The Impact of Short-Term Outdoor Air Pollution on Clinical Status and Prognosis of Hospitalized Patients with Coronary Artery Disease Treated with Percutaneous Coronary Intervention
Abstract
:1. Introduction
2. Materials and Methods
2.1. The TERCET Registry
2.2. Study Population
2.3. Air Pollutants
2.4. Definitions
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. Incidence of Acute Coronary Syndromes
4.2. Pathophysiology
4.3. Adverse Cardiovascular Events
4.4. Ozone Phenomenon
4.5. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease. Available online: http://apps.who.int/iris/bitstream/10665/250141/1/9789241511353-eng.pdf?ua=1 (accessed on 19 August 2021).
- Gerardin, B.; Guedeney, P.; Bellemain-Appaix, A.; Levasseur, T.; Mustafic, H.; Benamer, H.; Monsegu, J.; Lamhaut, L.; Montalescot, G.; Aubry, P.; et al. Life-threatening and major cardiac events during long-distance races: Updates from the prospective RACE PARIS registry with a systematic review and meta-analysis. Eur. J. Prev. Cardiol. 2021, 28, 679–686. [Google Scholar] [CrossRef]
- Pope, C.A., 3rd; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stieb, D.M.; Szyszkowicz, M.; Rowe, B.H.; Leech, J.A. Air pollution and emergency department visits for cardiac and respiratory conditions: A multi-city time-series analysis. Environ. Health 2009, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Beelen, R.; Raaschou-Nielsen, O.; Stafoggia, M.; Andersen, Z.J.; Weinmayr, G.; Hoffmann, B.; Wolf, K.; Samoli, E.; Fischer, P.; Nieuwenhuijsen, M.; et al. Effects of long-term exposure to air pollution on natural-cause mortality: An analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet 2014, 383, 785–795. [Google Scholar] [CrossRef]
- Chen, C.C.; Huang, J.B.; Cheng, S.Y.; Wu, K.H.; Cheng, F.J. Association between Particulate Matter Exposure and Short-term Prognosis in Patients with Pneumonia. Aerosol Air Qual. Res. 2020, 20, 89–96. [Google Scholar] [CrossRef]
- Rosenlund, M.; Picciotto, S.; Forastiere, F.; Stafoggia, M.; Perucci, C.A. Traffic-related air pollution in relation to incidence and prognosis of coronary heart disease. Epidemiology 2008, 19, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Mustafic, H.; Jabre, P.; Caussin, C.; Murad, M.H.; Escolano, S.; Tafflet, M.; Périer, M.C.; Marijon, E.; Vernerey, D.; Empana, J.P.; et al. Main air pollutants and myocardial infarction: A systematic review and meta-analysis. JAMA 2012, 307, 713–721. [Google Scholar] [CrossRef]
- Milojevic, A.; Wilkinson, P.; Armstrong, B.; Bhaskaran, K.; Smeeth, L.; Hajat, S. Short-term effects of air pollution on a range of cardiovascular events in England and Wales: Case-crossover analysis of the MINAP database, hospital admissions and mortality. Heart 2014, 100, 1093–1098. [Google Scholar] [CrossRef]
