Immune Checkpoint Blockade in Lung Carcinoids with Aggressive Behaviour: One More Arrow in Our Quiver?
Abstract
:1. Introduction
Aim of the Study
2. Materials and Methods
3. Results
3.1. Published Articles
3.2. Registered Clinical Trials (RCTs)
3.3. Immune Checkpoint Inhibitors in Monotherapy
3.4. Dual Immune Checkpoint Inhibition
3.5. Immune Checkpoint Inhibitors plus Chemotherapy
3.6. Immune Checkpoint Inhibitors plus Radiation Therapy
3.7. Immune Checkpoint Inhibitors plus Tyrosine Kinase Inhibitors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Travis, W.D.; Brambilla, E.; Nicholson, A.G.; Yatabe, Y.; Austin, J.H.M.; Beasley, M.B.; Chirieac, L.R.; Dacic, S.; Duhig, E.; Flieder, D.B.; et al. The 2015 World Health Organization Classification of Lung Tumors. J. Thorac. Oncol. 2015, 10, 1243–1260. [Google Scholar] [CrossRef] [Green Version]
- Petursdottir, A.; Sigurdardottir, J.; Fridriksson, B.M.; Johnsen, A.; Isaksson, H.J.; Hardardottir, H.; Jonsson, S.; Gudbjartsson, T. Pulmonary carcinoid tumours: Incidence, histology, and surgical outcome. A population-based study. Gen. Thorac. Cardiovasc. Surg. 2019, 68, 523–529. [Google Scholar] [CrossRef]
- Raz, D.J.; Nelson, R.A.; Grannis, F.W.; Kim, J.Y. Natural History of Typical Pulmonary Carcinoid Tumors. Chest 2015, 147, 1111–1117. [Google Scholar] [CrossRef] [Green Version]
- Caplin, M.E.; Baudin, E.; Ferolla, P.; Filosso, P.; Garcia-Yuste, M.; Lim, E.; Oberg, K.; Pelosi, G.; Perren, A.; Rossi, R.E.; et al. Pulmonary neuroendocrine (carcinoid) tumors: European Neuroendocrine Tumor Society expert consensus and recommendations for best practice for typical and atypical pulmonary carcinoids. Ann. Oncol. 2015, 26, 1604–1620. [Google Scholar] [CrossRef] [PubMed]
- Ferolla, P.; Brizzi, M.P.; Meyer, T.; Mansoor, W.; Mazieres, J.; Do Cao, C.; Léna, H.; Berruti, A.; Damiano, V.; Buikhuisen, W.; et al. Efficacy and safety of long-acting pasireotide or everolimus alone or in combination in patients with advanced carcinoids of the lung and thymus (LUNA): An open-label, multicentre, randomised, phase 2 trial. Lancet Oncol. 2017, 18, 1652–1664. [Google Scholar] [CrossRef]
- Shah, M.H.; Goldner, W.S.; Halfdanarson, T.R.; Bergsland, E.; Berlin, J.D.; Halperin, D.; Chan, J.; Kulke, M.H.; Benson, A.B.; Blaszkowsky, L.S.; et al. NCCN Guidelines Insights: Neuroendocrine and Adrenal Tumors, Version 2.2018. J. Natl. Compr. Cancer Netw. 2018, 16, 693–702. [Google Scholar] [CrossRef]
- Prinzi, N.; Rossi, R.E.; Proto, C.; Leuzzi, G.; Raimondi, A.; Torchio, M.; Milione, M.; Corti, F.; Colombo, E.; Prisciandaro, M.; et al. Recent Advances in the Management of Typical and Atypical Lung Carcinoids. Clin. Lung Cancer 2021, 22, 161–169. [Google Scholar] [CrossRef]
- Yao, J.C.; Fazio, N.; Singh, S.; Buzzoni, R.; Carnaghi, C.; Wolin, E.; Tomasek, J.; Raderer, M.; Lahner, H.; Voi, M.; et al. Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): A randomised, placebo-controlled, phase 3 study. Lancet 2016, 387, 968–977. [Google Scholar] [CrossRef]
