Reliability and Validity of Computerized Adventitious Respiratory Sounds in People with Bronchiectasis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Data Collection
2.4. Respiratory Sounds Analysis
2.5. Statistical Analysis
3. Results
3.1. Crackles
3.1.1. Within-Day Reliability
3.1.2. Between-Day Reliability
3.1.3. Construct Validity
3.2. Wheezes
3.2.1. Within-Day Reliability
3.2.2. Between-Day Reliability
3.2.3. Construct Validity
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Donnell, A.E. Bronchiectasis—A Clinical Review. N. Engl. J. Med. 2022, 387, 533–545. [Google Scholar] [CrossRef]
- Aliberti, S.; Masefield, S.; Polverino, E.; De Soyza, A.; Loebinger, M.R.; Menendez, R.; Ringshausen, F.C.; Vendrell, M.; Powell, P.; Chalmers, J.D. Research priorities in bronchiectasis: A consensus statement from the EMBARC Clinical Research Collaboration. Eur. Respir. J. 2016, 48, 632–647. [Google Scholar] [CrossRef] [Green Version]
- Sami, R.; Zohal, M.; Khanali, F.; Esmailzadehha, N. Quality of life and its determinants in patients with noncystic fibrosis bronchiectasis. J. Res. Med. Sci. 2021, 26, 27. [Google Scholar]
- Goeminne, P.C.; Hernandez, F.; Diel, R.; Filonenko, A.; Hughes, R.; Juelich, F.; Solomon, G.M.; Upton, A.; Wichmann, K.; Xu, W.; et al. The economic burden of bronchiectasis—known and unknown: A systematic review. BMC Pulm. Med. 2019, 19, 54. [Google Scholar] [CrossRef] [Green Version]
- Congrete, S.; Metersky, M.L. Telemedicine and Remote Monitoring as an Adjunct to Medical Management of Bronchiectasis. Life 2021, 11, 1196. [Google Scholar] [CrossRef]
- Brill, S.E.; Patel, A.R.; Singh, R.; Mackay, A.J.; Brown, J.S.; Hurst, J.R. Lung function, symptoms and inflammation during exacerbations of non-cystic fibrosis bronchiectasis: A prospective observational cohort study. Respir. Res. 2015, 16, 16. [Google Scholar] [CrossRef] [Green Version]
- Bohadana, A.; Izbicki, G.; Kraman, S.S. Fundamentals of lung auscultation. N. Engl. J. Med. 2014, 370, 2053. [Google Scholar] [CrossRef] [Green Version]
- Marques, A.; Oliveira, A.; Jácome, C. Computerized adventitious respiratory sounds as outcome measures for respiratory therapy: A systematic review. Respir. Care 2014, 59, 765–776. [Google Scholar] [CrossRef] [Green Version]
- Key, A.L.; Holt, K.; Warburton, C.J.; Walker, P.P.; Earis, J.E. Use of zonal distribution of lung crackles during inspiration and expiration to assess disease severity in idiopathic pulmonary fibrosis. Postgrad. Med. J. 2018, 94, 381–385. [Google Scholar] [CrossRef]
- Melbye, H.; Aviles Solis, J.C.; Jacome, C.; Pasterkamp, H. Inspiratory crackles-early and late-revisited: Identifying COPD by crackle characteristics. BMJ Open Respir. Res. 2021, 8, e000852. [Google Scholar] [CrossRef]
