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Abstract: Background: It is well understood that surgical skills largely define patient outcomes both
in Minimally Invasive Surgery (MIS) and Robot-Assisted MIS (RAMIS). Non-technical surgical skills,
including stress and distraction resilience, decision-making and situation awareness also contribute
significantly. Autonomous, technologically supported objective skill assessment can be efficient
tools to improve patient outcomes without the need to involve expert surgeon reviewers. However,
autonomous non-technical skill assessments are unstandardized and open for more research. Recently,
Surgical Data Science (SDS) has become able to improve the quality of interventional healthcare with
big data and data processing techniques (capture, organization, analysis and modeling of data). SDS
techniques can also help to achieve autonomous non-technical surgical skill assessments. Methods:
An MIS training experiment is introduced to autonomously assess non-technical skills and to analyse
the workload based on sensory data (video image and force) and a self-rating questionnaire (SURG-
TLX). A sensorized surgical skill training phantom and adjacent training workflow were designed
to simulate a complicated Laparoscopic Cholecystectomy task; the dissection of the cholecyst’s
peritonial layer and the safe clip application on the cystic artery in an uncomfortable environment.
A total of 20 training sessions were recorded from 7 subjects (3 non-medicals, 2 residents, 1 expert
surgeon and 1 expert MIS surgeon). Workload and learning curves were studied via SURG-TLX. For
autonomous non-technical skill assessment, video image data with tracked instruments based on
Channel and Spatial Reliability Tracker (CSRT) and force data were utilized. An autonomous time
series classification was achieved by a Fully Convolutional Neural Network (FCN), where the class
labels were provided by SURG-TLX. Results: With unpaired t-tests, significant differences were found
between the two groups (medical professionals and control) in certain workload components (mental
demands, physical demands, and situational stress, p < 0.0001, 95% confidence interval, p < 0.05
for task complexity). With paired t-tests, the learning curves of the trials were also studied; the task
complexity resulted in a significant difference between the first and the second trials. Autonomous
non-technical skill classification was based on the FCN by applying the tool trajectories and force
data as input. This resulted in a high accuracy (85%) on temporal demands classification based on the
z component of the used forces and 75% accuracy for classifying mental demands/situational stress
with the x component of the used forces validated with Leave One Out Cross-Validation. Conclusions:
Non-technical skills and workload components can be classified autonomously based on measured
training data. SDS can be effective via automated non-technical skill assessment.

Keywords: minimally invasive surgery; robot-assisted minimally invasive surgery; surgical skill
assessment; non-technical skills; surgical data science; workload; situation awareness; autonomous
skill assessment
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1. Introduction

The conversion to Minimally Invasive Surgery (MIS) from open access surgery
was one of the most important paradigm changes in medicine in the second half of
the 20th century [1]. Despite the clear benefits of MIS, such as shorter recovery times,
smaller scars, and less blood loss, it can also pose a challenge to surgeons by the limited
view, the loss of depth information due to the 2D endoscopic camera, but especially
by the complicated handling of the laparoscopic tools. MIS requires extensive training;
and because of the challenging tasks, constant feedback regarding skills is needed as
well [2].

Surgical skills and knowledge directly influence patient outcome, which are based on
years of training, supervisory assessment and clinical experience. The knowledge of the
surgeon includes technical skills, non-technical skills, and workload (Figure 1). Assessing
the objectively measured technical skills of the surgeon (such as tool handling, bimanual
dexterity, the flow of operation, etc.) is a very well-researched domain; non-technical
skills (situation awareness, dealing with stress and distractions, decision-making, etc.) can
be similarly important considering the patient outcomes [3]. Workload, which represents
the effort to perform a task, may also be in strong correlation with non-technical skills.
In many parts of the world, surgical skill training and assessment are not part of the
clinical practices.

Figure 1. Surgical skills in MIS and RAMIS are built on technical skills, non-technical skills and
managing the workload. These segments are directly influencing each other. Surgical skill training
and assessment can affect the skills of the surgeon, which derive patient outcomes.

Surgical skills can be assessed with self-rating questionnaires, where the performance
is self-evaluated by the surgeon, and standardized expert rating techniques, where an
expert panel (typically 8–10 surgeons) evaluates the surgical procedure (or surgical
training) based on a video recording. Both of these approaches can inherently be biased,
and they require significant human resources [4]. The general aim is to automate surgical
skill assessments since they are objective, but technical backgrounds and the key surgical
features and factors are still under intensive research. Surgical Data Science (SDS) aims to
improve the quality of interventional healthcare with data science techniques, including
capture, organization, analysis, and modeling of data. With SDS techniques, automated
surgical skill assessment can be achieved, and the key skills can be verified with the
correlations between them [5].



