrossRef]
- Magliulo, D.; Narayan, S.; Ue, F.; Boulougoura, A.; Badlissi, F. Adult-onset Still’s disease after mRNA COVID-19 vaccine. Lancet Rheumatol. 2021, 3, e680–e682. [Google Scholar] [CrossRef]
- Sharabi, A.; Shiber, S.; Molad, Y. Adult-onset Still’s disease following mRNA COVID-19 vaccination. Clin. Immunol. 2021, 233, 108878. [Google Scholar] [CrossRef]
- Lee, E.-J.; Beltrami-Moreira, M.; Al-Samkari, H.; Cuker, A.; DiRaimo, J.; Gernsheimer, T.; Kruse, A.; Kessler, C.M.; Kruse, C.; Leavitt, A.D.; et al. SARS-CoV-2 vaccination and immune thrombocytopenia in de novo and pre-existing ITP patients. Blood 2021, 139, 1564–1574. [Google Scholar] [CrossRef]
- Moulis, G.; Crickx, E.; Thomas, L.; Massy, N.; Mahévas, M.; Valnet-Rabier, M.-B.; Atzenhoffer, M.; Michel, M.; Godeau, B.; Bagheri, H.; et al. De novo and relapsed immune thrombocytopenia after COVID-19 vaccines: Results of French safety monitoring. Blood 2022, 139, 2561–2565. [Google Scholar] [CrossRef]
- Liozon, E.; Ouattara, B.; Rhaiem, K.; Ly, K.H.; Bezanahary, H.; Loustaud, V.; Letellier, P.; Drouet, M.; Vidal, E. Familial aggregation in giant cell arteritis and polymyalgia rheumatica: A comprehensive literature review including 4 new families. Clin. Exp. Rheumatol. 2009, 27 (Suppl. S52), S89–S94. [Google Scholar] [PubMed]
- Carmona, F.D.; Mackie, S.L.; Martín, J.-E.; Taylor, J.C.; Vaglio, A.; Eyre, S.; Bossini-Castillo, L.; Castañeda, S.; Cid, M.C.; Hernández-Rodríguez, J.; et al. A Large-Scale Genetic Analysis Reveals a Strong Contribution of the HLA Class II Region to Giant Cell Arteritis Susceptibility. Am. J. Hum. Genet. 2015, 96, 565–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watad, A.; Quaresma, M.; Brown, S.; Cohen Tervaert, J.M.; Rodriguez-Pint, I.; Cervera, R.; Perricone, C.; Shoenfeld, Y. Autoimmune/inflammatory syndrome induced by adjuvants (Shoenfeld’s syndrome)–An update. Lupus 2017, 26, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Ma-Krupa, W.; Kwan, M.; Goronzy, J.J.; Weyand, C.M. Toll-like receptors in giant cell arteritis. Clin. Immunol. 2005, 115, 38–46. [Google Scholar] [CrossRef]
- Mettler, C.; Jonville-Bera, A.-P.; Grandvuillemin, A.; Treluyer, J.-M.; Terrier, B.; Chouchana, L. Risk of giant cell arteritis and polymyalgia rheumatica following COVID-19 vaccination: A global pharmacovigilance study. Rheumatology 2021, 61, 865–867. [Google Scholar] [CrossRef]
- Ursini, F.; Ruscitti, P.; Raimondo, V.; De Angelis, R.; Cacciapaglia, F.; Pigatto, E.; Olivo, D.; Di Cola, I.; Galluccio, F.; Francioso, F.; et al. Systemic syndromes of rheumatological interest with onset after COVID-19 vaccine administration: A report of 30 cases. Clin. Rheumatol. 2022, 41, 2261–2267. [Google Scholar] [CrossRef]
