No Influence of Previous Coxiella burnetii Infection on ICU Admission and Mortality in Emergency Department Patients Infected with SARS-CoV-2
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Evidence of Previous C. burnetii Infection
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Evidence of Previous C. burnetii Infection
3.3. Baseline Characteristics
3.4. Outcome
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maurin, M.; Raoult, D. Q fever. Clin. Microbiol. Rev. 1999, 12, 518–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kampschreur, L.M.; Hagenaars, J.C.J.P.; Wielders, C.C.H.; Elsman, P.; Lestrade, P.J.; Koning, O.H.J.; Oosterheert, J.J.; Renders, N.H.M.; Wever, P.C. Screening for Coxiella burnetii seroprevalence in chronic Q fever high-risk groups reveals the magnitude of the Dutch Q fever outbreak. Epidemiol. Infect. 2013, 141, 847–851. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, F.; van der Hoek, W.; Wijers, N.; Schimmer, B.; Rietveld, A.; Wijkmans, C.J.; Vellema, P.; Schneeberger, P.M. The 2007–2010 Q fever epidemic in the Netherlands: Characteristics of notified acute Q fever patients and the association with dairy goat farming. FEMS Immunol. Med. Microbiol. 2012, 64, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Morroy, G.; Keijmel, S.P.; Delsing, C.E.; Bleijenberg, G.; Langendam, M.; Timen, A.; Bleeker-Rovers, C.P. Fatigue following acute Q-fever: A systematic literature review. PLoS ONE 2016, 11, e0155884. [Google Scholar] [CrossRef] [Green Version]
- Van Roeden, S.E.; Wever, P.C.; Kampschreur, L.M.; Gruteke, P.; van der Hoek, W.; Hoepelman, A.I.M.; Bleeker-Rovers, C.P.; Oosterheert, J.J. Chronic Q fever-related complications and mortality: Data from a nationwide cohort. Clin. Microbiol. Infect. 2019, 25, 1390–1398. [Google Scholar] [CrossRef]
- Alderweireld, C.E.A.; Buiting, A.G.M.; Murk, J.L.A.N.; Verweij, J.J.; Berrevoets, M.A.H.; van Kasteren, M.E.E. COVID-19: Patient zero in the Netherlands. Ned. Tijdschr. Geneeskd. 2020, 164, D4962. [Google Scholar]
- Reusken, C.B.; Buiting, A.; Bleeker-Rovers, C.; Diederen, B.; Hooiveld, M.; Friesema, I.; Koopmans, M.; Kortbeek, T.; Lutgens, S.P.M.; Meijer, A.; et al. Rapid assessment of regional SARS-CoV-2 community transmission through a convenience sample of healthcare workers, the Netherlands, March 2020. Eurosurveillance 2020, 25, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Rao, K.S.; Suryaprakash, V.; Senthilkumar, R.; Preethy, S.; Katoh, S.; Ikewaki, N.; Abraham, S.J.K. Role of Immune Dysregulation in Increased Mortality Among a Specific Subset of COVID-19 Patients and Immune-Enhancement Strategies for Combatting Through Nutritional Supplements. Front. Immunol. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Roberts, J.; Pritchard, A.L.; Treweeke, A.T.; Rossi, A.G.; Brace, N.; Cahill, P.; MacRury, S.M.; Wei, J.; Megson, I.L. Why Is COVID-19 More Severe in Patients With Diabetes? The Role of Angiotensin-Converting Enzyme 2, Endothelial Dysfunction and the Immunoinflammatory System. Front. Cardiovasc. Med. 2021, 7, 1–23. [Google Scholar] [CrossRef]
