Next-Generation Sequencing of a Large Gene Panel for Outcome Prediction of Bariatric Surgery in Patients with Severe Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Samples
2.2. Panel Design and Sequencing
2.3. Bioinformatics
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Consultation. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation. World Health Organ. Tech. Rep. Ser. 2000, 894, 1–253. [Google Scholar]
- González-Muniesa, P.; Mártinez-González, M.-A.; Hu, F.B.; Després, J.-P.; Matsuzawa, Y.; Loos, R.J.F.; Moreno, L.A.; Bray, G.A.; Martinez, J.A. Obesity. Nat. Rev. Dis. Primers 2017, 3, 17034. [Google Scholar] [CrossRef] [PubMed]
- Locke, A.E.; Kahali, B.; Berndt, S.I.; Justice, A.E.; Pers, T.H.; Day, F.R.; Powell, C.; Vedantam, S.; Buchkovich, M.L.; Yang, J.; et al. Genetic Studies of Body Mass Index Yield New Insights for Obesity Biology. Nature 2015, 518, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Yazdi, F.T.; Clee, S.M.; Meyre, D. Obesity Genetics in Mouse and Human: Back and Forth, and Back Again. PeerJ 2015, 3, e856. [Google Scholar] [CrossRef] [Green Version]
- GBD 2015 Obesity Collaborators. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Bonetti, G.; Herbst, K.L.; Dhuli, K.; Kiani, A.K.; Michelini, S.; Michelini, S.; Ceccarini, M.R.; Michelini, S.; Ricci, M.; Cestari, M.; et al. Dietary Supplements for Lipedema. J. Prev. Med. Hyg. 2022, 63, E169–E173. [Google Scholar] [PubMed]
- Bonetti, G.; Herbst, K.L.; Donato, K.; Dhuli, K.; Kiani, A.K.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Bertelli, M. Dietary Supplements for Obesity. J. Prev. Med. Hyg. 2022, 63, E160–E168. [Google Scholar]
- Flegal, K.M.; Wei, R.; Ogden, C. Weight-for-Stature Compared with Body Mass Index–for-Age Growth Charts for the United States from the Centers for Disease Control and Prevention. Am. J. Clin. Nutr. 2002, 75, 761–766. [Google Scholar] [CrossRef] [Green Version]
- NCD Risk Factor Collaboration. Trends in Adult Body-Mass Index in 200 Countries from 1975 to 2014: A Pooled Analysis of 1698 Population-Based Measurement Studies with 19·2 Million Participants. Lancet 2016, 387, 1377–1396. [Google Scholar] [CrossRef] [Green Version]
- Alqahtani, A.R.; Elahmedi, M.; Alqahtani, Y.A. Bariatric Surgery in Monogenic and Syndromic Forms of Obesity. Semin. Pediatr. Surg. 2014, 23, 37–42. [Google Scholar] [CrossRef]
- Poirier, P.; Cornier, M.-A.; Mazzone, T.; Stiles, S.; Cummings, S.; Klein, S.; McCullough, P.A.; Ren Fielding, C.; Franklin, B.A. Bariatric Surgery and Cardiovascular Risk Factors. Circulation 2011, 123, 1683–1701. [Google Scholar] [CrossRef] [PubMed]
- Vos, N.; Oussaada, S.M.; Cooiman, M.I.; Kleinendorst, L.; ter Horst, K.W.; Hazebroek, E.J.; Romijn, J.A.; Serlie, M.J.; Mannens, M.M.A.M.; van Haelst, M.M. Bariatric Surgery for Monogenic Non-Syndromic and Syndromic Obesity Disorders. Curr. Diabetes Rep. 2020, 20, 44. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, C.; Marchetti, C.; Monami, M.; Mannucci, E.; Cresci, B. Efficacy and Effects of Bariatric Surgery in the Treatment of Obesity: Network Meta-Analysis of Randomized Controlled Trials. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2815–2824. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.M.; Aronne, L.J. Causes of Obesity. Abdom. Radiol. 2012, 37, 730–732. [Google Scholar] [CrossRef] [PubMed]
