Comparison of Hybrid Posterior Fixation and Conventional Open Posterior Fixation Combined with Multilevel Lateral Lumbar Interbody Fusion for Adult Spinal Deformity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surgical Procedure
2.1.1. Hybrid PF
2.1.2. Open PF
2.2. Statistical Analysis
2.3. Results
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, J.S.; Lafage, V.; Shaffrey, C.I.; Schwab, F.; Lafage, R.; Hostin, R.; O’Brien, M.; Boachie-Adjei, O.; Akbarnia, B.A.; Mundis, G.M.; et al. Outcomes of operative and nonoperative treatment for adult spinal deformity: A prospective, multicenter, propensity-matched cohort assessment with minimum 2-year follow-up. Neurosurgery 2016, 78, 851–861. [Google Scholar] [CrossRef]
- Rose, P.S.; Bridwell, K.H.; Lanke, L.G.; Cronen, G.A.; Mulconrey, D.S.; Buchowski, J.M.; Kim, Y.J. Role of pelvic incidence, thoracic kyphosis, and patient factors on sagittal plane correction following pedicle subtraction osteotomy. Spine 2009, 34, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Schwab, F.; Dubey, A.; Pagala, M.; Gamez, L.; Farcy, J.P. Adult scoliosis: A health assessment analysis by SF-36. Spine 2003, 28, 602–606. [Google Scholar] [CrossRef]
- Schwab, F.J.; Hawkinson, N.; Lafage, V.; Smith, J.S.; Hart, R.; Mundis, G.; Burton, D.C.; Line, B.; Akbarnia, B.; Boachie-Adjei, O.; et al. Risk factors for major peri-operative complications in adult spinal deformity surgery: A multi-center review of 953 consecutive patients. Eur. Spine J. 2012, 21, 2603–2610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dakwar, E.; Cardona, R.F.; Smith, D.A.; Uribe, J.S. Early outcomes and safety of the minimally invasive, lateral retroperitoneal transpsoas approach for adult degenerative scoliosis. Neurosurg. Focus 2010, 28, E8. [Google Scholar] [CrossRef] [Green Version]
- Isaacs, R.E.; Hyde, J.; Goodrich, J.A.; Rodgers, W.B.; Phillips, F.M. A prospective, nonrandomized, multicenter evaluation of extreme lateral interbody fusion for the treatment of adult degenerative scoliosis. Perioperative outcomes and complications. Spine 2010, 35, S322–S330. [Google Scholar] [CrossRef] [PubMed]
- Lai, O.; Chen, Y.; Chen, Q.; Hu, Y.; Ma, W. Cadaveric biomechanical analysis of multilevel lateral lumbar interbody fusion with and without supplemental instrumentation. BMC Musculoskelet Disord. 2021, 22, 280. [Google Scholar] [CrossRef]
- Anand, N.; Rosemann, R.; Khalsa, B.; Baron, E.M. Mid-term to long-term clinical and functional outcomes of minimally invasive correction and fusion for adults with scoliosis. Neurosurg. Focus 2010, 28, E6. [Google Scholar] [CrossRef] [PubMed]
- Katz, A.D.; Singh, H.; Greenwood, M.; Cote, M.; Moss, I.L. Clinical and Radiographic Evaluation of Multilevel Lateral Lumbar Interbody Fusion in Adult Degenerative Scoliosis. Clin. Spine Surg. 2019, 32, E386–E396. [Google Scholar] [CrossRef] [PubMed]
- Schwab, F.; Blondel, B.; Chay, E.; Demakakos, J.; Lenke, L.; Tropiano, P.; Ames, C.; Smith, J.S.; Shaffrey, C.I.; Glassman, S.; et al. The comprehensive anatomical osteotomy classification. Neurosurgery 2015, 76, S33–S41. [Google Scholar] [CrossRef]
- Fairbank, J.C.; Couper, J.; Davies, J.B.; O’Brien, J.P. The Oswestry low back pain disability questionnaire. Physiotheraphy 1980, 66, 271–273. [Google Scholar]
- Glassman, S.D.; Hamill, C.L.; Bridwell, K.H.; Schwab, F.J.; Dimar, J.R.; Lowe, T.G. The impact of perioperative complications on clinical outcome in adult deformity surgery. Spine 2007, 32, 2764–2770. [Google Scholar] [CrossRef] [PubMed]