J. Clin. Med. 2022, 11, 7533 3 of 16

Robot-Assisted Minimally Invasive Surgery (RAMIS) denotes the surgical technique,
where the robot-applied laparoscopic tools are remotely controlled by a human operator
at a console. Teleoperation can help surgeons with tremor filtering, 3D endoscopic vision,
ergonomy, re-scaled motion, and easier tool handling. RAMIS skill assessment is a well-
studied area, because in this case, sensory data are readily available (robot kinematic data
and 3D video endoscope). RAMIS skill assessment is closely related to MIS, the key factors
are very similar in technical and non-technical skills as well [2,4].

2. Aims and Scope

This paper reports on the first part of a two-stage research, where autonomous MIS
non-technical skill assessment is examined. The goal of our work was to improve non-
technical skill training and examine correlations between objectively measured parameters
and workload, which can improve the surgical outcome. In this paper, an automated,
sensory data-based (video image and force input) non-technical surgical skill assessment
method is introduced. The idea behind the study was to utilize SDS techniques for
autonomous non-technical skill assessment. We aimed to understand the correlations
between tool motions, used forces, and situation awareness, in the case of a stressful clinical
situation with distractions.

• For the experiments, a surgical training environment and workflow were designed
where non-technical skill assessment is addressed; a sensorized MIS training platform
was designed and created, which simulates specific parts of Laparoscopic Cholecys-
tectomy: (1) safe clipping of the cystic artery and (2) the dissection of the parietal
peritoneal layer;

• A workload analysis with SURG-TLX was performed with different subjects to under-
stand the key workload factors and statistical differences between the groups;

• An autonomous non-technical skill assessment method was developed based on
sensory data, where the class labels were the results from SURG-TLX. With this,
correlations between sensory data and non-technical skills can be better understood.

3. Related Work

In the literature, workload assessment is typically based on self-rating questionnaires.
While self-rating is a straightforward way to assess workload, it can be biased. An often-
used questionnaire, the NASA-TLX, has already been employed for workload assessment
to understand the physical and mental efforts in MIS [6,7] and in RAMIS [8,9] as well.
NASA-TLX assesses the workload based on mental, physical, and temporal demand, effort,
performance, and frustration level. A surgery-related modified version of NASA-TLX is
SURG-TLX, which considers distractions and stress. SURG-TLX for workload assessment
in MIS can be found in the literature [10,11], but in the case of RAMIS, it is still not a
well-established approach, only a few studies utilized this method [12–14].

Expert rating is a frequently used technique for surgical skill assessment because of its
objectivity (compared to self-rating). However, it requires an expert surgeon panel, who
can benchmark the performance based on a validated technique. While this process can
still show some bias, in most cases, this approach is called "objective" in the literature. On
the other hand, expert rating can be a very good solution identifying class labels and scores
for autonomous assessment. Validated expert rating techniques can already be found in the
literature: Non-Technical Skills Scoring System (NOTECHS) mainly considers teamwork
via team skills, communication, interaction, and management skills, but it also assesses
decision-making and situation awareness [15]. Observational Teamwork Assessment for
Surgery (OTAS) assesses mainly teamwork too [16]. Non-Technical Skills for Surgeons
(NOTSS) considers decision-making, situation awareness and stress besides teamwork [17].
The only expert rating non-technical skill assessment tool for RAMIS is the Interpersonal
and Cognitive Assessment for Robotic Surgery (ICARS) [18]. While MIS expert rating
systems are applied in many studies, ICARS has not been recognized widely to date.
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Autonomous skill assessment is a well-studied domain with respect to technical
skills; it is the most objective, and does not require human resources; however, its techni-
cal implementation is more difficult. In technical skill assessment, there are two main
approaches: kinematic data-based [19] and image-based [20] methods. Autonomous
non-technical skill assessment is less standardized compared to technical skill assess-
ment. The objective ways to generating data, which can be autonomously scored or
classified to measure non-technical skills, are still being researched. In the meanwhile,
SDS is focusing on understanding the key parameters of surgery based on data; thus
it can provide a possible solution for non-technical skill assessment in an autonomous
way. Data generation for skill classification can be conducted by physiological signals,
such as brain activity [21,22], skin temperature [23,24], eye movement [25,26], blood
pressure [27], etc., which are related to stress. These represent only one dimension of
non-technical skills, and still can be influenced by other factors, such as personal health.
Electroencephalogram (EEG) [8], Functional Near-Infrared Spectroscopy (fNIRS) [14,28]
and heart rate (HR) [29] are the most studied sensory inputs for non-technical skill assess-
ment. In the case of RAMIS, built-in sensor usage is also a possibility for non-technical
skill assessment. These can provide kinematic and video data, such as with encoders
and endoscopic cameras. The spread of the RAMIS systems can open new possibilities
in SDS and autonomous non-technical surgical skill assessment, especially with more
than 7500 da Vinci Surgical Systems (Intuitive Surgical Inc., Sunnyvale, CA) worldwide,
and the da Vinci Research Kit (DVRK) [30] community, which is focusing on RAMIS
research [31].