- Xie, J.; He, M.; Zhu, W. Acute effects of outdoor air pollution on emergency department visits due to five clinical subtypes of coronary heart diseases in shanghai, china. J. Epidemiol. 2014, 24, 452–459. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.S.; Langrish, J.P.; Nair, H.; McAllister, D.A.; Hunter, A.L.; Donaldson, K.; Newby, D.E.; Mills, N.L. Global association of air pollution and heart failure: A systematic review and meta-analysis. Lancet 2013, 382, 1039–1048. [Google Scholar] [CrossRef] [Green Version]
- Buszman, P.E.; Derbisz, K.; Kwasiborski, P.; Chrząszcz, P.; Mularska, M.; Baron, D.; Sobieszek, A.; Mendyk, A.; Skoczylas, P.; Cisowski, M.; et al. Impact of air pollution on hospital patients admitted with ST- and non-ST-segment elevation myocardial infarction in heavily polluted cities within the European Union. Cardiol. J. 2020, 27, 541–547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahlén, A.; Ljungman, P.; Erlinge, D.; Chan, M.Y.; Yap, J.; Hausenloy, D.J.; Yeo, K.K.; Jernberg, T. Air pollution in relation to very short-term risk of ST-segment elevation myocardial infarction: Case-crossover analysis of SWEDEHEART. Int. J. Cardiol. 2019, 275, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Tonne, C.; Wilkinson, P. Long-term exposure to air pollution is associated with survival following acute coronary syndrome. Eur. Heart J. 2013, 34, 1306–1311. [Google Scholar] [CrossRef] [Green Version]
- Tonne, C.; Halonen, J.I.; Beevers, S.D.; Dajnak, D.; Gulliver, J.; Kelly, F.J.; Wilkinson, P.; Anderson, H.R. Long-term traffic air and noise pollution in relation to mortality and hospital readmission among myocardial infarction survivors. Int. J. Hyg. Environ. Health 2016, 219, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Zuin, M.; Rigatelli, G.; dell’Avvocata, F.; Picariello, C.; Conte, L.; Marcantoni, L.; Cardaioli, P.; Zuliani, G.; Roncon, L. Air pollution and ST-elevation myocardial infarction treated with primary percutaneous coronary angioplasty: A direct correlation. Int. J. Cardiol. 2017, 236, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.W.; Choi, B.G.; Kim, S.W.; Rha, S.W.; Shim, M.S.; Kim, D.J.; Seo, H.S.; Oh, D.J.; Jeong, M.H.; Other Korea Acute Myocardial Infarction Registry (KAMIR) Investigators. Air pollution and short-term clinical outcomes of patients with acute myocardial infarction. Clin. Exp. Pharmacol. Physiol. 2017, 44, 631–638. [Google Scholar] [CrossRef]
- Dyrbuś, K.; Osadnik, T.; Desperak, P.; Desperak, A.; Gąsior, M.; Banach, M. Evaluation of dyslipidaemia and the impact of hypolipidemic therapy on prognosis in high and very high risk patients through the Hyperlipidaemia Therapy in tERtiary Cardiological cEnTer (TERCET) Registry. Pharmacol. Res. 2018, 132, 204–210. [Google Scholar] [CrossRef]
- Knuuti, J.; Wijns, W.; Saraste, A.; Capodanno, D.; Barbato, E.; Funck-Brentano, C.; Prescott, E.; Storey, R.F.; Deaton, C.; Cuisset, T.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur. Heart J. 2018, 39, 119–177. [Google Scholar] [CrossRef] [Green Version]
- Statistical Office in Katowice. Statistical Yearbook Śląskie Voivodship 2015; Statistical Office in Katowice: Katowice, Poland, 2015; pp. 32–33.
