Association of Variability in the DDAH1, DDAH2, AGXT2 and PRMT1 Genes with Circulating ADMA Concentration in Human Whole Blood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants and Protocol
2.2. Assessment of ADMA Concentration from Dried Blood Spots
2.3. DNA Isolation from Dried Blood Spots
2.4. Genotyping
2.5. Statistical Analyses
3. Results
3.1. Baseline Characteristics of the Study Participants
3.2. Distribution of ADMA Concentration in the Study Cohort
3.3. Allele Frequencies of the SNPs in the Study Cohort Compared to the European Reference Population
3.4. Association of SNPs with ADMA Concentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Selection and Clinical Significance of the Selected Single-Nucleotide Polymorphisms
Gene/SNP | Position | Genetic Consequence | Clinical Rationale | Related References |
---|---|---|---|---|
DDAH1 | ||||
rs1241321 | Intron 1 | Intron variant | Minor allele associated with higher risk of all-cause mortality and the combined endpoint of cardiovascular death, nonfatal myocardial infarction, and stroke. | [43] |
rs233112 | Exon 6 | 3’ UTR variant | Minor allele associated with arterial stiffness and pulse wave reflection. | [22] |
rs480414 | Intron 1 | Intron variant | Minor allele associated with a lower incidence of pulmonary hypertension in patients with bronchopulmonary dysplasia. | [44] |
DDAH2 | ||||
rs805304 | 2 kb upstream variant | Minor allele associated with higher prevalence of hypertension, higher ADMA concentration in diabetic renal impairment, and decreased risk of myocardial infarction. | [25,26,28] | |
rs2272592 | 2 kb upstream variant | Minor allele associated with type 2 diabetes. | [27] | |
AGXT2 | ||||
rs37369 | Exon 4 | Missense variant | Minor allele associated with higher methylarginine levels, higher diastolic blood pressure, and higher risk of coronary artery disease. | [21,33,45] |
rs16899974 | Exon 14 | Missense variant | Minor allele associated with higher levels of SDMA, with atrial fibrillation and ischemic stroke, and higher risk of coronary artery disease. | [33,45,46] |
PRMT1 | ||||
rs10415880 | Intron 8 | Intron variant | Minor allele associated with arteriovenous fistula malfunction in male hemodialysis patients. | [47] |
rs975484 | Promoter variant | Minor allele associated with reduced immune checkpoint gene expression; no significant assocation with ADMA in patients with subarachnoid hemorrhage nor in healthy male Chilean individuals. | [30,48,49] |
References
- Böger, R.H.; Sydow, K.; Borlak, J.; Thum, T.; Lenzen, H.; Schubert, B.; Tsikas, D.; Bode-Böger, S.M. LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells: Involvement of S-adenosylmethionine-dependent methyltransferases. Circ. Res. 2000, 87, 99–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böger, R.H.; Tsikas, D.; Bode-Böger, S.M.; Phivthong-Ngam, L.; Schwedhelm, E.; Frölich, J.C. Hypercholesterolemia impairs basal nitric oxide synthase turnover rate: A study investigating the conversion of L-[guanidino-(15)N(2)]-arginine to (15)N-labeled nitrate by gas chromatography—Mass spectrometry. Nitric Oxide 2004, 11, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Böger, R.H.; Bode-Böger, S.M.; Szuba, A.; Tsao, P.S.; Chan, J.R.; Tangphao, O.; Blaschke, T.F.; Cooke, J.P. Asymmetric dimethylarginine (ADMA): A novel risk factor for endothelial dysfunction: Its role in hypercholesterolemia. Circulation 1998, 98, 1842–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Böger, R.H.; Sullivan, L.M.; Schwedhelm, E.; Wang, T.J.; Maas, R.; Benjamin, E.J.; Schulze, F.; Xanthakis, V.; Benndorf, R.A.; Vasan, R.S. Plasma asymmetric dimethylarginine and incidence of cardiovascular disease and death in the community. Circulation 2009, 119, 1592–1600. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, T.B.; Chen, T.; Richard, S. The physiological and pathophysiological role of PRMT1-mediated protein arginine methylation. Pharmacol. Res. 2009, 60, 466–474. [Google Scholar] [CrossRef]