- Miller, F.; Hess, E.V.; Clauw, D.J.; Hertzman, P.A.; Pincus, T.; Silver, R.M.; Mayes, M.D.; Varga, J.; Medsger, T.A.; Love, L.A. Approaches for identifying and defining environmentally associated rheumatic disorders. Arthritis Rheum. 2000, 43, 243–249. [Google Scholar] [CrossRef]
Patient | Age/Sex | Condition | Vaccine | Dose | Delay (d) | Past History, Co-Morbid Conditions | Treatment for IMDs | Re-Challenge | Outcome |
---|---|---|---|---|---|---|---|---|---|
1 | 87/F | GCA | m-RNA (Moderna) | 1st | 7 | Osteoarthritis | Pred 30 mg/d | Yes, twice | Recovered disease (13 mo, untreated for 4 mo) |
2 | 82/F | GCA | m-RNA (Pfizer) | 1st | 10 | Hypertension, osteoarthritis, gastric ulcer | Pred 40 mg/d | Yes, twice | Controlled disease (14 mo, Pred 3 mg/d) |
3 | 70/F | GCA | viral vector (AstraZeneca) | 1st | 2 | Diabetes, hypertension, hypercholesterolemia, gouty disease | Pred 40 mg/d, 2nd line Tocilizumab | No (declined) | Controlled disease (13 mo, Pred 7 mg/d) |
4 | 90/F | GCA | m-RNA (Pfizer) | 1st | 3 | MDS (5q-), past PMR, hypertension | MP 500 mg/d × 2, Pred 50 mg/d | Yes, once | Early lost to follow-up |
5 | 80/M | GCA | m-RNA (Moderna) | 2nd | 3 | None | MP 500 mg/d × 3, Pred 75 mg/d, 2nd line Tocilizumab | No (declined) | Relapsed disease (7 mo, Pred 15 mg/d) |
6 | 65/F | GCA | m-RNA (Pfizer) | 1st | 3 | Hypertension | Pred 50 mg/d | Yes, twice | Controlled disease (10 mo, Pred 6 mg/d) |
7 | 59/F | GCA | m-RNA (Pfizer) | 1st | 4 | Autoimmune neutropenia, breast carcinoma | Pred 60 mg/d, 2nd Tocilizumab | No (declined) | Multiple relapses upon short tapering Pred regimen (12 mo) |
8 | 68/M | PMR, then GCA | viral vector (AstraZeneca) | 2nd | 20 | Duodenal ulcer | Pred 50 mg/d | n.a. | Controlled disease (5 mo, Pred 10 mg/d) |
9 | 64/M | GCA | m-RNA (Pfizer) | 3rd | 6 | Familial aggregation (GCA in sister) | MP 500 mg/d × 3, Pred 80 mg/j Tocilizumab | n.a. | Controlled disease (3 mo, Pred 20 mg/d) |
10 | 72/M | GCA | m-RNA (Pfizer) | 3rd | 5 | Hypertension, diabetes, hypercholesterolemia | Pred 60 mg/d | n.a. | n.a. (recently diagnosed) |
11 | 72/M | GCA (aortitis) | m-RNA (Pfizer) | 3rd | 1 | Kidney stones | Pred 50 mg/d | n.a. | n.a. (recently diagnosed) |
12 | 69/M | GCA | m-RNA (Pfizer) | 3rd | 2 | Hypercholesterolemia | Pred 50 mg/d | n.a. | n.a. (recently diagnosed) |
13 | 62/F | PMR | m-RNA (Pfizer) | 2nd | 6 | Discogenic sciatica | Pred 30 mg/d, 2nd line Tocilizumab | Yes, once (Moderna) | Relapsed disease (7 mo, Pred 9 mg/d) |
14 | 58/M | PMR | m-RNA (Pfizer) | 2nd | 2 | Hypertension, obesity, pheochromocytoma, sleep apnea | Pred 40 mg/d | No (declined) | Controlled disease (9 mo, Pred 4 mg/d) |