4. Methods

The chosen MIS training task requires well-maintained situation awareness, dealing
with stress and distractions, and prompt decision-making. A total of 20 experiments
were conducted by 7 subjects including residents with different expertise levels, expert
surgeons, and a control group. The training task was to perform certain steps of laparo-
scopic cholecystectomy, as the dissection of the peritoneal layer without damaging the
cholecyst, and during the procedure, abrupt bleeding was induced as a complication,
which had to be handled by the subjects. The workload analysis was done with a self-
rating questionnaire (Surgery Task Load Index, SURG-TLX) [32], which is a modified
version of the well-known NASA-TLX, which was originally created for assessing the
workload of pilots. NASA-TLX is an effective tool in other research domains, such as
in clinical medicine [33]. Statistical differences between the workload were examined
between the groups, and the learning curve was also assessed. For autonomous non-
technical skill assessment, video image and force data were used as input. Tool motion
was processed with an object tracking computer vision algorithm (Channel and Spatial
Reliability Tracker (CSRT) [34]). The time series data (force and image) were classified
with a Fully Convolutional Neural Network-based classifier [35], where the class labels
were the results from SURG-TLX.

4.1. Medical Background

Laparoscopic Cholecystectomy (LC) is one of the most common interventions with
more than 300,000 operations performed in the US annually [36]. The main indications
are gallstones (cholecystolithiasis), inflammation of the gallbladder (cholecystitis), or less
frequently, polyp or neoplasm of the gallbladder itself. Cholecystectomy is mainly done
by the gold-standard laparoscopic method, especially in elective cases. Nevertheless, LC
still requires significant training since damage in the hepato-biliary tract can cause serious
complications.

LC’s one important phase, which requires good non-technical skills, is exposing Calot’s
Triangle’s structures at the porta hepatis (Figure 2), including the following steps:
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• Localization;
• Dissection;
• Clipping;
• Transecting the cystic artery and cystic bile duct (maintaining the attention is critical

to avoid the choledochal duct and duodenum itself).

Failure in any of these steps would cause intra-operative or post-operative severe
bleeding, injury or damage of nearby organs or bile leakage with the necessity of re-
operation and High Dependency Intensive Care, caused by general inflammation of the
peritoneum and systematic septic condition. LC involves the dissection and cauterisation
of the parietal peritoneal layer to remove the gallbladder from its “nest” attached to the
liver itself.

4.2. Surgical Phantom

Presenting a training environment and a surgical phantom, where non-technical skills
can be examined was the first goal of the research. Our aim was to create a phantom
which represents the gallbladder/cholecyst and its environment for LC. Besides anatomical
similarity and port-entry arrangement, laparoscopic tool motions should be similar to a
real surgery during the training; as this study aimed to assess non-technical skills, stressful
situations as adverse events had to be involved via the phantom. To achieve this, a simple
surgical training phantom for LC was created based on a gallbladder dissection phantom
(Laparoscopyboxx, Nijmegen, NL) [37]. In this phantom (Figure 2), a balloon (green) was
placed inside another balloon (translucent), which was then blown. The outer balloon
(representing the peritoneal layer) should be dissected without causing damage to the inner
balloon (representing the cholecyst). A pre-damaged, droplet leaking tube was added to
the model, which represented the cystic artery clipping failure aiming to create a stressful
situation which required quick decision-making.

Figure 2. Laparoscopic Cholecystectomy (LC) anatomy and the proposed phantom; (a) Laparoscopic
Cholecystectomy surgical scene, after the exploration of the Calot’s triangle, which is a critical task
in patient safety; (b) Anatomy of the gallbladder and its environment; (c) Surgical phantom created
for LC with the peritoneum, gallbladder and the cystic artery, which provides the option for abrupt
bleeding, intending to mimic a stressful surgical situation.