- Fulton, M.D.; Brown, T.; Zheng, Y.G. The Biological Axis of Protein Arginine Methylation and Asymmetric Dimethylarginine. Int. J. Mol. Sci. 2019, 20, 3322. [Google Scholar] [CrossRef] [Green Version]
- Leiper, J.M.; Santa Maria, J.; Chubb, A.; MacAllister, R.J.; Charles, I.G.; Whitley, G.S.; Vallance, P. Identification of two human dimethylarginine dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases. Biochem. J. 1999, 343 Pt 1, 209–214. [Google Scholar] [CrossRef]
- Wang, D.; Gill, P.S.; Chabrashvili, T.; Onozato, M.L.; Raggio, J.; Mendonca, M.; Dennehy, K.; Li, M.; Modlinger, P.; Leiper, J.; et al. Isoform-specific regulation by N(G),N(G)-dimethylarginine dimethylaminohydrolase of rat serum asymmetric dimethylarginine and vascular endothelium-derived relaxing factor/NO. Circ. Res. 2007, 101, 627–635. [Google Scholar] [CrossRef] [Green Version]
- Rodionov, R.N.; Jarzebska, N.; Weiss, N.; Lentz, S.R. AGXT2: A promiscuous aminotransferase. Trends Pharmacol. Sci. 2014, 35, 575–582. [Google Scholar] [CrossRef] [Green Version]
- Rodionov, R.N.; Murry, D.J.; Vaulman, S.F.; Stevens, J.W.; Lentz, S.R. Human alanine-glyoxylate aminotransferase 2 lowers asymmetric dimethylarginine and protects from inhibition of nitric oxide production. J. Biol. Chem. 2010, 285, 5385–5391. [Google Scholar] [CrossRef] [Green Version]
- Lüneburg, N.; Lieb, W.; Zeller, T.; Chen, M.H.; Maas, R.; Carter, A.M.; Xanthakis, V.; Glazer, N.L.; Schwedhelm, E.; Seshadri, S.; et al. Genome-wide association study of L-arginine and dimethylarginines reveals novel metabolic pathway for symmetric dimethylarginine. Circ. Cardiovasc. Genet. 2014, 7, 864–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannemann, J.; Roskam, T.I.; Eilermann, I.; Siques, P.; Brito, J.; Böger, R. Pre-Analytical and Clinical Validation of a Dried Blood Spot Assay for Asymmetric Dimethylarginine and L-Arginine. J. Clin. Med. 2020, 9, 1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulze, F.; Wesemann, R.; Schwedhelm, E.; Sydow, K.; Albsmeier, J.; Cooke, J.P.; Böger, R.H. Determination of asymmetric dimethylarginine (ADMA) using a novel ELISA assay. Clin. Chem. Lab. Med. 2004, 42, 1377–1383. [Google Scholar] [CrossRef]
- Shaik, M.; Shivanna, D.K.; Kamate, M.; Ab, V.; Tp, K.V. Single Lysis-Salting Out Method of Genomic DNA Extraction From Dried Blood Spots. J. Clin. Lab. Anal. 2016, 30, 1009–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; Abecasis, G.R. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayoub, H.; Achan, V.; Adimoolam, S.; Jacobi, J.; Stuehlinger, M.C.; Wang, B.Y.; Tsao, P.S.; Kimoto, M.; Vallance, P.; Patterson, A.J.; et al. Dimethylarginine dimethylaminohydrolase regulates nitric oxide synthesis: Genetic and physiological evidence. Circulation 2003, 108, 3042–3047. [Google Scholar] [CrossRef] [Green Version]