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Fourth universal definition of myocardial infarction (2018). Circulation 2018, 138, e618–e651. [Google Scholar] [CrossRef]
- Cutlip, D.E.; Windecker, S.; Mehran, R.; Boam, A.; Cohen, D.J.; van Es, G.A.; Steg, P.G.; Morel, M.A.; Mauri, L.; Vranckx, P.; et al. Clinical end points in coronary stent trials: A case for standardized definitions. Circulation 2007, 115, 2344–2351. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Kindzierski, W.; Kaul, P. Air Pollution and Acute Myocardial Infarction Hospital Admission in Alberta, Canada: A Three-Step Procedure Case-Crossover Study. PLoS ONE 2015, 10, e0132769. [Google Scholar] [CrossRef] [PubMed]
- Kälsch, H.; Hennig, F.; Moebus, S.; Möhlenkamp, S.; Dragano, N.; Jakobs, H.; Memmesheimer, M.; Erbel, R.; Jöckel, K.H.; Hoffmann, B.; et al. Are air pollution and traffic noise independently associated with atherosclerosis: The Heinz Nixdorf Recall Study. Eur. Heart J. 2014, 35, 853–860. [Google Scholar] [CrossRef] [Green Version]
- Adar, S.D.; Sheppard, L.; Vedal, S.; Polak, J.F.; Sampson, P.D.; Diez Roux, A.V.; Budoff, M.; Jacobs, D.R.; Barr, R.G., Jr.; Watson, K.; et al. Fine particulate air pollution and the progression of carotid intima-medial thickness: A prospective cohort study from the multi-ethnic study of atherosclerosis and air pollution. PLoS Med. 2013, 10, e1001430. [Google Scholar] [CrossRef] [Green Version]
- Wilker, E.H.; Mittleman, M.A.; Coull, B.A.; Gryparis, A.; Bots, M.L.; Schwartz, J.; Sparrow, D. Long-term exposure to black carbon and carotid intima-media thickness: The normative aging study. Environ. Health Perspect. 2013, 121, 1061–1067. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, B.; Moebus, S.; Möhlenkamp, S.; Stang, A.; Lehmann, N.; Dragano, N.; Schmermund, A.; Memmesheimer, M.; Mann, K.; Erbel, R.; et al. Residential exposure to traffic is associated with coronary atherosclerosis. Circulation 2007, 116, 489–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baccarelli, A.; Zanobetti, A.; Martinelli, I.; Grillo, P.; Hou, L.; Giacomini, S.; Bonzini, M.; Lanzani, G.; Mannucci, P.M.; Bertazzi, P.A.; et al. Effects of exposure to air pollution on blood coagulation. J. Thromb. Haemost. 2007, 5, 252–260. [Google Scholar] [CrossRef]
- Viehmann, A.; Hertel, S.; Fuks, K.; Eisele, L.; Moebus, S.; Möhlenkamp, S.; Nonnemacher, M.; Jakobs, H.; Erbel, R.; Jöckel, K.H.; et al. Long-term residential exposure to urban air pollution, and repeated measures of systemic blood markers of inflammation and coagulation. Occup. Environ. Med. 2015, 72, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Peters, A.; Döring, A.; Wichmann, H.E.; Koenig, W. Increased plasma viscosity during an air pollution episode: A link to mortality? Lancet 1997, 349, 1582–1587. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A., 3rd; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, and Council on Nutrition, Physical Activity and Metabolism. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.R. Oxidative stress and the cardiovascular effects of air pollution. Free Radic. Biol. Med. 2020, 151, 69–87. [Google Scholar] [CrossRef] [PubMed]