- Lafage, V.; Schwab, F.; Patel, A.; Hawkinson, N.; Farcy, J.P. Pelvic tilt and truncal inclination: Two key radiographic parameters in the setting of adults with spinal deformity. Spine 2009, 34, E599–E606. [Google Scholar] [CrossRef] [PubMed]
- Schwab, F.; Ungar, B.; Blondel, B.; Buchowski, J.; Coe, J.; Deinlein, D.; DeWald, C.; Mehdian, H.; Shaffrey, C.; Tribus, C.; et al. Scoliosis research society- Schwab adult spinal deformity classification: A validation study. Spine 2012, 37, 1077–1082. [Google Scholar] [CrossRef]
- Anand, N.; Baron, E.N.; Khandehroo, B.; Kahwaty, S. Long-term 2- to 5-year clinical and functional outcomes of minimally invasive surgery for adult scoliosis. Spine 2013, 38, 1566–1575. [Google Scholar] [CrossRef]
- Anand, N.; Orth, M.C.; Baron, E.M.; Khandehroo, B. Limitation and ceiling effect with circumferential minimally invasive correction techniques for adult scoliosis: Analysis of radiological outcomes over 7-year experience. Neurosurg. Focus 2014, 36, E14. [Google Scholar] [CrossRef] [Green Version]
- Mummaneni, P.V.; Tu, T.H.; Ziewacz, J.E.; Akinbo, O.C.; Deviren, V.; Mundis, G.M. The role of minimally invasive techniques in the treatment of adult spinal deformity. Neurosurg. Clin. N. Am. 2013, 24, 231–248. [Google Scholar] [CrossRef]
- Mummaneni, P.V.; Shaffrey, C.I.; Lenke, L.G.; Park, P.; Wang, M.Y.; La Marca, F.; Smith, J.S.; Mundis, G.M.J.; Okonkwo, D.O.; Moal, B.; et al. The minimally invasive spinal deformity surgery algorithm: A reproducible rational framework for decision making in minimally invasive spinal deformity surgery. Neurosurg. Focus 2014, 36, E6. [Google Scholar] [CrossRef]
- Mummaneni, P.V.; Park, P.; Shaffrey, C.I.; Wang, M.Y.; Uribe, J.S.; Fessler, R.G.; Chou, D.; Kanter, A.S.; Okonkwo, D.O.; Mundis, G.M.; et al. The MISDEF2 algorithm: An updated algorithm for patient selection in minimally invasive deformity surgery. J. Neurosurg. Spine 2019, 32, 221–228. [Google Scholar] [CrossRef]
- Haque, R.M.; Mundis, G.M.J.; Ahmed, Y.; El Ahmadieh, T.Y.; Wang, M.Y.; Mummaneni, P.V.; Uribe, J.S.; Okonkwo, D.O.; Eastlack, R.K.; Anand, N.; et al. Comparison of radiographic results after minimally invasive, hybrid, and open surgery for adult spinal deformity: A multicenter study of 184 patients. Neurosurg. Focus 2014, 36, E13. [Google Scholar] [CrossRef]
- Chan, A.K.; Eastlack, R.K.; Fessler, R.G.; Than, K.D.; Chou, D.; Fu, K.M.; Park, P.; Wang, M.Y.; Kanter, A.S.; Okonkwo, D.O.; et al. Two- and three-year outcomes of minimally invasive and hybrid correction of adult spinal deformity. J. Neurosurg. Spine 2021, 5, 1–14. [Google Scholar] [CrossRef]
- Park, P.; Wang, M.Y.; Lafage, V.; Nguyen, S.; Ziewacz, J.; Okonkwo, D.O.; Uribe, J.S.; Eastlack, R.K.; Anand, N.; Haque, R.; et al. Comparison of two minimally invasive surgery strategies to treat spinal deformity. J. Neurosurg. Spine 2015, 22, 374–380. [Google Scholar] [CrossRef] [Green Version]
- Ames, C.; Gammal, I.; Matsumoto, M.; Hosogane, N.; Smith, J.S.; Protopsaltis, T.; Yamato, Y.; Matsuyama, Y.; Taneichi, H.; Lafage, R.; et al. Geographic and ethnic variations in radiographic disability thresholds: Analysis of north American and Japanese operative adult spinal deformity populations. Neurosurgery 2016, 78, 793–801. [Google Scholar] [CrossRef]
- Diebo, B.G.; Gammal, I.; Ha, Y.; Yoon, S.H.; Chang, J.W.; Kim, B.; Matsumoto, M.; Yamato, Y.; Takeuchi, D.; Hosogane, N.; et al. Role of ethnicity in alignment compensation: Propensity matched analysis of differential compensatory mechanism recruitment patterns for sagittal malalignment in 288 ASD patients from Japan, Korea, and United States. Spine 2017, 42, E234–E240. [Google Scholar] [CrossRef]