15 | 69/F | PMR | m-RNA (Pfizer) | 1st | 14 | Hypertension, osteoarthritis, depression | Pred 20 mg/d | Yes, once (3rd dose planned) | Controlled disease (6 mo, Pred 5 mg/d) |
16 | 77/M | PMR (late relapse) | m-RNA (Pfizer) | 2nd | 10 | Hypertension, diabetes, prostatic carcinoma | Pred 20 mg/d | Yes (third dose) | Controlled disease (8 mo, Pred stopped for 2 mo) |
17 | 64/M | AR | viral vector (AstraZeneca) | 1st | 13 | Thyroid insufficiency, hypertriglyceridemia | MP 1 g/d × 3, Pred 2 mg/d, MTX, IVIG, CPM | No (prohibited) | Died of uncontrolled disease (2 mo) |
18 | 59/F | IMNM | viral vector (AstraZeneca) | 1st | 11 | Osteoarthritis | MP 1 g/d × 3 + IVIG, Pred 60 mg/d | No (declined) | Recovered (13 mo, no treatment for 12 mo) |
19 | 62/M | IMNM | m-RNA (Pfizer) | 3rd | 7 | Hypertension, sleep apnea, nocardiosis, benign ampulloma | Pred 80 mg/d, IVIgG | n.a. | Satisfactory short-term response |
20 | 57/F | AAV (EGPA) | viral vector (AstraZeneca) | 1st | 14 | Allergic asthma | MP 1 g/d × 3, Pred 70 mg/d, RTX | Yes (twice, m-RNA based) | Limited disease relapse (11 mo, pred 5 mg/d + RTX 500 mg every 6 mo) |
21 | 50/F | SHP (late relapse) | m-RNA (Pfizer) | 1st | 2 | Pediatric SHP | Colchicine, pregabaline | Yes, twice | Relapsed disease (10 mo, upon colchicine discontinuation) |
22 | 53/M | SHP (digestive involvement) | m-RNA (Pfizer) | 1st | 8 | None | MP 1000 Mg/d × 4, Pred 80 mg/d, colchicine | No (declined) | Controlled disease (12 mo, Pred 2.5 mg/d + colchicine) |
23 | 61/F | Anti-synthetase (PL7+) | m-RNA (Pfizer) | 2nd | 4 | Hypothyroidism | Pred, 60 mg/d, 2nd line tacrolimus | n.a. | Poorly controlled disease (5 mo, Pred 15 mg/d) |
24 | 69/F | AOSD relapse | m-RNA (Pfizer) | 3rd | 14 | Hypertension | Pred 20 mg/d, oral methotrexate | n.a. | Relapsed disease (4 mo, pred 10 mg/d, methotrexate resumed) |
25 | 73/F | ITP | viral vector (AstraZeneca) | 1st | 14 | Hypertension, hypercholesterolemia, COPD, atherosclerotic peripheral disease | Dex 40 mg/d × 4, Pred 60 mg/d | Yes, twice (m-RNA based) | Recovered disease (11 mo) |
26 | 71/M | ITP | viral vector (AstraZeneca) | 1st | 4 | Sleep apnea, psoriasis, benign prostate hypertrophy | Dex 40 mg/d × 4, Pred 70 mg/d, TRA | No (declined) | Failure-partial control under TRA (11 mo) |
27 | 57/F | RA (late relapse) | m-RNA (Pfizer) | 2 | Sleep apnea | methotrexate | n.a. | n.a. (recently diagnosed) |
Patient | Diagnosis | HLA DRB1/DQB1 Typing |
---|---|---|
Case 1 | GCA | DRB1*04:02/*08:01; DQB1*03:02/*04:02 |
Case 2 | GCA | DRB1*07:01/*11:04; DQB1*02:02/*03:01 |
Case 3 | GCA | DRB1*07:01/*07:01; DQB1*02:01/*02:02 |
Case 5 | GCA | DRB1*03/*04; DQB1*02/*03 |
Case 6 | GCA | DRB1*04:04/*11:01; DQB1*03:01/*03:02 |
Case 7 | GCA | DRB1*04:01/*15:01; DQB1*03:01/*06:02 |
Case 8 | GCA | DRB1*04:03/*15:02; DQB1*03:02/*06:01 |