- Lanki, T.; Hoek, G.; Timonen, K.L.; Peters, A.; Tiittanen, P.; Vanninen, E.; Pekkanen, J. Hourly variation in fine particle exposure is associated with transiently increased risk of ST segment depression. Occup. Environ. Med. 2008, 65, 782–786. [Google Scholar] [CrossRef] [PubMed]
- Pekkanen, J.; Peters, A.; Hoek, G.; Tiittanen, P.; Brunekreef, B.; de Hartog, J.; Heinrich, J.; Ibald-Mulli, A.; Kreyling, W.G.; Lanki, T.; et al. Particulate air pollution and risk of ST-segment depression during repeated submaximal exercise tests among subjects with coronary heart disease: The Exposure and Risk Assessment for Fine and Ultrafine Particles in Ambient Air (ULTRA) study. Circulation 2002, 106, 933–938. [Google Scholar] [CrossRef] [Green Version]
- Chuang, K.J.; Coull, B.A.; Zanobetti, A.; Suh, H.; Schwartz, J.; Stone, P.H.; Litonjua, A.; Speizer, F.E.; Gold, D.R. Particulate Air Pollution as a Risk Factor for ST-segment Depression in Patients with Coronary Artery Disease. Circulation 2008, 118, 1314–1320. [Google Scholar] [CrossRef] [Green Version]
- Pope, C.A., 3rd; Ezzati, M.; Dockery, D.W. Fine-particulate air pollution and life expectancy in the United States. N. Engl. J. Med. 2009, 360, 376–386. [Google Scholar] [CrossRef] [Green Version]
- Dziubanek, G.; Spychała, A.; Marchwińska-Wyrwał, E.; Rusin, M.; Hajok, I.; Ćwieląg-Drabek, M.; Piekut, A. Long-term exposure to urban air pollution and the relationship with life expectancy in cohort of 3.5 million people in Silesia. Sci. Total Environ. 2017, 580, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Newby, D.E.; Mannucci, P.M.; Tell, G.S.; Baccarelli, A.A.; Brook, R.D.; Donaldson, K.; Forastiere, F.; Franchini, M.; Franco, O.H.; Graham, I.; et al. Expert position paper on air pollution and cardiovascular disease. Eur. Heart J. 2015, 36, 83–93. [Google Scholar] [CrossRef] [Green Version]
- Ruidavets, J.B.; Cournot, M.; Cassadou, S.; Giroux, M.; Meybeck, M.; Ferrières, J. Ozone air pollution is associated with acute myocardial infarction. Circulation 2005, 111, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Vidale, S.; Arnaboldi, M.; Bosio, V.; Corrado, G.; Guidotti, M.; Sterzi, R.; Campana, C. Short-term air pollution exposure and cardiovascular events: A 10-year study in the urban area of Como, Italy. Int. J. Cardiol. 2017, 248, 389–393. [Google Scholar] [CrossRef]
- Koken, P.J.; Piver, W.T.; Ye, F.; Elixhauser, A.; Olsen, L.M.; Portier, C.J. Temperature, air pollution, and hospitalization for cardiovascular diseases among elderly people in Denver. Environ. Health Perspect. 2003, 111, 1312–1317. [Google Scholar] [CrossRef] [PubMed]