- Costagliola, G.; Spada, E.; Consolini, R. Age-related differences in the immune response could contribute to determine the spectrum of severity of COVID-19. Immunity, Inflamm. Dis. 2021, 9, 331–339. [Google Scholar] [CrossRef]
- Korakas, E.; Ikonomidis, I.; Kousathana, F.; Balampanis, K.; Kountouri, A.; Raptis, A.; Palaiodimou, L.; Kokkinos, A.; Lambadiari, V. Obesity and COVID-19: Immune and metabolic derangement as a possible link to adverse clinical outcomes. Am. J. Physiol.-Endocrinol. Metab. 2020, 319, E105–E109. [Google Scholar] [CrossRef]
- Liu, R.; Zhao, L.; Cheng, X.; Han, H.; Li, C.; Li, D.; Liu, A.; Gao, G.; Zhou, F.; Liu, F.; et al. Clinical characteristics of COVID-19 patients with hepatitis B virus infection—A retrospective study. Liver Int. 2021, 41, 720–730. [Google Scholar] [CrossRef]
- Poloni, C.; Szyf, M.; Cheishvili, D.; Tsoukas, C.M. Are the healthy vulnerable? Cytomegalovirus seropositivity in healthy adults is associated with accelerated epigenetic age and immune-dysregulation. J Infect Dis 2021, preprint. [Google Scholar] [CrossRef]
- Raijmakers, R.P.H.; Jansen, A.F.M.; Keijmel, S.P.; van der Meer, J.W.M.; Joosten, L.A.B.; Netea, M.G.; Bleeker-Rovers, C.P. A possible link between recurrent upper respiratory tract infections and lower cytokine production in patients with Q fever fatigue syndrome. Eur. J. Immunol. 2019, 49, 1015–1022. [Google Scholar] [CrossRef]
- Raijmakers, R.P.; Stenos, J.; Keijmel, S.P.; Ter Horst, R.; Novakovic, B.; Nguyen, C.; Van Der Meer, J.W.; Netea, M.G.; Bleeker-Rovers, C.P.; Joosten, L.A.; et al. Long-Lasting Transcriptional Changes in Circulating Monocytes of Acute Q Fever Patients. Open Forum Infect. Dis. 2019, 6, 1–9. [Google Scholar] [CrossRef]
- Netea, M.G.; Giamarellos-Bourboulisi, E.J.; Domínguez-Andrés, J.; Curtis, N.; van Crevel, R.; van de Veerdonk, F.L.; Bonten, M.J.M. Trained Immunity: A Tool for Reducing Susceptibility to and the Severity of SARS-CoV-2 Infection. Cell 2020, 181, 969–977. [Google Scholar] [CrossRef]
- Netea, M.G.; Joosten, L.A.B.; Latz, E.; Mills, K.H.G.; Natoli, G.; Stunnenberg, H.G.; O’Neill, L.A.J.; Xavier, R.J. Trained immunity: A program of innate immune memory in health and disease. Science 2016, 352, 427. [Google Scholar] [CrossRef] [Green Version]
- Ohrui, T.; Nakayama, K.T.F.; Chiba, H.; Sasaki, H. Prevention of elderly pneumonia by pneumococcal, influenza and BCG vaccinations. Nihon Ronen Igakkai Zasshi 2005, 42, 34–36. [Google Scholar] [CrossRef] [Green Version]
- Wardhana; Datau, E.A.; Sultana, A.; Mandang, V.V.; Jim, E. The efficacy of Bacillus Calmette-Guerin vaccinations for the prevention of acute upper respiratory tract infection in the elderly. Acta Med. Indones. 2011, 43, 185–190. [Google Scholar]