4.3. Workflow of the Experiment

Three laparoscopic tools were used in the study: a dissector, a pair of scissors, and
a 10 mm single-use clipper. All experiments started with a short theoretical introduction
of the surgical domain to the subjects and a video illustration of the task. For the control
group, the proper usage of the MIS tools was also shown. To simulate an MIS environment,
it was essential to implement the experiments in a laparoscopic box trainer, where two entry
ports were used for the two training tasks: dissecting the outer balloon with the dissector
and the scissors, and clipping the bleeding blood vessel. The operating area was visualized
by a camera, where the two-dimensional RGB images were shown to the participants on
a screen. Because the aim was to create limited ergonomy, the screen was placed beside
the trainer box, where the subjects could only see the camera image in an uncomfortable
posture. The subjects could perform blunt dissection, cutting, and grasping with the given
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tools during the dissection task (Figure 3), but the exact technique was not defined. The
workflow of the experiments were built from the following tasks:

• Dissection of the outer layer without damaging the inner object (which determines if
the procedure was successful or not);

• Localization of the abrupt bleeding;
• Remove one tool (or both), and change then to a clip applier;
• Clipping the artery, considering the direction of the blood flow.

The trials were rushed after the bleeding occurred to create a stressful environment.
During the whole procedure, disturbing factors (speaking around the operator, noises)
were introduced simulating a real-time operating room. The subjects had to fulfill all of the
tasks three times; after each task, they had to fill out a questionnaire (SURG-TLX) about the
experienced workload. Following the experiments, medical professionals also filled out a
questionnaire about the reality of the used phantom and the surgical environment. Their
simulator and video game usage were also surveyed.

Figure 3. Proposed workflow of the MIS experiment; (a) Grasping the outer layer (representing the
parietal peritoneum) with a dissector; (b) Cutting the outer layer with a pair of scissors; (c) Blunt
dissection; (d) Cutting; (e) Removing the covering layer; (f) Abrupt bleeding; (g) Localize the bleeding
source, change the tool(s) to the clipper; (h) Clipping the blood vessel considering the direction of the
blood flow.

4.4. Examining Workload: SURG-TLX

Every participant performed the phantom-LC surgery three times, except one subject.
There were 20 training procedures recorded from 7 subjects during the experiment. After
every session, the subjects had to fill out a questionnaire about the experienced workload.
As it was introduced, SURG-TLX (created the cooperation between the University of Hong
Kong, the University of Exeter and the Department of Urology, Royal Devon, and Exeter
Hospital in 2011) is a modified NASA-TLX metric for surgical workload assessment [32].
SURG-TLX (Table 1) assesses the workload by considering:

• Mental demands;
• Physical demands;
• Temporal demands;
• Task complexity;
• Situational stress;
• Distractions.

At the end of the experiment, medical professionals scored the reality of the surgical
phantom and the experiment based on the experiment’s applicability for MIS training,
the surgical instrument movements similarity to real laparoscopic surgery, the anatomical
similarity and the experiment’s capability to simulate stressful surgical situations (Table 2).
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Table 1. SURG-TLX mental workload self-rating questionnaire [32].

Title Endpoint Description

Mental demands low/high (0–20) How mentally fatiguing was
the procedure?

Physical demands low/high (0–20) How physically fatiguing was
the procedure?

Temporal demands low/high (0–20) How hurried or rushed was
the pace of the procedure?

Task complexity low/high (0–20) How complex was the
procedure?

Situational stress low/high (0–20)
How anxious did you feel
while performing the
procedure?

Distractions low/high (0–20) How distracting was the
operating environment?

Table 2. Surgical phantom and training environment validation questionnaire.

Title Endpoint Description

Experiment’s applicability low/high (0–5)
How appropriate is the
experiment to teach MIS
during the modeled surgery?

Movement similarity low/high (0–5)
How similar are the
movements to those required
during surgery?

Anatomical similarity low/high (0–5)
How realistic is the
anatomical phantom designed
to model the surgical area?

Simulation of stress low/high (0–5)

How suitable is the
anatomical phantom to
simulate stressful surgical
situations?