- Joseph, P.M. Paradoxical ozone associations could be due to methyl nitrite from combustion of methyl ethers or esters in engine fuels. Environ. Int. 2007, 33, 1090–1106. [Google Scholar] [CrossRef] [PubMed]
Factor | Total n = 7521 | CCS n = 3347 | ACS n = 4174 | ||||
---|---|---|---|---|---|---|---|
AP ≤ Q3 n = 1345 | AP > Q3 n = 2002 | p | AP ≤ Q3 n = 1645 | AP > Q3 n = 2529 | p | ||
Age, years; median (Q1–Q3) | 65 (58–73) | 65 (59–73) | 66 (59–73) | 0.69 | 64 (57–73) | 65 (57–73) | 0.70 |
BMI, kg/m2; median (Q1–Q3) | 28.1 (25.4–31.2) | 28.1 (25.5–31.1) | 28.1 (25.4–31.2) | 0.81 | 27.8 (25.3–31.2) | 28.1 (25.4–31.2) | 0.29 |
Female, % | 31.1 | 32.1 | 29.2 | 0.07 | 32.3 | 31.9 | 0,67 |
Prior MI, % | 37.4 | 45.3 | 47.4 | 0.24 | 30.8 | 29.7 | 0.44 |
Arterial hypertension, % | 75.0 | 82.9 | 81.1 | 0.19 | 68.4 | 70.5 | 0.15 |
COPD, % | 6.1 | 6.2 | 6.5 | 0.66 | 6.3 | 5.3 | 0.31 |
Atrial fibrillation, % | 12.6 | 13.0 | 15.0 | 0.11 | 12.6 | 10.4 | 0.034 |
Diabetes mellitus, % | 34.8 | 38.6 | 38.6 | 0.98 | 31.6 | 31.9 | 0.83 |
Dyslipidemia, % | 66.4 | 77.0 | 77.1 | 0.94 | 56.4 | 59.0 | 0.10 |
PAD, % | 11.2 | 14.0 | 17.7 | 0.005 | 6.8 | 7.6 | 0.32 |
Obesity, % | 28.8 | 29.1 | 29.9 | 0.64 | 27.5 | 28.0 | 0.80 |
History of cigarette smoking, % | 46.7 | 49.6 | 48.9 | 0.68 | 43.8 | 45.2 | 0.39 |
Stenocardial pain, % | 78.4 | 67.2 | 66.3 | 0.60 | 92.0 | 91.9 | 0.91 |
SBP *, mmHg; median (Q1–Q3) | 135 (120–150) | 130 (120–140) | 130 (120–140) | 0.032 | 140 (130–163) | 140 (130–162) | 0.85 |
DBP *, mmHg; median (Q1–Q3) | 80 (70–90) | 80 (70–85) | 80 (70–80) | 0.008 | 80 (72–92) | 80 (74–95) | 0.47 |
HR *, mmHg; median (Q1–Q3) | 70 (65–80) | 70 (64–77) | 70 (64–80) | 0.41 | 75 (68–85) | 75 (67–85) | 0.25 |
LVEF *, %; median (Q1–Q3) | 47 (40–52) | 50 (43–55) | 50 (40–55) | 0.28 | 45 (38–50) | 45 (38–50) | 0.46 |
WBC *, thousand/mm3; median (Q1–Q3) | 8.2 (6.6–10.3) | 7.3 (6.1–8.8) | 7.2 (6.0–8.6) | 0.11 | 9.1 (7.4–11.9) | 9.3 (7.3–11.9) | 0.75 |
HCT *, %; median (Q1–Q3) | 41.3 (38.3–43.8) | 41.2 (38.6–43.6) | 41.0 (38.2–43.4) | 0.16 | 41.3 (38.3–44.0) | 41.5 (38.1–44.1) | 0.45 |
Hemoglobin *, mmol/L; median (Q1–Q3) | 8.7 (8.1–9.3) | 8.8 (8.1–9.3) | 8.7 (8.1–9.2) | 0.012 | 8.8 (8.1–9.4) | 8.8 (8.0–9.4) | 0.99 |
Serum creatinine *, µmol/L; median (Q1–Q3) | 82.0 (69.5–98.8) | 80.5 (68.6–97.0) | 81.7 (69.5–98.0) | 0.16 | 83.4 (69.9–100.0) | 82.0 (69.7–100,0) | 0.39 |
Glucose *, mmol/L; median (Q1–Q3) | 6.4 (5.5–8.3) | 5.8 (5.2–7.1) | 5.9 (5.2–7.3) | 0.52 | 7.0 (5.8–9.0) | 6.9 (5.8–9.1) | 0.99 |
Multivessel CAD, % | 51.8 | 51.3 | 50.9 | 0.82 | 53.0 | 51.9 | 0.46 |
Stent implantation, % | 88.7 | 89.9 | 89.5 | 0.73 | 88.8 | 87.3 | 0.14 |
DES, % | 60.9 | 65.3 | 64.3 | 0.56 | 58.3 | 57.6 | 0.66 |
In-hospital outcomes | |||||||
Death, % | 2.2 | 1.1 | 0.6 | 0.15 | 3.5 | 3.2 | 0.60 |
MI, % | 1.1 | 1.0 | 0.4 | 0.07 | 1.3 | 1.5 | 0.62 |
Cardiac arrest, % | 3.5 | 1.4 | 0.8 | 0.09 | 5.3 | 5.6 | 0.63 |
Pulmonary oedema, % | 2.5 | 0.1 | 0.1 | 0.66 | 4.9 | 4.0 | 0.16 |
Cardiogenic shock, % | 2.5 | 0.1 | 0.1 | 0.65 | 4.9 | 4.1 | 0.26 |