- Grande, E.; Capdevila, J.; Castellano, D.; Teulé, A.; Durán, I.; Fuster, J.; Sevilla, I.; Escudero, P.; Sastre, J.; García-Donas, J.; et al. Pazopanib in pretreated advanced neuroendocrine tumors: A phase II, open-label trial of the Spanish Task Force Group for Neuroendocrine Tumors (GETNE). Ann. Oncol. 2015, 26, 1987–1993. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Bergsland, E.K.; Card, C.M.; Hope, T.A.; Kunz, P.L.; Laidley, D.T.; Lawrence, B.; Leyden, S.; Metz, D.C.; Michael, M.; et al. Commonwealth Neuroendocrine Tumour Research Collaboration and the North American Neuroendocrine Tumor Society Guidelines for the Diagnosis and Management of Patients with Lung Neuroendocrine Tumors: An International Collaborative Endorsement and Update of the 2015 European Neuroendocrine Tumor Society Expert Consensus Guidelines. J. Thorac. Oncol. 2020, 15, 1577–1598. [Google Scholar] [CrossRef] [PubMed]
- Seidel, J.A.; Otsuka, A.; Kabashima, K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front. Oncol. 2018, 8, 86. [Google Scholar] [CrossRef]
- Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and Its Ligands in Tolerance and Immunity. Annu. Rev. Immunol. 2008, 26, 677–704. [Google Scholar] [CrossRef] [Green Version]
- Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Wilky, B.A. Immune checkpoint inhibitors: The linchpins of modern immunotherapy. Immunol. Rev. 2019, 290, 6–23. [Google Scholar] [CrossRef]
- Robert, C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun. 2020, 11, 3801. [Google Scholar] [CrossRef]
- Al-Toubah, T.; Cives, M.; Strosberg, J. Novel immunotherapy strategies for treatment of neuroendocrine neoplasms. Transl. Gastroenterol. Hepatol. 2020, 5, 54. [Google Scholar] [CrossRef]
- Albertelli, M.; Dotto, A.; Nista, F.; Veresani, A.; Patti, L.; Gay, S.; Sciallero, S.; Boschetti, M.; Ferone, D. Present and future of immunotherapy in Neuroendocrine Tumors. Rev. Endocr. Metab. Disord. 2021, 22, 615–636. [Google Scholar] [CrossRef]
- Chauhan, A.; Horn, M.; Magee, G.; Hodges, K.; Evers, M.; Arnold, S.; Anthony, L. Immune checkpoint inhibitors in neuroendocrine tumors: A single institution experience with review of literature. Oncotarget 2017, 9, 8801–8809. [Google Scholar] [CrossRef]
- Di Molfetta, S.; Dotto, A.; Fanciulli, G.; Florio, T.; Feola, T.; Colao, A.; Faggiano, A. Immune Checkpoint Inhibitors: New Weapons Against Medullary Thyroid Cancer? Front. Endocrinol. 2021, 12, 667784. [Google Scholar] [CrossRef]
- Dudnik, E.; Kareff, S.; Moskovitz, M.; Kim, C.; Liu, S.V.; Lobachov, A.; Gottfried, T.; Urban, D.; Zer, A.; Rotem, O.; et al. Real-world survival outcomes with immune checkpoint inhibitors in large-cell neuroendocrine tumors of lung. J. ImmunoTherapy Cancer 2021, 9, e001999. [Google Scholar] [CrossRef]
- Fanciulli, G.; Di Molfetta, S.; Dotto, A.; Florio, T.; Feola, T.; Colao, A.; Faggiano, A. Commentary: Case Report: Abdominal Lymph Node Metastases of Parathyroid Carcinoma: Diagnostic Workup, Molecular Diagnosis, and Clinical Management. Front. Endocrinol. 2021, 12, 700806. [Google Scholar] [CrossRef]
- Fanciulli, G.; Di Molfetta, S.; Dotto, A.; Florio, T.; Feola, T.; Rubino, M.; de Cicco, F.; Colao, A.; Faggiano, A. Emerging Therapies in Pheochromocytoma and Paraganglioma: Immune Checkpoint Inhibitors in the Starting Blocks. J. Clin. Med. 2020, 10, 88. [Google Scholar] [CrossRef]