- Giamarellos-Bourboulis, E.J.; Tsilika, M.; Moorlag, S.; Antonakos, N.; Kotsaki, A.; Domínguez-Andrés, J.; Kyriazopoulou, E.; Gkavogianni, T.; Adami, M.E.; Damoraki, G.; et al. Activate: Randomized Clinical Trial of BCG Vaccination against Infection in the Elderly. Cell 2020, 183, 315–323.e9. [Google Scholar] [CrossRef]
- Ten Doesschate, T.; Moorlag, S.J.C.F.M.; Van Der Vaart, T.W.; Taks, E.; Debisarun, P.; Ten Oever, J.; Bleeker-Rovers, C.P.; Verhagen, P.B.; Lalmohamed, A.; Ter Heine, R.; et al. Two Randomized Controlled Trials of Bacillus Calmette-Guérin Vaccination to reduce absenteeism among health care workers and hospital admission by elderly persons during the COVID-19 pandemic: A structured summary of the study protocols for two randomised. Trials 2020, 21, 20–21. [Google Scholar] [CrossRef]
- Madsen, A.M.R.; Schaltz-Buchholzer, F.; Benfield, T.; Bjerregaard-Andersen, M.; Dalgaard, L.S.; Dam, C.; Ditlev, S.B.; Faizi, G.; Johansen, I.S.; Kofoed, P.E.; et al. Using BCG vaccine to enhance non-specific protection of health care workers during the COVID-19 pandemic: A structured summary of a study protocol for a randomised controlled trial in Denmark. Trials 2020, 21, 20–22. [Google Scholar] [CrossRef]
- Junqueira-Kipnis, A.P.; dos Anjos, L.R.B.; de Souza Barbosa, L.C.; da Costa, A.C.; Borges, K.C.M.; da Rocha Oliveira Cardoso, A.; Ribeiro, K.M.; Rosa, S.B.A.; de Castro Souza, C.; das Neves, R.C.; et al. BCG revaccination of health workers in Brazil to improve innate immune responses against COVID-19: A structured summary of a study protocol for a randomised controlled trial. Trials 2020, 21, 20–22. [Google Scholar] [CrossRef]
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.M.; Sundararajan, V. Updating and validating the charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subbe, C.P.; Kruger, M.; Rutherford, P.; Gemmel, L. Validation of a modified Early Warning Score in medical admissions. QJM 2001, 94, 512–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogema, B.M.; Slot, E.; Molier, M.; Schneeberger, P.M.; Hermans, M.H.; Van Hannen, E.J.; Van Der Hoek, W.; Cuijpers, H.T.; Zaaijer, H.L. Coxiella burnetii infection among blood donors during the 2009 Q-fever outbreak in The Netherlands. Transfusion 2012, 52, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Mulder, B.; Walk, J.; Dautzenberg, M.; Lohuis, A.O.; Nabuurs, M.; Dofferhoff, T. Doorgemaakte Q-koorts geassocieerd met ernstige ziekte of sterfte van COVID-19-patiënten? Ned. Tijdschr. Med. Microbiol. 2020, 28, 157–160. [Google Scholar]
- Hussain-Yusuf, H.; Islam, A.; Healy, B.; Lockhart, M.; Nguyen, C.; Sukocheva, O.; Stenos, J.; Graves, S. An analysis of Q fever patients 6 years after an outbreak in Newport, Wales, UK. QJM 2012, 105, 1067–1073. [Google Scholar] [CrossRef] [Green Version]
- Wielders, C.C.H.; Van Loenhout, J.A.F.; Morroy, G.; Rietveld, A.; Notermans, D.W.; Wever, P.C.; Renders, N.H.M.; Leenders, A.C.A.P.; Van Der Hoek, W.; Schneeberger, P.M. Long-term Serological follow-up of acute Q-fever patients after a large epidemic. PLoS ONE 2015, 10, e0131848. [Google Scholar] [CrossRef] [Green Version]