- Jacome, C.; Marques, A. Computerized respiratory sounds in patients with COPD: A systematic review. COPD 2015, 12, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Granero, M.A.; Sanchez-Morillo, D.; Leon-Jimenez, A. Computerised Analysis of Telemonitored Respiratory Sounds for Predicting Acute Exacerbations of COPD. Sensors 2015, 15, 26978–26996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacome, C.; Oliveira, A.; Marques, A. Computerized respiratory sounds: A comparison between patients with stable and exacerbated COPD. Clin. Respir. J 2017, 11, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Jácome, C.; Marques, A. Computerized Respiratory Sounds: Novel Outcomes for Pulmonary Rehabilitation in COPD. Respir. Care 2017, 62, 199–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrero-Cortina, B.; Oliveira, A.; Polverino, E.; Gómez-Trullén, E.M.; Torres, A.; Marques, A. Feasibility of computerized adventitious respiratory sounds to assess the effects of airway clearance techniques in patients with bronchiectasis. Physiother. Theory Pract. 2019, 36, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jácome, C.; Marques, A. Computerized Respiratory Sounds Are a Reliable Marker in Subjects With COPD. Respir. Care 2015, 60, 1264–1275. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.; Lage, S.; Rodrigues, J.; Marques, A. Reliability, validity and minimal detectable change of computerized respiratory sounds in patients with chronic obstructive pulmonary disease. Clin. Respir. J. 2018, 12, 1838–1848. [Google Scholar] [CrossRef]
- Marques, A.; Bruton, A.; Barney, A. The reliability of lung crackle characteristics in cystic fibrosis and bronchiectasis patients in a clinical setting. Physiol. Meas. 2009, 30, 903–912. [Google Scholar] [CrossRef]
- Terwee, C.B.; Mokkink, L.B.; Knol, D.L.; Ostelo, R.W.; Bouter, L.M.; de Vet, H.C. Rating the methodological quality in systematic reviews of studies on measurement properties: A scoring system for the COSMIN checklist. Qual. Life Res. 2012, 21, 651–657. [Google Scholar] [CrossRef] [Green Version]
- Kottner, J.; Audige, L.; Brorson, S.; Donner, A.; Gajewski, B.J.; Hrobjartsson, A.; Roberts, C.; Shoukri, M.; Streiner, D.L. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. Int. J. Nurs. Stud. 2011, 48, 661–671. [Google Scholar] [CrossRef]
- Martínez-García, M.; Máiz, L.; Olveira, C.; Girón, R.M.; de la Rosa, D.; Blanco, M.; Canton, R.; Vendrell, M.; Polverino, E.; de Gracia, J.; et al. Spanish Guidelines on the Evaluation and Diagnosis of Bronchiectasis in Adults. Arch. Bronconeumol. 2018, 54, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.T.; Sullivan, A.L.; Chalmers, J.D.; De Soyza, A.; Elborn, S.J.; Floto, A.R.; Grillo, L.; Gruffydd-Jones, K.; Harvey, A.; Haworth, C.S.; et al. British Thoracic Society Guideline for bronchiectasis in adults. Thorax 2019, 74 (Suppl. S1), 1–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, A.T.; Haworth, C.S.; Aliberti, S.; Barker, A.; Blasi, F.; Boersma, W.; Chalmers, J.D.; De Soyza, A.; Dimakou, K.; Elborn, J.S.; et al. Pulmonary exacerbation in adults with bronchiectasis: A consensus definition for clinical research. Eur. Respir. J. 2017, 49, 1700051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.M.