- Vesterinen, T.; Kuopio, T.; Ahtiainen, M.; Knuuttila, A.; Mustonen, H.; Salmenkivi, K.; Arola, J.; Haglund, C. PD-1 and PD-L1 expression in pulmonary carcinoid tumors and their association to tumor spread. Endocr. Connect. 2019, 8, 1168–1175. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Li, Z.; Dong, B.; Sun, W.; Yang, X.; Liu, R.; Zhou, L.; Huang, X.; Jia, L.; Lin, D. Prognostic significance of PD-L1 expression and CD8+ T cell infiltration in pulmonary neuroendocrine tumors. Diagn. Pathol. 2018, 13, 30. [Google Scholar] [CrossRef]
- Fan, Y.; Ma, K.; Wang, C.; Ning, J.; Hu, Y.; Dong, D.; Dong, X.; Geng, Q.; Li, E.; Wu, Y. Prognostic value of PD-L1 and PD-1 expression in pulmonary neuroendocrine tumors. OncoTargets Ther. 2016, 9, 6075–6082. [Google Scholar] [CrossRef] [Green Version]
- Mehnert, J.M.; Bergsland, E.; O’Neil, B.H.; Santoro, A.; Schellens, J.H.M.; Cohen, R.B.; Doi, T.; Ott, P.A.; Pishvaian, M.J.; Puzanov, I.; et al. Pembrolizumab for the treatment of programmed death–ligand 1—Positive advanced carcinoid or pancreatic neuroendocrine tumors: Results from the KEYNOTE-028 study. Cancer 2020, 126, 3021–3030. [Google Scholar] [CrossRef]
- Capdevila, J.; Teule, A.; López, C.; García-Carbonero, R.; Benavent, M.; Custodio, A.; Cubillo, A.; Alonso, V.; Alonso Gordoa, T.; Carmona-Bayonas, A.; et al. 1157O—A multi-cohort phase II study of durvalumab plus tremelimumab for the treatment of patients (pts) with advanced neuroendocrine neoplasms (NENs) of gastroenteropancreatic or lung origin: The DUNE trial (GETNE 1601). Ann. Oncol. 2020, 31, S711–S724. [Google Scholar] [CrossRef]
- Patel, S.P.; Othus, M.; Chae, Y.K.; Giles, F.J.; Hansel, D.E.; Singh, P.P.; Fontaine, A.; Shah, M.H.; Kasi, A.; Baghdadi, T.A.; et al. A Phase II Basket Trial of Dual Anti–CTLA-4 and Anti–PD-1 Blockade in Rare Tumors (DART SWOG 1609) in Patients with Nonpancreatic Neuroendocrine Tumors. Clin. Cancer Res. 2020, 26, 2290–2296. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.P.; (Deputy Director, San Diego Center for Precision Immunotherapy, La Jolla, CA, USA). Personal Communication, April 2021.
- Klein, O.; Kee, D.; Markman, B.; Michael, M.; Underhill, C.; Carlino, M.S.; Jackett, L.; Lum, C.; Scott, C.; Nagrial, A.; et al. Immunotherapy of Ipilimumab and Nivolumab in Patients with Advanced Neuroendocrine Tumors: A Subgroup Analysis of the CA209-538 Clinical Trial for Rare Cancers. Clin. Cancer Res. 2020, 26, 4454–4459. [Google Scholar] [CrossRef]
- Nestor, J.; Barnaby, K.; Esposito, M.; Seetharamu, N. Treatment of atypical pulmonary carcinoid with combination ipilimumab and nivolumab. BMJ Case Rep. 2019, 12, e231029. [Google Scholar] [CrossRef]
- Seymour, L.; Bogaerts, J.; Perrone, A.; Ford, R.; Schwartz, L.H.; Mandrekar, S.; Lin, N.U.; Litière, S.; Dancey, J.; Chen, A.; et al. iRECIST: Guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 2017, 18, e143–e152. [Google Scholar] [CrossRef] [Green Version]
- Sakata, S.; Imamura, K.; Tajima, Y.; Masuda, Y.; Sato, R.; Yoshida, C.; Okamoto, S.; Saeki, S.; Tomita, Y.; Sakagami, T. Heterogeneous tumor-immune microenvironments between primary and metastatic carcinoid tumors differentially respond to anti-PD-L1 antibody therapy. Thorac. Cancer 2020, 12, 397–401. [Google Scholar] [CrossRef]
- Kim, C.; Liu, S.V.; Subramaniam, D.S.; Torres, T.; Loda, M.; Esposito, G.; Giaccone, G. Phase I study of the 177Lu-DOTA0-Tyr3-Octreotate (lutathera) in combination with nivolumab in patients with neuroendocrine tumors of the lung. J. Immunother. Cancer 2020, 8, e000980. [Google Scholar] [CrossRef]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef] [Green Version]