- Lafage, R.; Schwab, F.; Challier, V.; Henry, J.K.; Gum, J.; Smith, J.; Hostin, R.; Shaffrey, C.; Kim, H.J.; Ames, C.; et al. Defining spino-pelvic alignment thresholds: Should operative goals in adult spinal deformity surgery account for age? Spine 2016, 41, 62–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasegawa, K.; Okamoto, M.; Hatsushikano, S.; Shimoda, H.; Ono, M.; Watanabe, K. Normal values of spino-pelvic sagittal alignment, balance, age, and health related quality of life in a cohort of healthy adult subjects. Eur. Spine J. 2016, 25, 3675–3686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Qin, X.; Zhang, W.; Qiao, J.; Liu, Z.; Zhu, Z.; Qiu, Y.; Qian, B.P. Estimation of the ideal lumbar lordosis to be restored from spinal fusion surgery: A predictive formula for Chinese population. Spine 2015, 40, 1001–1005. [Google Scholar] [CrossRef]
- Taneichi, H. Update on pathology and surgical treatment for adult spinal deformity. J. Orthop. Sci. 2016, 21, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, D.K.; Kanter, A.S.; Bolinger, B.D.; Mundis, G.M.J.; Nguyen, S.; Mummaneni, P.V.; Anand, N.; Fessler, R.G.; Passias, P.G.; Park, P.; et al. Reoperation rates in minimally invasive, hybrid and open surgical treatment for adult spinal deformity with minimum 2-year follow-up. Eur. Spine J. 2016, 25, 2605–2611. [Google Scholar] [CrossRef] [PubMed]
- Koike, Y.; Kotani, Y.; Terao, H.; Iwasaki, N. Comparison of Outcomes of Oblique Lateral Interbody Fusion with Percutaneous Posterior Fixation in Lateral Position and Minimally Invasive Transforaminal Lumbar Interbody Fusion for Degenerative Spondylolisthesis. Asian Spine J. 2021, 15, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Lertudomphonwanit, T.; Kelly, M.P.; Bridwell, K.H.; Lenke, L.G.; McAnany, S.J.; Punyarat, P.; Bryan, T.P.; Buchowski, J.M.; Zebala, L.P.; Sides, B.A.; et al. Rod fracture in adult spinal deformity surgery fused to the sacrum: Prevalence, risk factors, and impact on health-related quality of life in 526 patients. Spine J. 2018, 18, 1612–1624. [Google Scholar] [CrossRef] [PubMed]
- Sumitomo, N.; Noritake, K.; Hattori, T.; Morikawa, K.; Niwa, S.; Sato, K.; Niinomi, M. Experiment study on fracture fixation with low rigidity titanium alloy: Plate fixation of tibia fracture model in rabbit. J. Mater Sci. Mater Med. 2008, 19, 1581–1586. [Google Scholar] [CrossRef] [PubMed]
- Yilgor, C.; Sogunmez, N.; Boissiere, L.; Yavuz, Y.; Obeid, I.; Kleinstück, F.; Pérez-Grueso, F.J.S.; Acaroglu, E.; Haddad, S.; Mannion, A.F.; et al. Global alignment and proportion (GAP) score: Development and validation of a new method of analyzing spinopelvic alignment to predict mechanical complications after adult spinal deformity surgery. J. Bone Jt. Surg. Am. 2017, 99, 1661–1672. [Google Scholar] [CrossRef] [PubMed]
Hybrid PF | Open PF | p-Value | ||
---|---|---|---|---|
No. of patients | 30 | 26 | ||
Age at surgery (years) | 68.2 ± 6.9 | 67.6 ± 5.5 | 0.744 | |
Sex (Male: Female) | 7:23 | 7:19 | 0.757 | |
BMD (young adult mean), FN (%) | 79.2 ± 13.5 | 77.4 ± 17.8 | 0.729 | |
Follow-up after surgery (months) | 51.1 ± 15.1 | 66.7 ± 24.2 | 0.004 | |
No. of interbody fusion (levels) | 4.3 ± 0.7 | 4.0 ± 0.6 | 0.175 | |
No. of posterior fusion (levels) | 10.3 ± 1.7 | 10.5 ± 2.1 | 0.682 | |
Operative time (minutes) | 449.2 ± 97.2 | 464.8 ± 100.7 | 0.574 | |
Intraoperative blood loss (mL) | 662.8 ± 432.3 | 1088.8 ± 466.3 | 0.012 | |