4.5. Hardware and Software Environment

To provide sensory data, camera images and force sensor data were used. For the
camera stream, Intel Realsense D435i’s RGB channel images were saved (Figure 4). An
additional camera was used, since the DVRK Endoscope Camera Manipulator (ECM) is
attached to a da Vinci Classic, which is a first-generation RAMIS system, and its endoscopic
camera provides inferior image quality. Because of this, no real endoscopic camera was
used in this study (except its lighting). Since this work does not focus on implementing new
image processing algorithms for the da Vinci Classic, the usage of an additional camera
can provide good-quality images without dealing with the endoscopic camera stream.
Furthermore, in most of the cases, the accuracy of the depth data is better with active stereo
compared to passive stereo systems, which can be an input in future studies. The reason
for only using the 2D image stream was to simulate the manual and mostly widespread 2D
capable MIS laparoscopic systems, where it is only available; but since in future research,
RAMIS is considered, 3D stream was also recorded. The forces exerted during the training
were measured with a force-gauging system that measured the resultant external forces
acting on the surgical phantom along three perpendicular axes. The main program was
written in Python 3 programming language, with OpenCV 4, Keras, and TensorFlow
2 libraries utilized for computer vision and machine learning. The main program was
responsible for the following tasks:

• RGB images streaming;
• Force and camera image data synchronization;
• Calculation of the two-dimensional position of the surgical instruments;
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• Save the time series data (synchronized force and image) into a Deep Neural Network-
readable format, and performing the classification.

Figure 4. Experimental environment; (a) MIS box trainer with the components of the experiment–
phantom and sensors, such as the camera and the force-gauging system); (b) Camera image streamed
for the operators during the training and recorded for data processing.

4.6. Subjects

In this study, we report 20 LC training conducted by 7 subjects in the proposed
experimental environment: 3 non-medical subjects as a control group, 1 very experienced
resident surgeon with 50+ h in MIS, 1 experienced surgery resident with 31–50 h in MIS,
and two expert surgeons. All participants have done the training several times (3 for each,
except 2 for one of the expert surgeons). Both male and female subjects were included in
the groups, each subject was right-handed. The subjects were between 25–61 years with
mean age 46 years. The residents had experience in MIS training in a laparoscopic box
trainer (with 2 to 50 h). Participants had very little or no experience in video gaming. None
of the participants had experience in robotic surgery. Heterogeneous data were required
to represent the three main skill classes of surgeons (novice, intermediate, and expert).

4.7. Surgical Instrument Tracking

The 2D RGB images provided the input for surgical instrument tracking, which was
then utilized for creating a 2D tool trajectory for autonomous skill classification. The
tracking was done autonomously with Channel and Spatial Reliability Tracker (CSRT) [34].
While the tracking was autonomous for the first frames, the Region of Interest (RoI) had to
be selected manually. In CSRT, an automatically estimated spatial reliability map restricted
the discriminative correlation filter to the parts of an object suitable for tracking with
improving the search range and performance for irregularly shaped objects. Channel
reliability weights calculated in the constrained optimization step of the correlation filter
learning reduced the noise of the weight-averaged filter response [34]. CSRT is a very
powerful tool for RoI tracking, it worked robustly in the case of the training videos, but in
the case of large-scale motions, the implemented method made RoI re-selection possible.

4.8. Autonomous Skill Classification

For every trial (20), time series were built based on image and force data, containing
the following 9 parameters:

• Dissector x and y coordinates (dissectorxy);
• Scissors x and y coordinates (scissorsxy);
• Clipper x and y coordinates (clipperxy);
• Synchronized force data in x, y and z directions (forcexyz).

The longest trial was 94,068 frames long, which was the template length for padding
the other trials time series to provide a time series classifier-readable format (same length
for every trial). For autonomous skill classification based on multivariate time series, a Fully
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Convolutional Neural Network (FCN) was utilized. The used FCN architecture was built
from a convolutional layer, followed by a batch normalization layer and a Rectified Linear
Unit (ReLU) activation layer [35] (Figure 5). The convolution operation was conducted by
three 1D kernels. The convolution block was built from a convolutional layer:

y = W ⊗ x + b, (1)

where y denotes the output of the convolutional layer, calculated from the weights of the
neurons (W) and bias (b) with a convolution operation (⊗). Y is the input of the batch
normalization layer (BN):

s = BN(y), (2)

and based on the output of it (s), the output of the ReLU activation layer (h) can be calculated:

h = ReLU(s). (3)

The network was built by stacking three convolution blocks with filter sizes (64, 64, 64)
in each block. The features were then fed into a global average pooling layer, and the final
label was produced by a softmax layer. The output of the network was a binary class label.