- Motzer, R.J.; Rini, B.I.; McDermott, D.F.; Arén Frontera, O.; Hammers, H.J.; Carducci, M.A.; Salman, P.; Escudier, B.; Beuselinck, B.; Amin, A.; et al. Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell carcinoma: Extended follow-up of efficacy and safety results from a randomised, controlled, phase 3 trial. Lancet Oncol. 2019, 20, 1370–1385. [Google Scholar] [CrossRef]
- Rotte, A.; Jin, J.Y.; Lemaire, V. Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy. Ann. Oncol. 2018, 29, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Rotte, A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J. Exp. Clin. Cancer Res. 2019, 38. [Google Scholar] [CrossRef]
- Das, R.; Verma, R.; Sznol, M.; Boddupalli, C.S.; Gettinger, S.N.; Kluger, H.; Callahan, M.; Wolchok, J.D.; Halaban, R.; Dhodapkar, M.V.; et al. Combination Therapy with Anti–CTLA-4 and Anti–PD-1 Leads to Distinct Immunologic Changes In Vivo. J. Immunol. 2015, 194, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Curran, M.A.; Montalvo, W.; Yagita, H.; Allison, J.P. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc. Natl. Acad. Sci. USA 2010, 107, 4275–4280. [Google Scholar] [CrossRef] [Green Version]
- Ott, P.A.; Hodi, F.S.; Robert, C. CTLA-4 and PD-1/PD-L1 Blockade: New Immunotherapeutic Modalities with Durable Clinical Benefit in Melanoma Patients. Clin. Cancer Res. 2013, 19, 5300–5309. [Google Scholar] [CrossRef] [Green Version]
- Diggs, L.P.; Hsueh, E.C. Utility of PD-L1 immunohistochemistry assays for predicting PD-1/PD-L1 inhibitor response. Biomark. Res. 2017, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Hirsch, F.R.; McElhinny, A.; Stanforth, D.; Ranger-Moore, J.; Jansson, M.; Kulangara, K.; Richardson, W.; Towne, P.; Hanks, D.; Vennapusa, B.; et al. PD-L1 Immunohistochemistry Assays for Lung Cancer: Results from Phase 1 of the Blueprint PD-L1 IHC Assay Comparison Project. J. Thorac. Oncol. 2017, 12, 208–222. [Google Scholar] [CrossRef] [Green Version]
- Burgess, E.F.; Livasy, C.; Hartman, A.; Robinson, M.M.; Symanowski, J.; Naso, C.; Doherty, S.; Guerrieri, R.; Riggs, S.; Grigg, C.M.; et al. Discordance of high PD-L1 expression in primary and metastatic urothelial carcinoma lesions. Urol. Oncol. Semin. Orig. Investig. 2019, 37, 299.e19–299.e25. [Google Scholar] [CrossRef]
- Callea, M.; Albiges, L.; Gupta, M.; Cheng, S.-C.; Genega, E.M.; Fay, A.P.; Song, J.; Carvo, I.; Bhatt, R.S.; Atkins, M.B.; et al. Differential Expression of PD-L1 between Primary and Metastatic Sites in Clear-Cell Renal Cell Carcinoma. Cancer Immunol. Res. 2015, 3, 1158–1164. [Google Scholar] [CrossRef] [Green Version]
- Formenti, S.C.; Demaria, S. Combining Radiotherapy and Cancer Immunotherapy: A Paradigm Shift. JNCI J. Natl. Cancer Inst. 2013, 105, 256–265. [Google Scholar] [CrossRef] [Green Version]
- Gadgeel, S.M.; Stevenson, J.P.; Langer, C.J.; Gandhi, L.; Borghaei, H.; Patnaik, A.; Villaruz, L.C.; Gubens, M.; Hauke, R.; Yang, J.C.-H.; et al. Pembrolizumab and platinum-based chemotherapy as first-line therapy for advanced non–small-cell lung cancer: Phase 1 cohorts from the KEYNOTE-021 study. Lung Cancer 2018, 125, 273–281. [Google Scholar] [CrossRef]