30-day MACCE, % | 5.3 | 3.3 | 2.3 | 0.08 | 7.1 | 7.5 | 0.63 |
Death, % | 2.8 | 1.0 | 1.0 | 0.98 | 4.1 | 4.4 | 0.71 |
MI, % | 2.2 | 1.8 | 1.1 | 0.13 | 3.0 | 2.6 | 0.51 |
ACS-driven PCI, % | 1.1 | 1.0 | 0.7 | 0.50 | 1.1 | 1.5 | 0.31 |
Stroke, % | 0.1 | 0.1 | 0.0 | 0.84 | 0.1 | 0.2 | 0.67 |
12-month MACCE, % | 11.8 | 7.8 | 7.5 | 0.74 | 15.5 | 14.9 | 0.63 |
Death, % | 5.4 | 2.9 | 3.3 | 0.52 | 7.2 | 7.2 | 0.96 |
MI, % | 4.9 | 3.1 | 2.9 | 0.77 | 6.9 | 6.2 | 0.35 |
ACS-driven PCI, % | 4.2 | 3.2 | 3.0 | 0.74 | 5.4 | 4.8 | 0.40 |
Stroke, % | 0,7 | 0.7 | 0.6 | 0.66 | 0.5 | 0.9 | 0.12 |
Factor | WHO Recommended Level 2021 (vs. 2005) | Study Population n = 7494 | CCS n = 3347 | ACS n = 4174 | p Value |
---|---|---|---|---|---|
PM10, µg/m3; median (Q1–Q3) | 15 (20) | 36.2 (25.8–54.4) | 35.4 (25.8–53.4) | 36.8 (25.8–56.0) | 0.039 |
SO2, µg/m3; median (Q1–Q3) | 40 (20) | 11.4 (7.5–19.5) | 10.9 (7.4–18.6) | 11.8 (7.6–20.2) | 0.0001 |
NO, µg/m3; median (Q1–Q3) | n/a | 7.7 (4.2–16.2) | 7.8 (4.4–15.8) | 7.7 (4.0–16.4) | 0.17 |
NO2, µg/m3; median (Q1–Q3) | 25 (40) | 24.7 (18.5–32.2) | 24.6 (19.0–32.0) | 24.8 (18.2–32.5) | 0.51 |
O3, µg/m3; median (Q1–Q3) | 100 (100) | 60.7 (37.0–84.7) | 62.7 (39.3–86.3) | 59.0 (35.3–83.7) | 0.0001 |
A | CCS | |||||||||
PM10 | TsSO2 | NO | NO2 | O3 | ||||||
HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | |
30d MACCE | 1.15 (0.52–2.56) | 0.73 | 1.54 (0.63–3.80) | 0.33 | 1.48 (0.68–3.23) | 0.32 | 1.05 (0.47–2.33) | 0.91 | 0.46 (0.15–1.39) | 0.17 |
Covariates used in the model: year of the admission, age, atrial fibrillation, chest pain, creatinine, EF, hemoglobin, heating season, multivessel CAD, WBC, prior MI | ||||||||||
30-day mortality | 1.31 (0.52–3.31) | 0.56 | 1.26 (0.45–3.53) | 0.66 | 0.85 (0.36–2.04) | 0.75 | 1.14 (0.47–2.78) | 0.76 | 0.83 (0.35–2.00) | 0.68 |
Covariates used in the model: year of the admission, age, BMI, creatinine, EF, heating season, multivessel CAD, prior MI, SBP, WBC | ||||||||||
30-day MI | 1.27 (0.63–2.55) | 0.5 | 1.19 (0.54–2.60) | 0.67 | 0.73 (0.35–1.50) | 0.39 | 1.03 (0.51–2.08) | 0.94 | 0.47 (0.18–1.19) | 0.11 |
Covariates used in the model: year of the admission, cardiogenic shock, heating season, prior MI | ||||||||||
30-day stroke | - | - | - | - | - | - | - | - | - | - |
not enough events to perform the multivariable analysis | ||||||||||
30-day ACS-driven PCI | 1.94 (0.73–5.17) | 0.18 | 2.95 (0.90–9.71) | 0.07 | 1.41 (0.55–3.61) | 0.47 | 1.41 (0.53–3.73) | 0.49 | 0.49 (0.13–1.78) | 0.28 |
Covariates used in the model: year of the admission, age, chest pain, creatinine, hemoglobin, heating season, prior MI | ||||||||||
12-month MACCE | 0.88 (0.52–1.49) | 0.63 | 1.25 (0.71–2.20) | 0.44 | 1.06 (0.65–1.72) | 0.83 | 1.22 (0.76–1.98) | 0.41 | 0.76 (0.43–1.34) | 0.34 |
Covariates used in the model: year of the admission, age, BMI, cardiogenic shock, chest pain, creatinine, EF, hemoglobin, heating season, multivessel CAD, prior MI, WBC | ||||||||||