Figure 5. Autonomous non-technical surgical skill assessment method workflow based on sensory
data with FCN multivariate time series classification.

5. Results
5.1. Outcome Results

The first task—which was the dissection of the parietal peritoneum layer—was de-
noted successful when the gallbladder was not harmed. Of the 20 trials, 7 were successful.
One novice from the control group successfully dissected the outer layer twice; the very
experienced resident performed the task successfully for the second time; the expert sur-
geon was able to conduct the dissection task the second time, and the expert MIS surgeon
performed the task successfully for all three cases. The second task—which was abrupt
bleeding handling with changing at least one tool to the clipper, and clipping the vein
considering the direction of the blood flow—was conducted successfully by every subject.

5.2. Workload Results

Workload scores were provided by SURG-TLX. Unpaired t-tests were used to deter-
mine statistical differences between medical professionals and the control group in the
case of workload (Table 3, Figure 6). From SURG-TLX, in the case of mental demands,
physical demands and situational stress high significance was found between the medical
professionals and the control group (p < 0.0001, 95% confidence interval), a significant
difference (p < 0.05) in the case of task complexity, and no significant differences in the
case of temporal demands and distractions. The workload learning curve was tested with
paired t-tests between trials 1–3 (Table 4). No significant differences were found, except for
task complexity, which showed significant deviations in the workloads between the first
and the second trials (p < 0.05). Because all trials (3) used for autonomous skill assessment
studies, it was necessary to understand if there were significant differences between the
trials. Furthermore, the differences between task complexity suggest that the proposed
environment can train that aspect of workload; however, we can not conclude it from this
limited amount of data.
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Table 3. Statistical differences between medical professionals (MP) and the control group (CG) in the
case of workload, based on SURG-TLX. Mean and standard deviation (SD) values are reported for
both groups. p values are signed as MP/CG where MP and CG groups were tested. * 0.01 < p < 0.05
(statistically significant); ** p < 0.0001 (statistically extremely significant); not signed: statistically
not significant.

SURG-TLX MP Mean MP SD CG Mean CG SD p Value
(MP/CG)

Mental
demands 2.36 1.63 14.89 3.18 0.0001 **

Physical
demands 7.41 3.89 14.78 2.33 <0.0001 **

Temporal
demands 3.73 2.83 6.22 2.91 >0.05

Task
complexity 8.73 4.27 12.78 3.35 <0.05 *

Situational
stress 1.91 1.22 14.67 2.24 <0.0001 **

Distractions 5.91 7.58 11.78 4.06 >0.05

Figure 6. SURG-TLX values (0–20) of medical professionals from first to third trials (first column) and
novices (second column). Asterisk (*) notes if the first task (dissecting the cholecyst) was successful.
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Table 4. Learning curve assessment between 1st to 2nd, 2nd to 3rd and 1st to 3rd trials.
* 0.01 < p < 0.05 (statistically significant); not signed: statistically not significant.

SURG-TLX p Value (1st to 2nd) p Value (2nd to 3rd) p Value (1st to 3rd)

Mental demands >0.05 >0.05 >0.05
Physical demands >0.05 >0.05 >0.05
Temporal demands >0.05 >0.05 >0.05
Task complexity <0.05 * >0.05 >0.05
Situational stress >0.05 >0.05 >0.05
Distractions >0.05 >0.05 >0.05

5.3. Phantom Validation

Since the phantom and the training environment were custom-designed, they had
to be validated by medical professionals. It was completed based on a questionnaire,
including the questions introduced in Table 2. The environment was assessed as good for
applicability (mean value: 4/5), very good for movement similarity (mean value: 4.5/5),
acceptable for anatomical similarity (mean value: 3.5/5), and moderate for stress simulation
(mean value: 3/5) (Figure 7).

Figure 7. Surgical training environment and phantom validation (applicability for laparoscopy
training, similarity of motions, anatomical similarity, simulation of stress) based only on medical
professionals’ evaluation. The environment was assessed as good for applicability, very good for
movement similarity, acceptable for anatomical similarity and moderate for stress simulation.