- Jain, R.K. Antiangiogenesis Strategies Revisited: From Starving Tumors to Alleviating Hypoxia. Cancer Cell 2014, 26, 605–622. [Google Scholar] [CrossRef] [Green Version]
- Le, Q.-T.; Shirato, H.; Giaccia, A.J.; Koong, A.C. Emerging Treatment Paradigms in Radiation Oncology. Clin. Cancer Res. 2015, 21, 3393–3401. [Google Scholar] [CrossRef] [Green Version]
- Mathew, M.; Enzler, T.; Shu, C.A.; Rizvi, N.A. Combining chemotherapy with PD-1 blockade in NSCLC. Pharmacol. Ther. 2018, 186, 130–137. [Google Scholar] [CrossRef]
- Taylor, M.H.; Lee, C.-H.; Makker, V.; Rasco, D.; Dutcus, C.E.; Wu, J.; Stepan, D.E.; Shumaker, R.C.; Motzer, R.J. Phase IB/II Trial of Lenvatinib Plus Pembrolizumab in Patients with Advanced Renal Cell Carcinoma, Endometrial Cancer, and Other Selected Advanced Solid Tumors. J. Clin. Oncol. 2020, 38, 1154–1163. [Google Scholar] [CrossRef]
- Naing, A.; Gainor, J.F.; Gelderblom, H.; Forde, P.M.; Butler, M.O.; Lin, C.-C.; Sharma, S.; de Olza, M.O.; Varga, A.; Taylor, M.; et al. A first-in-human phase 1 dose escalation study of spartalizumab (PDR001), an anti–PD-1 antibody, in patients with advanced solid tumors. J. Immunother. Cancer 2020, 8, e000530. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.C.; Strosberg, J.; Fazio, N.; Pavel, M.E.; Bergsland, E.; Ruszniewski, P.; Halperin, D.M.; Li, D.; Tafuto, S.; Raj, N.; et al. Spartalizumab in metastatic, well/poorly differentiated neuroendocrine neoplasms. Endocr.-Relat. Cancer 2021, 28, 161–172. [Google Scholar] [CrossRef]
- Fang, L.; Arvind, D.; Dowlati, A.; Mohamed, A. Role of immunotherapy in gastro-enteropancreatic neuroendocrine neoplasms (gep-nens): Current advances and future directions. J. Neuroendocrinol. 2021, 33, e12943. [Google Scholar] [CrossRef]
Drug | Molecular Target | Antibody Description | US FDA Approved Indications | EU/EMA Approved Indications | China NMPA Approved Indications |
---|---|---|---|---|---|
Atezolizumab | PD-L1 | Humanized monoclonal antibody (IgG1-kappa) | Urothelial carcinoma, NSCLC, SCLC, HCC, melanoma | Urothelial carcinoma, NSCLC, SCLC, TNBC, HCC | SCLC, HCC |
Avelumab | PD-L1 | Fully human monoclonal antibody (IgG1-lambda) | MCC, urothelial carcinoma, RCC | MCC, urothelial carcinoma, RCC | Not approved |
Camrelizumab | PD-1 | Humanized monoclonal antibody (IgG4-kappa) | Not approved | Not approved | NSCLC, HCC, esophageal cancer, cHL, NPC |
Cemiplimab | PD-1 | Fully human monoclonal antibody (IgG4-kappa) | CSCC, BCC, NSCLC | CSCC, BCC, NSCLC | Not approved |
Durvalumab | PD-L1 | Fully human monoclonal antibody (IgG1-kappa) | NSCLC, SCLC | NSCLC, SCLC | NSCLC, SCLC |
Ipilimumab | CTLA-4 | Fully human monoclonal antibody (IgG1-kappa) | Melanoma, RCC, CRC, HCC, NSCLC, MPM | Melanoma, RCC, NSCLC, MPM, dMMR CRC, MSI-H CRC | melanoma, RCC, MSI-H or dMMR CRC |
Nivolumab | PD-1 | Fully human monoclonal antibody (IgG4-kappa) | Melanoma, NSCLC, MPM, RCC, cHL, HNSCC, urothelial carcinoma, MSI-H or dMMR CRC, HCC, ESCC | Melanoma, NSCLC, MPM, RCC, cHL, HNSCC, urothelial carcinoma, MSI-H or dMMR CRC, ESCC, esophageal cancer, GEJC, gastric cancer | Gastric cancer, NSCLC, HNSCC |