Case 9 | GCA | DRB1*03:01/*04:01; DQB1*02:01/*03:01 |
Case 10 | GCA | DRB1*07:01/*13:01; DQB1*02:01/*06:03 |
Case 11 | GCA | DRB1*04:02/*15:01; DQB1*03:02/*06:02 |
Case 12 | GCA | DRB1*01:02/*11:02; DQB1*03:01/*05:01 |
Case 13 | PMR | DRB1*03/*12; DQB1*02/*03 |
Case 14 | PMR | DRB1*11:01/*16:01; DQB1*03:01/*05:02 |
Case 16 | PMR | DRB1*13/*14; DQB1*03/*05 |
Case 17 | AR | DRB1*07:01/*08:01/DQB1*02:02/*04:02 |
Case 18 | IMNM | DRB1*11:04/*16:01; DQB1*03:01/*05:02 |
Case 19 | IMNM | DRB1*04:01/*11:01; DQB1*--/*-- |
Case 23 | ASS (PL7+) | DRB1*01:01/*17:01; DQB1*02:02/*05:01 |
Case 24 | SHP | DRB1*07:01/*11:04; DQB1*03:01/*06:01 |
Case 27 | RA | DRB1*01:01/*13:01; DQB1*05:01/*06:01 |
HLA-DRB1 Allele | Post-COVID-19 Vaccine Cases N = 14 n (%) * | Post-Other-Vaccine Cases N = 11 n (%) † | Familial Cases N = 17 n (%) § | Other Cases N = 16 n (%) ¥ | p-Value ¶ |
---|---|---|---|---|---|
DRB1*01 | 1 (7) | 2 (18) | 0 (0) | 2 (12.5) | 0.30 |
DRB1*03 | 3 (21) | 2 (18) | 1 (6) | 2 (12.5) | 0.63 |
DRB1*04 | 7 (50) | 4 (36) | 10 (59) | 10 (62.5) | 0.58 |
DRB1*07 | 3 (21) | 3 (27) | 7 (41) | 4 (25) | 0.68 |
DRB1*08 | 1 (7) | 1 (9) | 0 (0) | 0 (0) | 0.34 |
DRB1*09 | 0 (0) | 1 (9) | 0 (0) | 0 (0) | 0.19 |
DRB1*10 | 0 (0) | 1 (9) | 0 (0) | 0 (0) | 0.19 |
DRB1*11 | 5 (36) | 2 (18) | 5 (29) | 4 (25) | 0.83 |
DRB1*12 | 1 (7) | 0 (0) | 0 (0) | 0 (0) | 0.43 |
DRB1*13 | 2 (14) | 5 (45) | 5 (31) | 5 (31) | 0.40 |
DRB1*15 | 3 (21) | 1 (9) | 4 (23.5) | 3 (19) | 0.86 |
DRB1*16 | 1 (7) | 0 (0) | 0 (0) | 0 (0) | 0.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liozon, E.; Filloux, M.; Parreau, S.; Gondran, G.; Bezanahary, H.; Ly, K.-H.; Fauchais, A.-L. Immune-Mediated Diseases Following COVID-19 Vaccination: Report of a Teaching Hospital-Based Case-Series. J. Clin. Med. 2022, 11, 7484. https://doi.org/10.3390/jcm11247484
Liozon E, Filloux M, Parreau S, Gondran G, Bezanahary H, Ly K-H, Fauchais A-L. Immune-Mediated Diseases Following COVID-19 Vaccination: Report of a Teaching Hospital-Based Case-Series. Journal of Clinical Medicine. 2022; 11(24):7484. https://doi.org/10.3390/jcm11247484
Chicago/Turabian StyleLiozon, Eric, Matthieu Filloux, Simon Parreau, Guillaume Gondran, Holy Bezanahary, Kim-Heang Ly, and Anne-Laure Fauchais. 2022. "Immune-Mediated Diseases Following COVID-19 Vaccination: Report of a Teaching Hospital-Based Case-Series" Journal of Clinical Medicine 11, no. 24: 7484. https://doi.org/10.3390/jcm11247484
APA StyleLiozon, E., Filloux, M., Parreau, S., Gondran, G., Bezanahary, H., Ly, K. -H., & Fauchais, A. -L. (2022). Immune-Mediated Diseases Following COVID-19 Vaccination: Report of a Teaching Hospital-Based Case-Series. Journal of Clinical Medicine, 11(24), 7484. https://doi.org/10.3390/jcm11247484