5.4. Autonomous Non-Technical Skill Assessment based on Time Series Data

The 9-parameter time series data (Section 4.8) were binary classified by an FCN. For
training and testing, the binary class labels were defined by SURG-TLX; scores below
average were defined as class 0, and results above the average were indicated as class 1
label. With this technique, the class labels were calculated in the same way for experience
(medical professionals/control group), mental demands and situational stress. In the
meanwhile, the class labels were calculated differently for physical demands, temporal
demands, task complexity, distractions and outcome (which defined whether the dissection
was successful or not). The usage of class labels from SURG-TLX allows studying of
workload components, which are not necessarily the same as technical experience. By
this, the correlation between the workload and the objectively measured data can be
better examined.

The classification was tested independently for the force data along x, y and z axes
(forcex, forcey, forcez) and for the laparoscopic instruments’ position in the image space
(dissectorxy, scissorsxy, clipperxy). and the combinations of the parameters (force data and
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all instruments’ path, dissector with scissors path and force data, dissector with scissors
path with forcez) were tested as well.

Autonomous skill classification results were validated with Leave One Out Cross-
Validation (LOOCV). In the case of LOOCV, each observation was considered as the
validation set and the rest of the observations were considered as the training set; this
was iterated through the whole dataset, which means every observation was considered
independently. Next, the results were averaged for the 20 cases. The accuracy averages
can be found in Tables 5 and 6. The best result was provided for temporal demands based
on the z component of the used forces (85% accuracy). The classification of temporal
demands showed higher overall accuracy compared to other metrics based on the path
of the dissector and the scissors with the z component of the used forces (70% accuracy)
or other combinations. Higher accuracy (75%) result was found in the case of classifying
mental demands/situational stress with the x component of the used forces. For the other
cases, moderate or low accuracy was found in the classification.

Table 5. Fully Convolutional Neural Network-based skill classification accuracy results along the
classes defined by SURG-TLX, experience and experiment outcome (Dxy: dissector path; Sxy: scissors
path; Cxy: clipper path) with LOOCV validation. Blue and underscore denote the best results.

Class Labels forcex forcey forcez forcexyz Dxy Sxy Cxy

Experience/
Mental
demands/
Situational
stress

0.75 0.5 0.45 0.45 0.5 0.4 0.25

Physical
demands 0.35 0.5 0.55 0.4 0.6 0.6 0.6

Temporal
demands 0.55 0.65 0.85 0.6 0.55 0.45 0.55

Task
complexity 0.5 0.5 0.55 0.55 0.65 0.4 0.45

Distractions 0.3 0.5 0.35 0.4 0.5 0.5 0.45
Outcome 0.45 0.55 0.55 0.35 0.55 0.55 0.5

Table 6. Fully Convolutional Neural Network-based skill classification accuracy results along the
classes defined by SURG-TLX, experience and experimental outcomes with combined inputs (Dxy:
dissector path; Sxy: scissors path; Cxy: clipper path) with LOOCV validation. Blue and underscore
denote the best result.

Class Labels Dxy, Sxy, Cxy,
forcexyz

Dxy, Sxy, forcexyz Dxy, Sxy, forcez

Experience/Mental
demands/Situational
stress

0.5 0.4 0.65

Physical demands 0.25 0.35 0.35
Temporal demands 0.65 0.6 0.7
Task complexity 0.4 0.55 0.5
Distractions 0.45 0.6 0.5
Outcome 0.5 0.4 0.35

6. Discussion and Future Work

Our future research will focus on RAMIS non-technical skill assessment under the
same conditions (research protocol, surgical phantom, workflow, and methodology). Since
autonomous non-technical skill assessment is not a very well-studied research domain in
RAMIS [3], we plan to compare and validate results in RAMIS with results in MIS.
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Self-rating techniques can be powerful tools for workload analysis and to provide
class labels for non-technical skill assessment. Since they do not require human resources,
they can be subjective. In some cases, self-rating rather correlates with confidence instead
of real skills. Self-rating is a very easy way to create class labels for skill classifications,
to test the autonomous solutions, understand the key factors, demands, and stressors in
surgery, and validate a surgical training environment. This work presented an autonomous
non-technical skill assessment method with FCN based on sensory data. Tool motions and
applied forces were examined in technical skill assessment most often, yet, our aim was to
prove that these sensory data are also linked to non-technical skills. For this, class labels
from SURG-TLX were used, where all workload components (physical demands, temporal
demands, task complexity, etc.) were studied, which were independent from the technical
experience (except in the case of mental demands and situational stress, where the class
labels based on SURG-TLX resulted in the same as technical knowledge). With this method,
the correlation between the workload and the objectively measured data could be examined,
nevertheless, the class labels were created by a self-rating questionnaire. In this study, for
tool tracking, 2D image data were used with an object tracking computer vision algorithm.
While it worked robustly, in the case of image coordinates usage, there is a dimension loss,
since these positions are available only in the image space. 3D position and 3D orientation
of the surgical instruments can provide higher accuracy for skill classification, furthermore,
other kinematic data (acceleration, velocity, etc.) can also improve the precision of the
assessment. In the case of traditional MIS, it is achievable with additional sensors or with
an advanced image processing solution. In the case of RAMIS, kinematic data for all robotic
arms may be available, e.g., with the usage of the DVRK. Furthermore, in RAMIS, there is a
3D video stream provided by the stereo endoscope, where stereo image processing, such as
surgical instrument segmentation can be employed for more data.