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrero-Cortina, B.; Alcaraz-Serrano, V.; Torres, A.; Polverino, E. Reliability and Minimum Important Difference of Sputum Weight in Bronchiectasis. Respir. Care 2020, 65, 1478–1487. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, G.; Buxó, M.; de Gracia, J.; Olveira, C.; Martinez-Garcia, M.A.; Giron, R.; Polverino, E.; Alvarez, A.; Birring, S.S.; Vendrell, M. Validation of a Spanish version of the Leicester Cough Questionnaire in non-cystic fibrosis bronchiectasis. Chron. Respir. Dis. 2016, 13, 128–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olveira, C.; Olveira, G.; Espildora, F.; Giron, R.M.; Muñoz, G.; Quittner, A.L.; Martinez-Garcia, M.-A. Validation of a Quality of Life Questionnaire for Bronchiectasis: Psychometric analyses of the Spanish QOL-B-V3.0. Qual. Life Res. 2014, 23, 1279–1292. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Vergara, A.; Giron-Moreno, R.M.; Martinez-Garcia, M.A. Dyspnea in bronchiectasis: A complex symptom of a complex disease. J. Bras. Pneumol. 2020, 46, e20200281. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, J.D.; Goeminne, P.; Aliberti, S.; McDonnell, M.J.; Lonni, S.; Davidson, J.; Poppelwell, L.; Salih, W.; Pesci, A.; Dupont, L.J.; et al. The bronchiectasis severity index. An international derivation and validation study. Am. J. Respir. Crit. Care Med. 2014, 189, 576–585. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.; Sovijärvi, A.R.; Piirilä, P.; Vannuccini, L.; Dalmasso, F.J.V. Environmental and subject conditions and breathing manoeuvres for respiratory sound recordings. Eur. Respir. Rev. 2000, 10, 611–615. [Google Scholar]
- Pinho, C.; Oliveira, A.; Jácome, C.; Rodrigues, J.A.M. Integrated approach for automatic crackle detection based on fractal dimension and box filtering. Int. J. Reliab. Qual. E-Healthc. 2016, 5, 34–50. [Google Scholar] [CrossRef]
- Taplidou, S.A.; Hadjileontiadis, L.J. Wheeze detection based on time-frequency analysis of breath sounds. Comput. Biol. Med. 2007, 37, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Bonett, D.G. Sample size requirements for estimating intraclass correlations with desired precision. Stat. Med. 2002, 21, 1331–1335. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleiss, J. Reliability of measurement. In Design and Analysis of Clinical Experiments; Fleiss, J., Ed.; John Wiley & Sons: New York, NY, USA, 1986; pp. 1–32. [Google Scholar]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar]
- Domholdt, E. Physical Therapy Research: Principles and Applications; Saunders: Phyladelphia, PA, USA, 2000. [Google Scholar]
- Chalmers, J.D.; Elborn, J.S. Reclaiming the name ‘bronchiectasis’. Thorax 2015, 70, 399–400. [Google Scholar] [CrossRef] [Green Version]
- Horimasu, Y.; Ohshimo, S.; Yamaguchi, K.; Sakamoto, S.; Masuda, T.; Nakashima, T.; Shintaro, M.; Hiroshi, I.; Kazunori, F.; Hironobu, H.; et al. A machine-learning based approach to quantify fine crackles in the diagnosis of interstitial pneumonia: A proof-of-concept study. Medicine 2021, 100, e24738. [Google Scholar] [CrossRef]