- Sällman Almén, M.; Rask-Andersen, M.; Jacobsson, J.A.; Ameur, A.; Kalnina, I.; Moschonis, G.; Juhlin, S.; Bringeland, N.; Hedberg, L.A.; Ignatovica, V.; et al. Determination of the Obesity-Associated Gene Variants within the Entire FTO Gene by Ultra-Deep Targeted Sequencing in Obese and Lean Children. Int. J. Obes. 2013, 37, 424–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerhard, G.S.; Chu, X.; Wood, G.C.; Gerhard, G.M.; Benotti, P.; Petrick, A.T.; Gabrielsen, J.; Strodel, W.E.; Still, C.D.; Argyropoulos, G. Next-Generation Sequence Analysis of Genes Associated with Obesity and Nonalcoholic Fatty Liver Disease-Related Cirrhosis in Extreme Obesity. Hum. Hered. 2013, 75, 144–151. [Google Scholar] [CrossRef] [Green Version]
- Majithia, A.R.; Flannick, J.; Shahinian, P.; Guo, M.; Bray, M.-A.; Fontanillas, P.; Gabriel, S.B.; GoT2D Consortium; NHGRI JHS/FHS Allelic Spectrum Project; SIGMA T2D Consortium; et al. Rare Variants in PPARG with Decreased Activity in Adipocyte Differentiation Are Associated with Increased Risk of Type 2 Diabetes. Proc. Natl. Acad. Sci. USA 2014, 111, 13127–13132. [Google Scholar] [CrossRef] [Green Version]
- Blakemore, A.I.F.; Meyre, D.; Delplanque, J.; Vatin, V.; Lecoeur, C.; Marre, M.; Tichet, J.; Balkau, B.; Froguel, P.; Walley, A.J. A Rare Variant in the Visfatin Gene (NAMPT/PBEF1) Is Associated with Protection from Obesity. Obesity 2009, 17, 1549–1553. [Google Scholar] [CrossRef]
- Donato, K.; Ceccarini, M.R.; Dhuli, K.; Bonetti, G.; Medori, M.C.; Marceddu, G.; Precone, V.; Xhufi, S.; Bushati, M.; Bozo, D.; et al. Gene Variants in Eating Disorders. Focus on Anorexia Nervosa, Bulimia Nervosa, and Binge-Eating Disorder. J. Prev. Med. Hyg. 2022, 63, E297–E305. [Google Scholar]
- Paolacci, S.; Pompucci, G.; Paolini, B.; del Ciondolo, I.; Miggiano, G.A.D.; Aquilanti, B.; Scaramuzza, A.; Velluti, V.; Matera, G.; Gagliardi, L.; et al. Mendelian Non-Syndromic Obesity. Acta Biomed. 2019, 90, 87–89. [Google Scholar] [CrossRef]
- Mahmoud, R.; Kimonis, V.; Butler, M.G. Genetics of Obesity in Humans: A Clinical Review. Int. J. Mol. Sci. 2022, 23, 11005. [Google Scholar] [CrossRef] [PubMed]
- Berruien, N.N.A.; Smith, C.L. Emerging Roles of Melanocortin Receptor Accessory Proteins (MRAP and MRAP2) in Physiology and Pathophysiology. Gene 2020, 757, 144949. [Google Scholar] [CrossRef] [PubMed]
- Kaur, Y.; de Souza, R.J.; Gibson, W.T.; Meyre, D. A Systematic Review of Genetic Syndromes with Obesity. Obes. Rev. 2017, 18, 603–634. [Google Scholar] [CrossRef] [PubMed]
- Loos, R.J.F.; Janssens, A.C.J.W. Predicting Polygenic Obesity Using Genetic Information. Cell Metab. 2017, 25, 535–543. [Google Scholar] [CrossRef] [Green Version]
- Kleinendorst, L.; Massink, M.P.G.; Cooiman, M.I.; Savas, M.; van der Baan-Slootweg, O.H.; Roelants, R.J.; Janssen, I.C.M.; Meijers-Heijboer, H.J.; Knoers, N.V.A.M.; Ploos van Amstel, H.K.; et al. Genetic Obesity: Next-Generation Sequencing Results of 1230 Patients with Obesity. J. Med. Genet. 2018, 55, 578–586. [Google Scholar] [CrossRef] [Green Version]