Postoperative blood loss (mL) | 499.7 ± 226.3 | 840.3 ± 341.1 | 0.001 | |
CRP (mg/dL) | Preoperative | 0.1 ± 0.2 | 0.1 ± 0.1 | 0.726 |
Postoperative day 1 | 9.6 ± 3.4 | 7.6 ± 2.2 | 0.019 | |
Postoperative day 3 | 14.9 ± 5.5 | 15.7 ± 6.3 | 0.632 | |
Postoperative day 7 | 2.9 ± 1.7 | 4.3 ± 2.6 | 0.035 |
Hybrid PF | Open PF | p-Value | |
---|---|---|---|
Coronal Cobb angle (°) | |||
Before surgery | 27.8 ± 14.5 | 32.3 ± 11.9 | 0.220 |
After surgery | 8.0 ± 6.4 | 9.5 ± 13.8 | 0.638 |
Correction value | 18.7 ± 12.7 | 22.9 ± 11.2 | 0.207 |
Final follow-up | 7.5 ± 6.1 | 9.4 ± 5.1 | 0.532 |
LL (°) | |||
Before surgery | 11.5 ± 19.7 | 15.2 ± 22.2 | 0.538 |
After surgery | 45.7 ± 12.2 | 46.8 ± 7.7 | 0.713 |
Correction value | 34.2 ± 19.0 | 31.5 ± 17.3 | 0.610 |
Final follow-up | 43.2 ± 11.1 | 44.5 ± 12.5 | 0.710 |
PI-LL mismatch (°) | |||
Before surgery | 41.0 ± 15.7 | 37.5 ± 20.5 | 0.507 |
After surgery | 6.2 ± 13.2 | 5.1 ± 11.9 | 0.754 |
Correction value | 34.8 ± 19.5 | 32.7 ± 18.8 | 0.695 |
Final follow-up | 9.5 ± 13.1 | 10.0 ± 12.1 | 0.880 |
PT (°) | |||
Before surgery | 32.8 ± 9.6 | 33.8 ± 12.3 | 0.767 |
After surgery | 22.6 ± 11.2 | 22.5 ± 9.3 | 0.972 |
Correction value | 10.2 ± 8.6 | 10.8 ± 10.5 | 0.842 |
Final follow-up | 26.1 ± 10.5 | 27.3 ± 10.3 | 0.703 |
SVA (mm) | |||
Before surgery | 138.7 ± 58.2 | 111.5 ± 56.0 | 0.099 |
After surgery | 34.3 ± 31.4 | 32.3 ± 40.2 | 0.847 |
Correction value | 104.4 ± 52.3 | 78.2 ± 61.7 | 0.116 |
Final follow-up | 51.1 ± 43.3 | 39.5 ± 37.2 | 0.330 |
Hybrid PF | Open PF | p-Value | |
---|---|---|---|
VAS score for back pain | |||
Before surgery | 57.3 ± 35.4 | 62.6 ± 29.0 | 0.576 |
3 months after surgery | 29.2 ± 28.0 | 26.9 ± 30.7 | 0.598 |
Final follow-up | 28.8 ± 24.7 | 25.0 ± 27.1 | 0.717 |
VAS score for leg pain | |||
Before surgery | 50.8 ± 36.6 | 66.3 ± 30.0 | 0.144 |
3 months after surgery | 25.3 ± 31.2 | 33.2 ± 32.7 | 0.456 |
Final follow-up | 30.0 ± 31.2 | 29.5 ± 24.0 | 0.963 |
ODI | |||
Before surgery | 55.4 ± 17.3 | 57.9 ± 16.6 | 0.631 |
3 months after surgery | 44.3 ± 17.1 | 43.4 ± 15.0 | 0.867 |
Final follow-up | 31.6 ± 20.3 | 30.0 ± 13.8 | 0.777 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Endo, H.; Murakami, H.; Yamabe, D.; Chiba, Y.; Oikawa, R.; Yan, H.; Doita, M. Comparison of Hybrid Posterior Fixation and Conventional Open Posterior Fixation Combined with Multilevel Lateral Lumbar Interbody Fusion for Adult Spinal Deformity. J. Clin. Med. 2022, 11, 1020. https://doi.org/10.3390/jcm11041020
Endo H, Murakami H, Yamabe D, Chiba Y, Oikawa R, Yan H, Doita M. Comparison of Hybrid Posterior Fixation and Conventional Open Posterior Fixation Combined with Multilevel Lateral Lumbar Interbody Fusion for Adult Spinal Deformity. Journal of Clinical Medicine. 2022; 11(4):1020. https://doi.org/10.3390/jcm11041020
Chicago/Turabian StyleEndo, Hirooki, Hideki Murakami, Daisuke Yamabe, Yusuke Chiba, Ryosuke Oikawa, Hirotaka Yan, and Minoru Doita. 2022. "Comparison of Hybrid Posterior Fixation and Conventional Open Posterior Fixation Combined with Multilevel Lateral Lumbar Interbody Fusion for Adult Spinal Deformity" Journal of Clinical Medicine 11, no. 4: 1020. https://doi.org/10.3390/jcm11041020
APA StyleEndo, H., Murakami, H., Yamabe, D., Chiba, Y., Oikawa, R., Yan, H., & Doita, M. (2022). Comparison of Hybrid Posterior Fixation and Conventional Open Posterior Fixation Combined with Multilevel Lateral Lumbar Interbody Fusion for Adult Spinal Deformity. Journal of Clinical Medicine, 11(4), 1020. https://doi.org/10.3390/jcm11041020