- Piirilä, P.; Sovijärvi, A. Crackles: Recording, analysis and clinical significance. Eur. Respir. J. 1995, 8, 2139–2148. [Google Scholar] [CrossRef] [Green Version]
- Flume, P.A.; Chalmers, J.D.; Olivier, K.N. Advances in bronchiectasis: Endotyping, genetics, microbiome, and disease heterogeneity. Lancet 2018, 392, 880–890. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Garcia, M.A.; Aksamit, T.R.; Agusti, A. Clinical Fingerprinting: A Way to Address the Complexity and Heterogeneity of Bronchiectasis in Practice. Am. J. Respir. Crit. Care Med. 2020, 201, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Meslier, N.; Charbonneau, G.; Racineux, J.L. Wheezes. Eur. Respir. J. 1995, 8, 1942–1948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiz, J.A.; Jané, R.; Homs, A.; Izquierdo, J.; García, M.A.; Morera, J. Detection of wheezing during maximal forced exhalation in patients with obstructed airways. Chest 2002, 122, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.; Rodrigues, J.; Marques, A. Enhancing our understanding of computerised adventitious respiratory sounds in different COPD phases and healthy people. Respir. Med. 2018, 138, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.D.; Latzin, P.; Verbanck, S.; Hall, G.L.; Horsley, A.; Gappa, M.; Thamrin, C.; Arets, H.G.M.; Aurora, P.; Fuchs, S.I.; et al. Consensus statement for inert gas washout measurement using multiple- and single- breath tests. Eur. Respir. J. 2013, 41, 507–522. [Google Scholar] [CrossRef] [Green Version]
- Geerinck, A.; Alekna, V.; Beaudart, C.; Bautmans, I.; Cooper, C.; De Souza Orlandi, F.; Konstantynowicz, J.; Montero-Errasquín, B.; Topinková, E.; Tsekoura, M.; et al. Standard error of measurement and smallest detectable change of the Sarcopenia Quality of Life (SarQoL) questionnaire: An analysis of subjects from 9 validation studies. PLoS ONE 2019, 14, e0216065. [Google Scholar] [CrossRef]
Within-Day Analysis (n = 28) | Between-Day and Validity Analysis (n = 25) | |
---|---|---|
Age, years, mean (SD) | 62 (12) | 61 (12) |
Male, n (%) | 9 (32) | 7 (28) |
BMI (kg/m2), median [P25–P75] | 24.9 [22.0–26.4] | 24.9 [21.2–26.4] |
Aetiology of bronchiectasis, n (%) | ||
Post-infection | 11 (39) | 9 (36) |
Idiopathic | 7 (25) | 6 (24) |
Associated other respiratory disease | 6 (21) | 6 (24) |
Others | 4 (15) | 4 (16) |
FEV1 (% predicted), mean (SD) | 77 (26) | 78 (24) |
Exacerbations in the last year, median [P25–P75] | 4 [2,3,4,5] | 4 [2,3,4,5] |
Radiological extension *, n (%) | ||
≥3 lobes affected | 20 (71) | 17 (68) |
BSI score (0–26), median [P25–P75] | 7.5 [5.0–12.0] | 7.0 [5.0–12.0] |
BSI Classification, n (%) | ||
Mild (0–4) | 5 (18) | 5 (20) |
Moderate (5–8) | 13 (46) | 12 (48) |
Severe (≥9) | 10 (36) | 8 (32) |
Long-term inhaled steroid treatment, n (%) | 14 (50) | 12 (48) |
Long-term nebulised muco-active treatment, n (%) | 4 (14) | 3 (12) |
Long-term antibiotic treatment, n (%) | ||