- Morroy, G.; Van Der Hoek, W.; Albers, J.; Coutinho, R.A.; Bleeker-Rovers, C.P.; Schneeberger, P.M. Population screening for chronic Q-fever seven years after a major outbreak. PLoS ONE 2015, 10, e0131777. [Google Scholar] [CrossRef] [Green Version]
- Buijs, S.B.; Stuart, S.K.; Oosterheert, J.J.; Karhof, S.; Hoepelman, A.I.M.; Renders, N.H.M.; van Petersen, A.S.; Bleeker-Rovers, C.P.; Wever, P.C.; Koning, O.H.J. Long-term serological follow-up after primary Coxiella burnetii infection in patients with vascular risk factors for chronic Q fever. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1569–1572. [Google Scholar] [CrossRef]
- Bekçibaşı, M.; Arslan, E. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/Hepatitis B virus (HBV) Co-infected Patients: A case series and review of the literature. Int. J. Clin. Pract. 2021, 75, e14412. [Google Scholar] [CrossRef]
- Kadambari, S.; Klenerman, P.; Pollard, A.J. Why the elderly appear to be more severely affected by COVID-19: The potential role of immunosenescence and CMV. Rev. Med. Virol. 2020, 30, 1–5. [Google Scholar] [CrossRef]
- Ssentongo, P.; Heilbrunn, E.S.; Ssentongo, A.E.; Advani, S.; Chinchilli, V.M.; Nunez, J.J.; Du, P. Epidemiology and outcomes of COVID-19 in HIV-infected individuals: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Post, P.M.; Hogerwerf, L.; Huss, A.; Petie, R.; Boender, G.J.; Baliatsas, C.; Lebret, E.; Heederik, D.; Hagenaars, T.J.; IJzermans, C.J.; et al. Risk of pneumonia among residents living near goat and poultry farms during 2014–2016. PLoS ONE 2019, 14, e0223601. [Google Scholar] [CrossRef] [Green Version]
- Kalkowska, D.A.; Boender, G.J.; Smit, L.A.M.; Baliatsas, C.; Yzermans, J.; Heederik, D.J.J.; Hagenaars, T.J. Associations between pneumonia and residential distance to livestock farms over a five-year period in a large population-based study. PLoS ONE 2018, 13, e0200813. [Google Scholar] [CrossRef]
- O’Connor, A.M.; Auvermann, B.W.; Dzikamunhenga, R.S.; Glanville, J.M.; Higgins, J.P.T.; Kirychuk, S.P.; Sargeant, J.M.; Totton, S.C.; Wood, H.; Von Essen, S.G. Updated systematic review: Associations between proximity to animal feeding operations and health of individuals in nearby communities. Syst. Rev. 2017, 6, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Skrajnowska, D.; Brumer, M.; Kankowska, S.; Matysek, M.; Miazio, N.; Bobrowska-Korczak, B. COVID 19: Diet composition and health. Nutrients 2021, 13, 2980. [Google Scholar] [CrossRef]
Characteristic | Previous Coxiella burnetii Infection | p-Value b | ||
---|---|---|---|---|
Total n = 629 | With n = 117 (18.6%) | Without n = 512 (81.4%) | ||
Age in years (mean, SD) | 68.0 ± 12.5 | 67.46 ± 11.2 | 68.07 ± 12.7 | 0.635 |
Male sex (n, %) | 412 (65.5%) | 83 (70.9%) | 329 (64.3%) | 0.170 |
uCCI (median, IQR) | 0.0 (0.0–1.0) | 0.0 (0.0–1.0) | 0.0 (0.0–1.0) | 0.579 |
BMI (mean, SD) | 28.5 ± 5.1 | 29.27 ± 5.0 | 28.35 ± 5.1 | 0.090 |
Medical history: | ||||
Cardiovascular disease (n, %) | 250 (39.7%) | 52 (44.4%) | 198 (38.7%) | 0.250 |