- Maltese, P.E.; Iarossi, G.; Ziccardi, L.; Colombo, L.; Buzzonetti, L.; Crinò, A.; Tezzele, S.; Bertelli, M. A Next Generation Sequencing Custom Gene Panel as First Line Diagnostic Tool for Atypical Cases of Syndromic Obesity: Application in a Case of Alström Syndrome. Eur. J. Med. Genet. 2018, 61, 79–83. [Google Scholar] [CrossRef]
- Gatticchi, L.; Miertus, J.; Maltese, P.E.; Bressan, S.; de Antoni, L.; Podracká, L.; Piteková, L.; Rísová, V.; Mällo, M.; Jaakson, K.; et al. A Very Early Diagnosis of Alström Syndrome by next Generation Sequencing. BMC Med. Genet. 2020, 21, 173. [Google Scholar] [CrossRef]
- Khadilkar, V.; Gogate, N.; Gangodkar, P.; Ranade, S.; Lohiya, N.; Ragte, T.; Patil, K.; Pilankar, A.; Anand, S.; Bapat, A.; et al. A Targeted Next Generation Sequencing Panel for Non-Syndromic Early Onset Severe Obesity and Identification of Novel Likely -Pathogenic Variants in the MC4R and LEP Genes. Indian J. Pediatr. 2020, 87, 105–110. [Google Scholar] [CrossRef]
- Michelini, S.; Herbst, K.L.; Precone, V.; Manara, E.; Marceddu, G.; Dautaj, A.; Maltese, P.E.; Paolacci, S.; Ceccarini, M.R.; Beccari, T.; et al. A Multi-Gene Panel to Identify Lipedema-Predisposing Genetic Variants by a Next-Generation Sequencing Strategy. J. Pers. Med. 2022, 12, 268. [Google Scholar] [CrossRef]
- Ceccarini, M.R.; Precone, V.; Manara, E.; Paolacci, S.; Maltese, P.E.; Benfatti, V.; Dhuli, K.; Donato, K.; Guerri, G.; Marceddu, G.; et al. A next Generation Sequencing Gene Panel for Use in the Diagnosis of Anorexia Nervosa. Eat. Weight. Disord. Stud. Anorex. Bulim. Obes. 2021, 27, 1869–1880. [Google Scholar] [CrossRef]
- Ndiaye, F.K.; Huyvaert, M.; Ortalli, A.; Canouil, M.; Lecoeur, C.; Verbanck, M.; Lobbens, S.; Khamis, A.; Marselli, L.; Marchetti, P.; et al. The Expression of Genes in Top Obesity-Associated Loci Is Enriched in Insula and Substantia Nigra Brain Regions Involved in Addiction and Reward. Int. J. Obes. 2020, 44, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Goni, L.; Cuervo, M.; Milagro, F.I.; Martínez, J.A. A Genetic Risk Tool for Obesity Predisposition Assessment and Personalized Nutrition Implementation Based on Macronutrient Intake. Genes Nutr. 2015, 10, 445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khera, A.V.; Chaffin, M.; Wade, K.H.; Zahid, S.; Brancale, J.; Xia, R.; Distefano, M.; Senol-Cosar, O.; Haas, M.E.; Bick, A.; et al. Polygenic Prediction of Weight and Obesity Trajectories from Birth to Adulthood. Cell 2019, 177, 587–596.e9. [Google Scholar] [CrossRef] [PubMed]
- Courcoulas, A.P.; Yanovski, S.Z.; Bonds, D.; Eggerman, T.L.; Horlick, M.; Staten, M.A.; Arterburn, D.E. Long-Term Outcomes of Bariatric Surgery: A National Institutes of Health Symposium. JAMA Surg. 2014, 149, 1323–1329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arterburn, D.; Wellman, R.; Emiliano, A.; Smith, S.R.; Odegaard, A.O.; Murali, S.; Williams, N.; Coleman, K.J.; Courcoulas, A.; Coley, R.Y.; et al. Comparative Effectiveness and Safety of Bariatric Procedures for Weight Loss: A PCORnet Cohort Study. Ann. Intern. Med. 2018, 169, 741–750. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, H.; Tu, Y.; Wang, C.; Di, J.; Yu, H.; Zhang, P.; Bao, Y.; Jia, W.; Yang, J.; et al. Monogenic Obesity Mutations Lead to Less Weight Loss After Bariatric Surgery: A 6-Year Follow-Up Study. Obes. Surg. 2019, 29, 1169–1173. [Google Scholar] [CrossRef]