Pembrolizumab | PD-1 | Humanized monoclonal antibody (IgG4-kappa) | melanoma, NSCLC, SCLC, HNSCC, cHL, PMBCL, urothelial carcinoma, MSI-H or dMMR cancer, MSI-H or dMMR CRC, gastric cancer, esophageal cancer, cervical cancer, HCC, MCC, RCC, endometrial carcinoma, TMB-H cancer, CSCC, TNBC | Melanoma, NSCLC, cHL, urothelial carcinoma, HNSCC, RCC, CRC, esophageal cancer, TNBC, endometrial carcinoma | Gastric cancer, esophageal cancer, GEJC, ESCC, NSCLC, melanoma |
Penpulimab | PD-1 | Humanized monoclonal antibody (IgG1-kappa) | Not approved | Not approved | cHL |
Sintilimab | PD-1 | Fully human monoclonal antibody (IgG4-kappa) | Not approved | Not approved | Gastric cancer, GEJC, cHL, NSCLC, SCLC, HCC |
Tislelizumab | PD-1 | Humanized monoclonal antibody (IgG4-kappa) | Not approved | Not approved | NSCLC, HCC, cHL, urothelial carcinoma |
Toripalumab | PD-1 | Humanized monoclonal antibody (IgG4-kappa) | Not approved | Not approved | NPC, melanoma |
Zimberelimab | PD-1 | Fully Human monoclonal antibody (IgG1-kappa) | Not approved | Not approved | cHL |
ClinicalTrials.gov Identifier | First Posted | Molecule | Trial Name | Phase | Assigned Intervention | Primary Outcome | Estimated Study Completion Date | Trial Status |
---|---|---|---|---|---|---|---|---|
NCT02628067 | 11 December 2015 | Pembrolizumab | A clinical trial of pembrolizumab (MK-3475) evaluating predictive biomarkers in subjects with advanced solid tumors (KEYNOTE 158) | Phase II | Arm I: pembrolizumab 200 mg IV on day 1 of each 3-week cycle for up to 35 administrations (up to approximately 2 years of treatment); arm II: pembrolizumab 400 mg every 6 weeks for up to 18 administrations (up to approximately 2 years of treatment) | Objective response rate (time frame: up to approximately 2 years) | 18 June 2026 | Recruiting |
NCT02923934 | 5 October 2016 | Nivolumab + ipilimumab | A phase II clinical trial evaluating ipilimumab and nivolumab in combination for the treatment of rare gastrointestinal, neuro-endocrine and gynaecological cancers | Phase II | Nivolumab at 3 mg/kg + ipilimumab at 1 mg/kg concurrently every 3 weeks for 4 doses followed by nivolumab only at 3 mg/kg every 2 weeks until progression (up to 48 total doses of nivolumab) | CBR (time frame: at 12 weeks following randomization then every 6 weeks until disease progression) | December 2023 | Active, not recruiting |
NCT03074513 | 8 March 2017 | Atezolizumab + bevacizumab | A phase II, single-arm open-label study of the combination of atezolizumab and bevacizumab in rare solid tumors | Phase II | Atezolizumab + bevacizumab IV over 60 min on day 1. Courses repeat every 21 days in the absence of disease progression or unacceptable toxicity | Objective response (time frame: up to 4 years) | 31 March 2021 | Active, not recruiting |
NCT03095274 | 29 March 2017 | Durvalumab + tremelimumab | A phase II study of durvalumab (MEDI4736) plus tremelimumab for the treatment of patients with advanced neuroendocrine neoplasms of gastroenteropancreatic or lung origin (the DUNE Trial) | Phase II | Durvalumab, 1500 mg every 4 weeks for 12 months + tremelimumab 75 mg every 4 weeks for up to 4 doses/cycles | CBR (time frame: 9 months) | April 2022 | Recruiting |