- Lambden, S.; Kelly, P.; Ahmetaj-Shala, B.; Wang, Z.; Lee, B.; Nandi, M.; Torondel, B.; Delahaye, M.; Dowsett, L.; Piper, S.; et al. Dimethylarginine dimethylaminohydrolase 2 regulates nitric oxide synthesis and hemodynamics and determines outcome in polymicrobial sepsis. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 1382–1392. [Google Scholar] [CrossRef] [Green Version]
- Leiper, J.; Nandi, M.; Torondel, B.; Murray-Rust, J.; Malaki, M.; O’Hara, B.; Rossiter, S.; Anthony, S.; Madhani, M.; Selwood, D.; et al. Disruption of methylarginine metabolism impairs vascular homeostasis. Nat. Med. 2007, 13, 198–203. [Google Scholar] [CrossRef]
- Achan, V.; Broadhead, M.; Malaki, M.; Whitley, G.; Leiper, J.; MacAllister, R.; Vallance, P. Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1455–1459. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Atzler, D.; Xu, X.; Zhang, P.; Guo, H.; Lu, Z.; Fassett, J.; Schwedhelm, E.; Böger, R.H.; Bache, R.J.; et al. Dimethylarginine dimethylaminohydrolase-1 is the critical enzyme for degrading the cardiovascular risk factor asymmetrical dimethylarginine. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1540–1546. [Google Scholar] [CrossRef] [Green Version]
- Caplin, B.; Wang, Z.; Slaviero, A.; Tomlinson, J.; Dowsett, L.; Delahaye, M.; Salama, A.; Wheeler, D.C.; Leiper, J. Alanine-glyoxylate aminotransferase-2 metabolizes endogenous methylarginines, regulates NO, and controls blood pressure. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2892–2900. [Google Scholar] [CrossRef] [Green Version]
- Schnabel, R.; Larson, M.G.; Dupuis, J.; Lunetta, K.L.; Lipinska, I.; Meigs, J.B.; Yin, X.; Rong, J.; Vita, J.A.; Newton-Cheh, C.; et al. Relations of inflammatory biomarkers and common genetic variants with arterial stiffness and wave reflection. Hypertension 2008, 51, 1651–1657. [Google Scholar] [CrossRef] [PubMed]
- Weber, T.; Maas, R.; Auer, J.; Lamm, G.; Lassnig, E.; Rammer, M.; O’Rourke, M.F.; Böger, R.H.; Eber, B. Arterial wave reflections and determinants of endothelial function a hypothesis based on peripheral mode of action. Am. J. Hypertens. 2007, 20, 256–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lind, L.; Ingelsson, E.; Kumar, J.; Syvänen, A.C.; Axelsson, T.; Teerlink, T. Genetic variation in the dimethylarginine dimethylaminohydrolase 1 gene (DDAH1) is related to asymmetric dimethylarginine (ADMA) levels, but not to endothelium-dependent vasodilation. Vasc. Med. 2013, 18, 192–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maas, R.; Erdmann, J.; Lüneburg, N.; Stritzke, J.; Schwedhelm, E.; Meisinger, C.; Peters, A.; Weil, J.; Schunkert, H.; Böger, R.H.; et al. Polymorphisms in the promoter region of the dimethylarginine dimethylaminohydrolase 2 gene are associated with prevalence of hypertension. Pharmacol. Res. 2009, 60, 488–493. [Google Scholar] [CrossRef]
- Marra, M.; Marchegiani, F.; Ceriello, A.; Sirolla, C.; Boemi, M.; Franceschi, C.; Spazzafumo, L.; Testa, I.; Bonfigli, A.R.; Cucchi, M.; et al. Chronic renal impairment and DDAH2-1151 A/C polymorphism determine ADMA levels in type 2 diabetic subjects. Nephrol. Dial. Transplant. 2013, 28, 964–971. [Google Scholar] [CrossRef] [Green Version]
- Seo, H.A.; Kim, S.W.; Jeon, E.J.; Jeong, J.Y.; Moon, S.S.; Lee, W.K.; Kim, J.G.; Lee, I.K.; Park, K.G. Association of the DDAH2 gene polymorphism with type 2 diabetes and hypertension. Diabetes Res. Clin. Pract. 2012, 98, 125–131. [Google Scholar] [CrossRef]