- Campos, A.; Cifuentes, L.; Hashem, A.; Busebee, B.; Hurtado-Andrade, M.D.; Ricardo-Silgado, M.L.; McRae, A.; de la Rosa, A.; Feris, F.; Bublitz, J.T.; et al. Effects of Heterozygous Variants in the Leptin-Melanocortin Pathway on Roux-En-Y Gastric Bypass Outcomes: A 15-Year Case–Control Study. Obes. Surg. 2022, 32, 2632–2640. [Google Scholar] [CrossRef]
- UnitedHealthcare. UnitedHealthcare® Commercial Medica l Policy Bariatric Surgery; UnitedHealthcare: Hartford, CT, USA, 2022. [Google Scholar]
- Di Lorenzo, N.; Antoniou, S.A.; Batterham, R.L.; Busetto, L.; Godoroja, D.; Iossa, A.; Carrano, F.M.; Agresta, F.; Alarçon, I.; Azran, C.; et al. Clinical Practice Guidelines of the European Association for Endoscopic Surgery (EAES) on Bariatric Surgery: Update 2020 Endorsed by IFSO-EC, EASO and ESPCOP. Surg. Endosc. 2020, 34, 2332–2358. [Google Scholar] [CrossRef] [Green Version]
- Mechanick, J.I.; Youdim, A.; Jones, D.B.; Timothy Garvey, W.; Hurley, D.L.; Molly McMahon, M.; Heinberg, L.J.; Kushner, R.; Adams, T.D.; Shikora, S.; et al. Clinical Practice Guidelines for the Perioperative Nutritional, Metabolic, and Nonsurgical Support of the Bariatric Surgery Patient—2013 Update: Cosponsored by American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic & Bariatric Surgery. Surg. Obes. Relat. Dis. 2013, 9, 159–191. [Google Scholar] [CrossRef]
- Bonetti, G.; Paolacci, S.; Samaja, M.; Maltese, P.E.; Michelini, S.; Michelini, S.; Michelini, S.; Ricci, M.; Cestari, M.; Dautaj, A.; et al. Low Efficacy of Genetic Tests for the Diagnosis of Primary Lymphedema Prompts Novel Insights into the Underlying Molecular Pathways. Int. J. Mol. Sci. 2022, 23, 7414. [Google Scholar] [CrossRef]
- Cecchetti, C.; D’Apice, M.R.; Morini, E.; Novelli, G.; Pizzi, C.; Pagotto, U.; Gambineri, A. Case Report: An Atypical Form of Familial Partial Lipodystrophy Type 2 Due to Mutation in the Rod Domain of Lamin A/C. Front. Endocrinol. 2021, 12, 675096. [Google Scholar] [CrossRef] [PubMed]
- Lightbourne, M.; Brown, R.J. Genetics of Lipodystrophy. Endocrinol. Metab. Clin. N. Am. 2017, 46, 539–554. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudinezhad, M.; Abbasalizad-Farhangi, M.; Kahroba, H. Hypothalamic-Pituitary Hormones Will Be Affected by the Interaction between 5q13-14-Rs2239670 (CARTPT) Gene Variants and Diet in Different Obesity Phenotypes. BMC Res. Notes 2021, 14, 443. [Google Scholar] [CrossRef] [PubMed]
- Pearce, L.R.; Atanassova, N.; Banton, M.C.; Bottomley, B.; van der Klaauw, A.A.; Revelli, J.-P.; Hendricks, A.; Keogh, J.M.; Henning, E.; Doree, D.; et al. KSR2 Mutations Are Associated with Obesity, Insulin Resistance, and Impaired Cellular Fuel Oxidation. Cell 2013, 155, 765–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Marco, G.; Garcia-Garcia, A.B.; Real, J.T.; Gonzalez-Albert, V.; Briongos-Figuero, L.-S.; Cobos-Siles, M.; Lago-Sampedro, A.; Corbaton, A.; Teresa Martinez-Larrad, M.; Carmena, R.; et al. Respiratory Chain Polymorphisms and Obesity in the Spanish Population, a Cross-Sectional Study. BMJ Open 2019, 9, e027004. [Google Scholar] [CrossRef]