Oral | 11 (39) | 10 (40) |
Nebulised | 9 (32) | 8 (32) |
24 h sputum volume (mL), median [P25–P75] | 11.0 [4.7–25.0] | 11.2 [4.8–25.7] |
QoL-B-Respiratory symptoms (0–100), mean (SD) | 64.8 (17.7) | 64.7 (18.4) |
Within-Day Crackles Reliability (n = 28) | |||||||||
All Chest Locations | Anterior Chest Locations | Posterior Chest Locations | |||||||
ICC (95% CI) | SEM | SDC | ICC (95% CI) | SEM | SDC | ICC (95% CI) | SEM | SDC | |
Total number of crackles | |||||||||
Inspiratory phase | 0.66 (0.39–0.83) | 0.58 | 2.12 | 0.79 (0.60–0.90) | 0.60 | 2.14 | 0.42 (0.05–0.68) | 0.99 | 2.76 |
Expiratory phase | 0.79 (0.60–0.90) | 1.24 | 3.08 | 0.55 (0.24–0.76) | 2.48 | 4.37 | 0.89 (0.79–0.95) | 0.80 | 2.47 |
Complete respiratory cycle | 0.87 (0.74–0.94) | 1.26 | 3.11 | 0.74 (0.51–0.87) | 2.19 | 4.10 | 0.77 (0.55–0.88) | 1.58 | 3.49 |
Between-day crackles reliability (n = 25) | |||||||||
All chest locations | Anterior chest locations | Posterior chest locations | |||||||
ICC (95% CI) | SEM | SDC | ICC (95% CI) | SEM | SDC | ICC (95% CI) | SEM | SDC | |
Total number of crackles | |||||||||
Inspiratory phase | 0.85 (0.69–0.92) | 0.46 | 1.89 | 0.73 (0.49–0.87) | 0.68 | 2.28 | 0.76 (0.53–0.88) | 0.73 | 2.38 |
Expiratory phase | 0.55 (0.22–0.77) | 1.48 | 3.37 | 0.43 (0.05–0.70) | 2.04 | 3.96 | 0.67 (0.39–0.84) | 1.44 | 3.32 |
Complete respiratory cycle | 0.70 (0.43–0.86) | 1.81 | 3.73 | 0.64 (0.35–0.82) | 2.10 | 4.02 | 0.74 (0.50–0.88) | 1.84 | 3.76 |
FEV1% Pred. | Sputum (mL) | LCQ | QoL-B Resp. | Radiological Severity # | BSI | |
---|---|---|---|---|---|---|
Total number of crackles | ||||||
Inspiratory phase | 0.13 | 0.41 * | −0.14 | 0.27 | 0.04 | 0.27 |
Expiratory phase | 0.08 | 0.26 | 0.09 | 0.35 | −0.04 | −0.31 |
Complete respiratory cycle | 0.11 | 0.41 * | −0.0 | 0.31 | −0.01 | −0.33 |
Total number of wheezes | ||||||
Inspiratory phase | −0.05 | 0.53 * | 0.00 | 0.04 | −0.02 | −0.36 |
Expiratory phase | −0.00 | 0.46 * | −0.02 | 0.12 | −0.11 | −0.34 |
Complete respiratory cycle | 0.00 | 0.46 * | −0.0 | 0.11 | −0.10 | −0.35 |
Occupation rate (%) | ||||||
Inspiratory phase | 0.04 | 0.48 * | −0.02 | −0.02 | −0.05 | −0.32 |
Expiratory phase | −0.02 | 0.42 * | −0.05 | 0.03 | −0.10 | −0.27 |
Complete respiratory cycle | −0.01 | 0.44 * | −0.04 | 0.03 | −0.03 | −0.35 |
Within-Day Wheezes Reliability (n = 28) | |||||||||
All Chest Locations | Anterior Chest Locations | Posterior Chest Locations | |||||||
ICC (95% CI) | SEM | SDC | ICC (95% CI) | SEM | SDC | ICC (95% CI) | SEM | SDC | |
Total number of wheezes | |||||||||
Inspiratory phase | 0.81 (0.64–0.91) | 0.61 | 2.17 | 0.79 (0.56–0.88) | 0.82 | 2.52 | 0.74 (0.51–0.87) | 0.56 | 2.08 |
Expiratory phase | 0.86 (0.71–0.93) | 0.90 | 2.63 | 0.85 (0.71–0.93) | 0.89 | 2.62 | 0.73 (0.49–0.86) | 1.51 | 3.40 |
Complete respiratory cycle | 0.87 (0.73–0.94) | 1.33 | 3.20 | 0.83 (0.67–0.92) | 1.61 | 3.51 | 0.81 (0.63–0.91) | 1.66 | 3.57 |
Occupation rate (%) | |||||||||
Inspiratory phase | 0.79 (0.60–0.90) | 6.97 | 7.32 | 0.85 (0.69–0.93) | 7.20 | 7.44 | 0.54 (0.22–0.76) | 9.97 | 8.75 |