Chronic lung disease (n, %) | 111 (17.6%) | 23 (19.7%) | 88 (17.2%) | 0.527 |
Diabetes mellitus (n, %) | 141 (22.4%) | 30 (25.6%) | 111 (21.7%) | 0.354 |
Immunocompromised state (n, %) | 72 (11.4%) | 9 (7.7%) | 63 (12.3%) | 0.123 |
Lymphoma (n, %) | 9 (1.4%) | 0 (-) | 9 (1.8%) | 0.222 |
Leukemia (n, %) | 10 (1.6%) | 4 (3.4%) | 6 (1.2%) | 0.157 |
Malignancy (n, %) | 85 (13.5%) | 18 (15.4%) | 67 (13.1%) | 0.512 |
With metastasis (n, %) | 8 (2.5%) | 2 (1.7%) | 6 (1.2%) | 0.646 |
Nursing home (n, %) | 16 (2.5%) | 3 (2.6%) | 13 (2.5%) | 1.000 |
ED presentation | ||||
Oxygen suppletion (n, %) | 435 (69.2%) | 79 (67.5%) | 356 (69.5%) | 0.671 |
MEWS (median, IQR) | 2.0 (2.0–4.0) | 2.0 (2.0–4.0) | 2.0 (1.0–4.0) | 0.796 |
(Hydroxy)chloroquine treatment (n, %) | 387 (61.5%) | 75 (64.1%) | 312 (60.9%) | 0.526 |
Complaints at presentation | ||||
Dyspnea (n, %) | 441 (70.1%) | 93 (79.5%) | 348 (68.0%) | 0.014 |
Cough (n, %) | 411 (65.3%) | 76 (65.0%) | 335 (65.4%) | 0.932 |
Thoracic pain (n, %) | 59 (9.4%) | 10 (8.5%) | 49 (9.6%) | 0.732 |
Previous Coxiella burnetii Infection | ||||
---|---|---|---|---|
With (n = 117) | Without (n = 512) | OR (95% CI) | Adjusted OR (95% CI) b | |
Combined primary outcome | 47 (40.2) | 207 (40.4) | 0.989 (0.657–1.490) | 0.926 (0.605–1.416) |
In-hospital mortality | 26 (22.2) | 130 (25.4) | 0.840 (0.520–1.356) | 0.825 (0.488–1.393) |
ICU admission | 29 (24.8) | 101 (19.7) | 1.341 (0.836–2.152) | 1.299 (0.799–2.112) |
Ward admission | 105 (89.7) | 473 (92.4) | 0.721 (0.365–1.425) | 0.612 (0.303–1.237) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weehuizen, J.M.; van Spronsen, R.; Hoepelman, A.I.M.; Bleeker-Rovers, C.P.; Oosterheert, J.J.; Wever, P.C. No Influence of Previous Coxiella burnetii Infection on ICU Admission and Mortality in Emergency Department Patients Infected with SARS-CoV-2. J. Clin. Med. 2022, 11, 526. https://doi.org/10.3390/jcm11030526
Weehuizen JM, van Spronsen R, Hoepelman AIM, Bleeker-Rovers CP, Oosterheert JJ, Wever PC. No Influence of Previous Coxiella burnetii Infection on ICU Admission and Mortality in Emergency Department Patients Infected with SARS-CoV-2. Journal of Clinical Medicine. 2022; 11(3):526. https://doi.org/10.3390/jcm11030526
Chicago/Turabian StyleWeehuizen, Jesper M., Rik van Spronsen, Andy I. M. Hoepelman, Chantal P. Bleeker-Rovers, Jan Jelrik Oosterheert, and Peter C. Wever. 2022. "No Influence of Previous Coxiella burnetii Infection on ICU Admission and Mortality in Emergency Department Patients Infected with SARS-CoV-2" Journal of Clinical Medicine 11, no. 3: 526. https://doi.org/10.3390/jcm11030526
APA StyleWeehuizen, J. M., van Spronsen, R., Hoepelman, A. I. M., Bleeker-Rovers, C. P., Oosterheert, J. J., & Wever, P. C. (2022). No Influence of Previous Coxiella burnetii Infection on ICU Admission and Mortality in Emergency Department Patients Infected with SARS-CoV-2. Journal of Clinical Medicine, 11(3), 526. https://doi.org/10.3390/jcm11030526