- Precone, V.; Barati, S.; Paolacci, S.; Salgarello, M.; Visconti, G.; Gentileschi, S.; Guerri, G.; Gagliardi, L.; Aquilanti, B.; Matera, G.; et al. Genetic Syndromes with Localized Subcutaneous Fat Tissue Accumulation. Acta Biomed. 2019, 90, 90–92. [Google Scholar] [CrossRef]
- Bano, G.; Mansour, S.; Brice, G.; Ostergaard, P.; Mortimer, P.S.; Jeffery, S.; Nussey, S. Pit-1 Mutation and Lipoedema in a Family. Exp. Clin. Endocrinol. Diabetes 2009, 118, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Rui, L. SH2B1 Regulation of Energy Balance, Body Weight, and Glucose Metabolism. World J. Diabetes 2014, 5, 511. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-C.C.; Luan, J.; Sims, M.; Keogh, J.M.; Hall, C.; Wareham, N.J.; O’Rahilly, S.; Farooqi, I.S. Studies of the SIM1 Gene in Relation to Human Obesity and Obesity-Related Traits. Int. J. Obes. 2007, 31, 429–434. [Google Scholar] [CrossRef] [Green Version]
- Mattassi, R.; Manara, E.; Colombo, P.G.; Manara, S.; Porcella, A.; Bruno, G.; Bruson, A.; Bertelli, M. Variant Discovery in Patients with Mendelian Vascular Anomalies by Next-Generation Sequencing and Their Use in Patient Clinical Management. J. Vasc. Surg. 2018, 67, 922–932.e11. [Google Scholar] [CrossRef] [Green Version]
- Marceddu, G.; Dallavilla, T.; Guerri, G.; Zulian, A.; Marinelli, C.; Bertelli, M. Analysis of Machine Learning Algorithms as Integrative Tools for Validation of next Generation Sequencing Data. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 8139–8147. [Google Scholar] [CrossRef] [PubMed]
- GnomAD. Available online: https://gnomad.broadinstitute.org/ (accessed on 1 September 2022).
- VarSome. Available online: https://varsome.com/ (accessed on 1 September 2022).
- American College of Medical Genetics Criteria. Available online: https://www.acmg.net/acmg/medical-genetics-practice-resources/practice-guidelines.aspx (accessed on 1 September 2022).
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-Accuracy Models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef] [PubMed]
- Segelke, B.W.; Forstner, M.; Knapp, M.; Trakhanov, S.D.; Parkin, S.; Newhouse, Y.M.; Bellamy, H.D.; Weisgraber, K.H.; Rupp, B. Conformational Flexibility in the Apolipoprotein E Amino-Terminal Domain Structure Determined from Three New Crystal Forms: Implications for Lipid Binding. Protein Sci. 2000, 9, 886–897. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Peters-Libeu, C.A.; Weisgraber, K.H.; Segelke, B.W.; Rupp, B.; Capila, I.; Hernáiz, M.J.; LeBrun, L.A.; Linhardt, R.J. Interaction of the N-Terminal Domain of Apolipoprotein E4 with Heparin. Biochemistry 2001, 40, 2826–2834. [Google Scholar] [CrossRef]
- Knockenhauer, K.E.; Schwartz, T.U. Structural Characterization of Bardet-Biedl Syndrome 9 Protein (BBS9). J. Biol. Chem. 2015, 290, 19569–19583. [Google Scholar] [CrossRef] [Green Version]
- PyMOL by Schrödinger. Available online: https://pymol.org/2/ (accessed on 14 October 2022).