For basic statistical analysis, the amount of data collected was sufficient, however,
for a neural network-based classification, the more data, the better to achieve a general
convergence; thus, the number of subjects should be increased in the future. In the case of
the phantom validation tests, especially the question about the phantom representation of
stress, the answers showed a large standard deviation, which could also be more obvious
with more involved subjects. In the future, we intend to repeat this study with more
participants; furthermore, the same experiment will be done with the da Vinci Surgical
System. By this, the workload and non-technical skills could be compared in the case of
MIS and RAMIS in stressful surgical training tasks. Since RAMIS provides 6+1 Degrees of
Freedom for the surgical instrument, ergonomy, and 3D vision, less workload and better
skills are expected. In the meanwhile, handling a robotic platform that requires training
may cause stress for the operator. Furthermore, changing the tools in the case of RAMIS is
not done by the operator, it is the work of an assistant; thus, changing clippers requires
teamwork and communication skills from the operator, as well as good non-technical skills
(quick decision-making) from the assistant as well.

There are studies in the literature (discussed in the Introduction section) that use
objectively measured data for workload and non-technical skill assessment. Unfortunately,
these studies are very heterogeneous; therefore, the results of other studies cannot be
compared here. Nevertheless, in our future work, a MIS and RAMIS surgical dataset will
be created and annotated for non-technical skill assessment. JHU–ISI Gesture and Skill
Assessment Working Set (JIGSAWS) is a good example of this, which is a RAMIS dataset
annotated with technical skills [38]. By this, the results will be made comparable.

7. Conclusions

In this paper, autonomous non-technical skill assessment and workload analysis were
presented for MIS training. The chosen surgical procedure was Laparoscopic Cholecys-
tectomy, especially focusing on the dissection of the parietal peritoneum and clipping the
cystic artery. Stressful surgical situations were generated by a long, tiring, and possibly dan-
gerous dissection, abrupt bleeding, which required quick solution, and a rushed training
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with disturbing factors. A surgical training platform and workflow were designed, which
included the cholecyst, the parietal peritoneum layer, and the cystic artery. The surgical
phantom was extended with additional sensors (force and image) to acquire objectively
measurable surgical parameters. 20 experiments were concluded by 7 subjects with dif-
ferent expertise levels from novices to expert surgeons. The workload was analysed by
SURG-TLX, which provided class labels for FCN-based skill classification as well. Unpaired
t-tests showed significant differences between the various skill levels in the cases of mental
demands, physical demands, situational stress and task complexity. The learning curves
in workload studied with paired t-tests showed significant differences in the case of task
complexity between the first and the second trials. The surgical instruments were tracked
on 2D images with a CSRT tracker, creating image-based time series data for all trials. Then,
force data were synchronized with image data, creating a nine-parameter time series data.
This dataset was used to train and test skill classification with a FCN, where the class
labels were based on workload. The results were validated with LOOCV. Autonomous
non-technical skill classification with FCN resulted in high accuracy on temporal demands
based on the z component of the used forces (85 %) and 75 % accuracy for classifying
mental demands/situational stress with the x component of the used forces. Based on
these findings, with SDS techniques, certain components of non-technical skills of the
surgeon can be assessed autonomously based on sensory data only. The results showed
very good classification accuracy for temporal demands. It suggests how well the operator
handled the rushing, the procedure can be seen in the objectively measured sensory data
(especially in the case of force data). This correlates with the subjective opinion of medical
professionals as well: according to a resident, they felt the experiment very rushed, and
while based on the experience/mental demands/situational stress the subject was classified
a 1, for temporal demands the class label was 0 based on the questionnaire. From that, it
can be concluded that experience can help deal with stress, but it is not necessarily related
to temporal demands, which can be autonomously measured with high accuracy.
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