Expiratory phase | 0.84 (0.69–0.92) | 8.88 | 8.26 | 0.77 (0.54–0.88) | 11.85 | 9.54 | 0.72 (0.48–0.86) | 13.28 | 10.10 |
Complete respiratory cycle | 0.86 (0.71–0.93) | 6.96 | 7.31 | 0.83 (0.63–0.92) | 8.58 | 8.12 | 0.73 (0.50–0.87) | 10.65 | 9.05 |
Between-day wheezes reliability (n = 25) | |||||||||
All chest locations | Anterior chest locations | Posterior chest locations | |||||||
ICC (95% CI) | SEM | SDC | ICC (95% CI) | SEM | SDC | ICC (95% CI) | SEM | SDC | |
Total number of wheezes | |||||||||
Inspiratory phase | 0.59 (0.26–0.80) | 1.02 | 2.81 | 0.45 (0.09–0.71) | 1.63 | 3.54 | 0.48 (0.11–0.74) | 0.79 | 2.47 |
Expiratory phase | 0.77 (0.54–0.89) | 1.15 | 2.97 | 0.81 (0.61–0.91) | 1.22 | 3.06 | 0.52 (0.16–0.75) | 1.73 | 3.65 |
Complete respiratory cycle | 0.78 (0.56–0.90) | 1.83 | 3.75 | 0.74 (0.50–0.88) | 2.50 | 4.38 | 0.57 (0.23–0.78) | 2.30 | 4.20 |
Occupation rate (%) | |||||||||
Inspiratory phase | 0.58 (0.21–0.80) | 10.56 | 9.01 | 0.54 (0.20–0.76) | 14.51 | 10.56 | 0.41 (0.05–0.69) | 10.52 | 8.99 |
Expiratory phase | 0.74 (0.39–0.89) | 11.52 | 9.41 | 0.60 (0.29–0.80) | 15.94 | 11.07 | 0.71 (0.41–0.86) | 12.92 | 9.96 |
Complete respiratory cycle | 0.71 (0.33–0.87) | 10.61 | 9.03 | 0.59 (0.27–0.80) | 14.73 | 10.64 | 0.66 (0.34–0.84) | 11.43 | 9.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrero-Cortina, B.; Francín-Gallego, M.; Sáez-Pérez, J.A.; San Miguel-Pagola, M.; Anoro-Abenoza, L.; Gómez-González, C.; Montero-Marco, J.; Charlo-Bernardos, M.; Altarribas-Bolsa, E.; Pérez-Trullén, A.; et al. Reliability and Validity of Computerized Adventitious Respiratory Sounds in People with Bronchiectasis. J. Clin. Med. 2022, 11, 7509. https://doi.org/10.3390/jcm11247509
Herrero-Cortina B, Francín-Gallego M, Sáez-Pérez JA, San Miguel-Pagola M, Anoro-Abenoza L, Gómez-González C, Montero-Marco J, Charlo-Bernardos M, Altarribas-Bolsa E, Pérez-Trullén A, et al. Reliability and Validity of Computerized Adventitious Respiratory Sounds in People with Bronchiectasis. Journal of Clinical Medicine. 2022; 11(24):7509. https://doi.org/10.3390/jcm11247509
Chicago/Turabian StyleHerrero-Cortina, Beatriz, Marina Francín-Gallego, Juan Antonio Sáez-Pérez, Marta San Miguel-Pagola, Laura Anoro-Abenoza, Cristina Gómez-González, Jesica Montero-Marco, Marta Charlo-Bernardos, Elena Altarribas-Bolsa, Alfonso Pérez-Trullén, and et al. 2022. "Reliability and Validity of Computerized Adventitious Respiratory Sounds in People with Bronchiectasis" Journal of Clinical Medicine 11, no. 24: 7509. https://doi.org/10.3390/jcm11247509
APA StyleHerrero-Cortina, B., Francín-Gallego, M., Sáez-Pérez, J. A., San Miguel-Pagola, M., Anoro-Abenoza, L., Gómez-González, C., Montero-Marco, J., Charlo-Bernardos, M., Altarribas-Bolsa, E., Pérez-Trullén, A., & Jácome, C. (2022). Reliability and Validity of Computerized Adventitious Respiratory Sounds in People with Bronchiectasis. Journal of Clinical Medicine, 11(24), 7509. https://doi.org/10.3390/jcm11247509