- Klink, B.U.; Gatsogiannis, C.; Hofnagel, O.; Wittinghofer, A.; Raunser, S. Structure of the Human BBSome Core Complex. eLife 2020, 9, e53910. [Google Scholar] [CrossRef]
- Specchia, M.L.; Veneziano, M.A.; Cadeddu, C.; Ferriero, A.M.; Mancuso, A.; Ianuale, C.; Parente, P.; Capri, S.; Ricciardi, W. Economic Impact of Adult Obesity on Health Systems: A Systematic Review. Eur. J. Public Health 2015, 25, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Kissler, H.J.; Settmacher, U. Bariatric Surgery to Treat Obesity. Semin. Nephrol. 2013, 33, 75–89. [Google Scholar] [CrossRef]
- Still, C.D.; Wood, G.C.; Chu, X.; Erdman, R.; Manney, C.H.; Benotti, P.N.; Petrick, A.T.; Strodel, W.E.; Mirshahi, U.L.; Mirshahi, T.; et al. High Allelic Burden of Four Obesity SNPs Is Associated with Poorer Weight Loss Outcomes Following Gastric Bypass Surgery. Obesity 2011, 19, 1676–1683. [Google Scholar] [CrossRef] [PubMed]
- Mirshahi, U.L.; Still, C.D.; Masker, K.K.; Gerhard, G.S.; Carey, D.J.; Mirshahi, T. The MC4R(I251L) Allele Is Associated with Better Metabolic Status and More Weight Loss after Gastric Bypass Surgery. J. Clin. Endocrinol. Metab. 2011, 96, E2088–E2096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baheeg, M.; Tag El-Din, M.; Labib, M.F.; Elgohary, S.A.; Hasan, A. Long-Term Durability of Weight Loss after Bariatric Surgery; a Retrospective Study. Int. J. Surg. Open 2021, 28, 37–40. [Google Scholar] [CrossRef]
- Guo, D.-F.; Beyer, A.M.; Yang, B.; Nishimura, D.Y.; Sheffield, V.C.; Rahmouni, K. Inactivation of Bardet-Biedl Syndrome Genes Causes Kidney Defects. Am. J. Physiol.-Ren. Physiol. 2011, 300, F574–F580. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.H.; Kang, G.M.; Kim, M.-S. Mechanisms of Weight Control by Primary Cilia. Mol. Cells 2022, 45, 169–176. [Google Scholar] [CrossRef]
- Gantz, M.G.; Driscoll, D.J.; Miller, J.L.; Duis, J.B.; Butler, M.G.; Gourash, L.; Forster, J.; Scheimann, A.O. Critical Review of Bariatric Surgical Outcomes in Patients with Prader-Willi Syndrome and Other Hyperphagic Disorders. Obesity 2022, 30, 973–981. [Google Scholar] [CrossRef]
- Longo, M.; Raciti, G.A.; Zatterale, F.; Parrillo, L.; Desiderio, A.; Spinelli, R.; Hammarstedt, A.; Hedjazifar, S.; Hoffmann, J.M.; Nigro, C.; et al. Epigenetic Modifications of the Zfp/ZNF423 Gene Control Murine Adipogenic Commitment and Are Dysregulated in Human Hypertrophic Obesity. Diabetologia 2018, 61, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Fajans, S.S.; Bell, G.I.; Paz, V.P.; Below, J.E.; Cox, N.J.; Martin, C.; Thomas, I.H.; Chen, M. Obesity and Hyperinsulinemia in a Family with Pancreatic Agenesis and MODY Caused by the IPF1 Mutation Pro63fsX60. Transl. Res. 2010, 156, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Glad, C.A.M.; Svensson, P.-A.; Nystrom, F.H.; Jacobson, P.; Carlsson, L.M.S.; Johannsson, G.; Andersson-Assarsson, J.C. Expression of GHR and Downstream Signaling Genes in Human Adipose Tissue—Relation to Obesity and Weight Change. J. Clin. Endocrinol. Metab. 2019, 104, 1459–1470. [Google Scholar] [CrossRef]