12-month mortality | 1.58 (0.78–3.18) | 0.2 | 2.29 (1.03–5.11) | 0.043 | 0.99 (0.51–1.94) | 0.98 | 1.37 (0.71–2.65) | 0.34 | 0.82 (0.38–1.72) | 0.59 |
Covariates used in the model: year of the admission, age, creatinine, BMI, cardiogenic shock, cigarette smoking, EF, heating season, multivessel CAD, prior MI, SBP, WBC | ||||||||||
12-month MI | 1.08 (0.56–2.06) | 0.81 | 1.09 (0.54–2.24) | 0.8 | 0.92 (0.50–1.69) | 0.79 | 1.20 (0.65–2.21) | 0.56 | 0.42 (0.19–0.92) | 0.03086 |
Covariates used in the model: year of the admission, BMI, cardiogenic shock, cigarette smoking, heating season, EF, hemoglobin, multivessel CAD, prior MI, SBP | ||||||||||
12-month stroke | 0.41 (0.11–1.52) | 0.18 | 1.26 (0.37–4.29) | 0.71 | 0.51 (0.17–1.54) | 0.23 | 0.75 (0.26–2.18) | 0.6 | 1.54 (0.60–3.94) | 0.36 |
Covariates used in the model: year of the admission, age, atrial fibrillation, chest pain, diabetes mellitus, EF, female, hemoglobin, heating season, prior MI, WBC | ||||||||||
12-month ACS-driven PCI | 1.07 (0.71–1.64) | 0.71 | 0.90 (0.55–1.45) | 0.66 | 1.23 (0.84–1.78) | 0.28 | 1.02 (0.69–1.53) | 0.91 | 0.93 (0.62–1.41) | 0.75 |
Covariates used in the model: year of the admission, diabetes mellitus, heating season, multivessel CAD, prior MI, SBP. | ||||||||||
B | ACS | |||||||||
PM10 | SO2 | NO | NO2 | O3 | ||||||
HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | |
30d MACCE | 1.97 (1.03–3.77) | 0.0419 | 2.07 (0.95–4.53) | 0.07 | 1.52 (0.82–2.86) | 0.18 | 1.35 (0.70–2.64) | 0.36 | 0.98 (0.48–2.01) | 0.97 |
Covariates used in the model: year of the admission, atrial fibrillation, BMI, cardiogenic shock, chest pain, cigarette smoking, creatinine, EF, hemoglobin, heating season, multivessel CAD, prior MI, SBP, WBC | ||||||||||
30-day mortality | 3.23 (1.08–9.67) | 0.036 | 8.71 (2.25–33.67) | 0.0017 | 1.33 (0.48–3.68) | 0.58 | 2.34 (0.82–6.70) | 0.11 | 1.13 (0.35–3.63) | 0.84 |
Covariates used in the model: year of the admission, age, BMI, cardiogenic shock, chest pain, cigarette smoking, creatinine, diabetes mellitus, EF, hemoglobin, heating season, multivessel CAD, prior MI, SBP, WBC | ||||||||||
30-day MI | 0.88 (0.57–1.37) | 0.58 | 0.98 (0.64–1.50) | 0.92 | 0.85 (0.54–1.33) | 0.48 | 0.76 (0.48–1.20) | 0.24 | 0.97 (0.62–1.52) | 0.9 |
Covariates used in the model: year of the admission, age, cigarette smoking, diabetes mellitus, EF, multivessel CAD, prior MI | ||||||||||
30-day stroke | - | - | - | - | - | - | - | - | - | - |
not enough events to perform the multivariable analysis | ||||||||||
30-day ACS-driven PCI | 1.51 (0.67–3.42) | 0.31 | 1.73 (0.67–4.52) | 0.25 | 1.25 (0.57–2.76) | 0.58 | 1.06 (0.45–2.49) | 0.89 | 0.97 (0.36–2.56) | 0.95 |
Covariates used in the model: year of the admission, diabetes mellitus, heating season, multivessel CAD, prior MI, SBP | ||||||||||
12-month MACCE | 1.14 (0.79–1.62) | 0.48 | 1.11 (0.74–1.67) | 0.62 ( | 1.06 (0.75–1.50) | 0.74 | 0.87 (0.60–1.27) | 0.47 | 1.24 (0.84–1.84) | 0.27 |