NCT03110978 | 12 April 2017 | Nivolumab + SABR | Phase II randomized clinical trials comparing immunotherapy plus stereotactic ablative radiotherapy (I-SABR) versus SABR alone for stage I, selected stage IIa, or isolated lung parenchymal recurrent Non-small cell lung cancer: I-SABR | Phase II | Arm I: SABR over 1–2 weeks; arm II: SABR over 1–2 weeks + nivolumab IV over 30 min on day 1. Cycles with nivolumab repeat every 4 weeks for up to 12 weeks | Event-free survival (time frame: from the randomization date, assessed up to 5 years) | 30 June 2022 | Recruiting |
NCT03420521 | 5 February 2018 | Nivolumab + ipilimumab | An open-label, single arm phase II study of nivolumab in combination with ipilimumab in subjects with advanced neuroendocrine tumors | Phase II | Nivolumab 240 mg IV over 60 min every 2 weeks + ipilimumab 1 mg/kg IV over 30 min every 6 weeks | Objective response rate [time frame: 6-weeks post-intervention] | 1 May 2024 | Active, not recruiting |
NCT03728361 | 2 November 2018 | Nivolumab + temozolomide | A phase II, multi-cohort trial of combination nivolumab and temozolomide in recurrent/refractory small-cell lung cancer and advanced neuroendocrine tumors | Phase II | Nivolumab IV on day 1 of a 28-day cycle + temozolomide PO on days 1–5. Courses repeat every 28 days | Objective response rate [time frame: up to 3 years] | 31 December 2021 | Active, not recruiting |
NCT04197310 | 13 December 2019 | Nivolumab + cabozantinib | phase II trial of cabozantinib in combination with nivolumab for advanced carcinoid tumors | Phase II | Nivolumab 240 mg, IV, day 1 and 15 of a 28-day cycle + cabozantinib 40 mg, orally, daily for a 28 day cycle | Objective response rate (time frame: 2 years) | 26 December 2022 | Recruiting |
NCT04579757 | 8 October 2020 | Tislelizumab + surufatinib | Surufatinib in combination with tislelizumab in subjects with advanced solid tumors | Phase Ib/II | Part 1 (dose escalation): surufatinib PO once daily + tislelizumab 200 mg IV every 3 weeks; Part 2 (dose expansion): surufatinib at the recommended phase 2 dose as determined in Part 1 + 200 mg tislelizumab IV, every 3 weeks | Part 1: Incidence of dose limiting toxicity (time frame: up to 60 days) Part 2: objective response rate (time frame: up to 2 years) | 27 February 2023 | Recruiting |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Molfetta, S.; Feola, T.; Fanciulli, G.; Florio, T.; Colao, A.; Faggiano, A.; NIKE Group. Immune Checkpoint Blockade in Lung Carcinoids with Aggressive Behaviour: One More Arrow in Our Quiver? J. Clin. Med. 2022, 11, 1019. https://doi.org/10.3390/jcm11041019
Di Molfetta S, Feola T, Fanciulli G, Florio T, Colao A, Faggiano A, NIKE Group. Immune Checkpoint Blockade in Lung Carcinoids with Aggressive Behaviour: One More Arrow in Our Quiver? Journal of Clinical Medicine. 2022; 11(4):1019. https://doi.org/10.3390/jcm11041019
Chicago/Turabian StyleDi Molfetta, Sergio, Tiziana Feola, Giuseppe Fanciulli, Tullio Florio, Annamaria Colao, Antongiulio Faggiano, and NIKE Group. 2022. "Immune Checkpoint Blockade in Lung Carcinoids with Aggressive Behaviour: One More Arrow in Our Quiver?" Journal of Clinical Medicine 11, no. 4: 1019. https://doi.org/10.3390/jcm11041019
APA StyleDi Molfetta, S., Feola, T., Fanciulli, G., Florio, T., Colao, A., Faggiano, A., & NIKE Group. (2022). Immune Checkpoint Blockade in Lung Carcinoids with Aggressive Behaviour: One More Arrow in Our Quiver? Journal of Clinical Medicine, 11(4), 1019. https://doi.org/10.3390/jcm11041019