- Correa-Rodríguez, M.; Schmidt-RioValle, J.; González-Jiménez, E.; Rueda-Medina, B. Estrogen Receptor 1 (ESR1) Gene Polymorphisms and Obesity Phenotypes in a Population of Young Adults. Clin. Nurs. Res. 2018, 27, 936–949. [Google Scholar] [CrossRef]
- Nishimura, D.Y.; Swiderski, R.E.; Searby, C.C.; Berg, E.M.; Ferguson, A.L.; Hennekam, R.; Merin, S.; Weleber, R.G.; Biesecker, L.G.; Stone, E.M.; et al. Comparative Genomics and Gene Expression Analysis Identifies BBS9, a New Bardet-Biedl Syndrome Gene. Am. J. Hum. Genet. 2005, 77, 1021–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farup, P.G.; Rootwelt, H.; Hestad, K. APOE—A Genetic Marker of Comorbidity in Subjects with Morbid Obesity. BMC Med. Genet. 2020, 21, 146. [Google Scholar] [CrossRef] [PubMed]
Group | Non-Deleterious | Deleterious | p-Value |
---|---|---|---|
N of patients | 20 | 5 | - |
Females/Males | 15/5 | 4/1 | - |
BMI | 45.0 ± 7.5 | 36.5 ± 3.5 | <0.05 |
Age | 50.4 ± 10.7 | 49.4 ± 12.6 | >0.05 |
Height (m) | 1.7 ± 0.1 | 1.8 ± 0.2 | >0.05 |
Glycemia (mg/dL) | 96.5 ± 21.1 | 91.5 ± 26.8 | >0.05 |
Total cholesterol (mg/dL) | 188.2 ± 36.5 | 119.3 ± 42.4 | <0.05 |
Pre-surgery weight (kg) | 129.4 ± 25.4 | 118.6 ± 19.3 | >0.05 |
Hyperphagia (%) | 50.0 | 100.0 | - |
BMI after 6 months | 31.9 ± 4.0 | 27.2 ± 15.0 | <0.05 |
Weight loss after 6 months (kg) | 36.4 ± 13.3 | 30.5 ± 6.2 | >0.05 |
BMI after 12 months | 28.4 ± 2.8 | 28.4 ± 2.9 | >0.05 |
Weight loss after 12 months (kg) | 49.7 ± 19.7 | 28.2 ± 3.8 | <0.05 |
%EWL after 12 months (%) | 81.6 ± 10.3 | 84.3% ± 12.3 | >0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonetti, G.; Dhuli, K.; Ceccarini, M.R.; Kaftalli, J.; Samaja, M.; Precone, V.; Cecchin, S.; Maltese, P.E.; Guerri, G.; Marceddu, G.; et al. Next-Generation Sequencing of a Large Gene Panel for Outcome Prediction of Bariatric Surgery in Patients with Severe Obesity. J. Clin. Med. 2022, 11, 7531. https://doi.org/10.3390/jcm11247531
Bonetti G, Dhuli K, Ceccarini MR, Kaftalli J, Samaja M, Precone V, Cecchin S, Maltese PE, Guerri G, Marceddu G, et al. Next-Generation Sequencing of a Large Gene Panel for Outcome Prediction of Bariatric Surgery in Patients with Severe Obesity. Journal of Clinical Medicine. 2022; 11(24):7531. https://doi.org/10.3390/jcm11247531
Chicago/Turabian StyleBonetti, Gabriele, Kristjana Dhuli, Maria Rachele Ceccarini, Jurgen Kaftalli, Michele Samaja, Vincenza Precone, Stefano Cecchin, Paolo Enrico Maltese, Giulia Guerri, Giuseppe Marceddu, and et al. 2022. "Next-Generation Sequencing of a Large Gene Panel for Outcome Prediction of Bariatric Surgery in Patients with Severe Obesity" Journal of Clinical Medicine 11, no. 24: 7531. https://doi.org/10.3390/jcm11247531
APA StyleBonetti, G., Dhuli, K., Ceccarini, M. R., Kaftalli, J., Samaja, M., Precone, V., Cecchin, S., Maltese, P. E., Guerri, G., Marceddu, G., Beccari, T., Aquilanti, B., Velluti, V., Matera, G., Perrone, M., Iaconelli, A., Colombo, F., Greco, F., Raffaelli, M., ... Bertelli, M. (2022). Next-Generation Sequencing of a Large Gene Panel for Outcome Prediction of Bariatric Surgery in Patients with Severe Obesity. Journal of Clinical Medicine, 11(24), 7531. https://doi.org/10.3390/jcm11247531