Covariates used in the model: year of the admission, age, atrial fibrillation, BMI, cardiogenic shock, chest pain, cigarette smoking, creatinine, EF, hemoglobin, heating season, prior MI, SBP, WBC | ||||||||||
12-month mortality | 1.12 (0.66–1.91 | 0.67 | 1.11 (0.60–2.06) | 0.72 | 0.90 (0.54–1.50) | 0.69 | 1.12 (0.66–1.91) | 0.67 | 0.88 (0.52–1.51) | 0.65 |
Covariates used in the model: year of the admission, age, atrial fibrillation, BMI, creatinine, chest pain, cardiogenic shock, cigarette smoking, EF, hemoglobin, heating season, multivessel CAD, prior MI, SBP, WBC | ||||||||||
12-month MI | 0.85 (0.64–1.14) | 0.27 | 0.99 (0.72–1.37) | 0.96 | 0.79 (0.59–1.04) | 0.1 | 0.76 (0.56–1.02) | 0.07 | 0.99 (0.73–1.33) | 0.94 |
Covariates used in the model: year of the admission, creatinine, cardiogenic shock, cigarette smoking, diabetes mellitus, heating season, EF, hemoglobin, multivessel CAD, prior MI, WBC | ||||||||||
12-month stroke | 1.28 (0.67–2.44) | 0.45 | 1.19 (0.57–2.46) | 0.64 | 1.58 (0.86–2.88 | 0.14 | 1.13 (0.59–2.14) | 0.10 | 0.68 (0.30–1.57) | 0.37 |
Covariates used in the model: year of the admission, age, female, hemoglobin, heating season, EF, multivessel CAD, prior MI | ||||||||||
12-month ACS-driven PCI | 1.03 (0.77–1.37) | 0.84 | 1.01 (0.73–1.40) | 0.95 | 0.87 (0.66–1.16) | 0.35 | 0.91 (0.68–1.22) | 0.53 | 1.17 (0.88–1.57) | 0.28 |
Covariates used in the model: year of the admission, cardiogenic shock, diabetes mellitus, female, hemoglobin, heating season, multivessel CAD, prior MI, WBC. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desperak, P.; Desperak, A.; Szyguła-Jurkiewicz, B.; Rozentryt, P.; Lekston, A.; Gąsior, M. The Impact of Short-Term Outdoor Air Pollution on Clinical Status and Prognosis of Hospitalized Patients with Coronary Artery Disease Treated with Percutaneous Coronary Intervention. J. Clin. Med. 2022, 11, 484. https://doi.org/10.3390/jcm11030484
Desperak P, Desperak A, Szyguła-Jurkiewicz B, Rozentryt P, Lekston A, Gąsior M. The Impact of Short-Term Outdoor Air Pollution on Clinical Status and Prognosis of Hospitalized Patients with Coronary Artery Disease Treated with Percutaneous Coronary Intervention. Journal of Clinical Medicine. 2022; 11(3):484. https://doi.org/10.3390/jcm11030484
Chicago/Turabian StyleDesperak, Piotr, Aneta Desperak, Bożena Szyguła-Jurkiewicz, Piotr Rozentryt, Andrzej Lekston, and Mariusz Gąsior. 2022. "The Impact of Short-Term Outdoor Air Pollution on Clinical Status and Prognosis of Hospitalized Patients with Coronary Artery Disease Treated with Percutaneous Coronary Intervention" Journal of Clinical Medicine 11, no. 3: 484. https://doi.org/10.3390/jcm11030484
APA StyleDesperak, P., Desperak, A., Szyguła-Jurkiewicz, B., Rozentryt, P., Lekston, A., & Gąsior, M. (2022). The Impact of Short-Term Outdoor Air Pollution on Clinical Status and Prognosis of Hospitalized Patients with Coronary Artery Disease Treated with Percutaneous Coronary Intervention. Journal of Clinical Medicine, 11(3), 484. https://doi.org/10.3390/jcm11030484