- Pérez-Hernández, N.; Vargas-Alarcón, G.; Arellano-Zapoteco, R.; Martínez-Rodríguez, N.; Fragoso, J.M.; Aptilon-Duque, G.; Posadas-Sánchez, R.; Posadas-Romero, C.; Juárez-Cedillo, T.; Domínguez-López, M.L.; et al. Protective role of DDAH2 (rs805304) gene polymorphism in patients with myocardial infarction. Exp. Mol. Pathol. 2014, 97, 393–398. [Google Scholar] [CrossRef]
- Lambden, S.; Tomlinson, J.; Piper, S.; Gordon, A.C.; Leiper, J. Evidence for a protective role for the rs805305 single nucleotide polymorphism of dimethylarginine dimethylaminohydrolase 2 (DDAH2) in septic shock through the regulation of DDAH activity. Crit. Care 2018, 22, 336. [Google Scholar] [CrossRef] [Green Version]
- Hannemann, J.; Siques, P.; Schmidt-Hutten, L.; Zummack, J.; Brito, J.; Böger, R. Association of Genes of the NO Pathway with Altitude Disease and Hypoxic Pulmonary Hypertension. J. Clin. Med. 2021, 10, 5761. [Google Scholar] [CrossRef]
- Rodionov, R.N.; Martens-Lobenhoffer, J.; Brilloff, S.; Hohenstein, B.; Jarzebska, N.; Jabs, N.; Kittel, A.; Maas, R.; Weiss, N.; Bode-Böger, S.M. Role of alanine:glyoxylate aminotransferase 2 in metabolism of asymmetric dimethylarginine in the settings of asymmetric dimethylarginine overload and bilateral nephrectomy. Nephrol. Dial. Transplant. 2014, 29, 2035–2042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kittel, A.; Maas, R.; König, J.; Mieth, M.; Weiss, N.; Jarzebska, N.; Hohenstein, B.; Martens-Lobenhoffer, J.; Bode-Böger, S.M.; Rodionov, R.N. In vivo evidence that Agxt2 can regulate plasma levels of dimethylarginines in mice. Biochem. Biophys. Res. Commun. 2013, 430, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Kittel, A.; Müller, F.; König, J.; Mieth, M.; Sticht, H.; Zolk, O.; Kralj, A.; Heinrich, M.R.; Fromm, M.F.; Maas, R. Alanine-glyoxylate aminotransferase 2 (AGXT2) polymorphisms have considerable impact on methylarginine and β-aminoisobutyrate metabolism in healthy volunteers. PLoS ONE 2014, 9, e88544. [Google Scholar] [CrossRef]
- Siques, P.; Brito, J.; Schwedhelm, E.; Pena, E.; León-Velarde, F.; De La Cruz, J.J.; Böger, R.H.; Hannemann, J. Asymmetric Dimethylarginine at Sea Level Is a Predictive Marker of Hypoxic Pulmonary Arterial Hypertension at High Altitude. Front. Physiol. 2019, 10, 651. [Google Scholar] [CrossRef]
- Yoshino, Y.; Kumon, H.; Mori, T.; Yoshida, T.; Tachibana, A.; Shimizu, H.; Iga, J.I.; Ueno, S.I. Effects of AGXT2 variants on blood pressure and blood sugar among 750 older Japanese subjects recruited by the complete enumeration survey method. BMC Genom. 2021, 22, 287. [Google Scholar] [CrossRef]
- Bedford, M.T.; Clarke, S.G. Protein arginine methylation in mammals: Who, what, and why. Mol. Cell 2009, 33, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Jarrold, J.; Davies, C.C. PRMTs and Arginine Methylation: Cancer’s Best-Kept Secret? Trends Mol. Med. 2019, 25, 993–1009. [Google Scholar] [CrossRef]
- Strobel, J.; Mieth, M.; Endress, B.; Auge, D.; König, J.; Fromm, M.F.; Maas, R. Interaction of the cardiovascular risk marker asymmetric dimethylarginine (ADMA) with the human cationic amino acid transporter 1 (CAT1). J. Mol. Cell. Cardiol. 2012, 53, 392–400. [Google Scholar] [CrossRef]
- Vallance, P.; Leone, A.; Calver, A.; Collier, J.; Moncada, S. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 1992, 339, 572–575. [Google Scholar] [CrossRef]
- Zoccali, C.; Bode-Böger, S.; Mallamaci, F.; Benedetto, F.; Tripepi, G.; Malatino, L.; Cataliotti, A.; Bellanuova, I.; Fermo, I.; Frölich, J.; et al. Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: A prospective study. Lancet 2001, 358, 2113–2117. [Google Scholar] [CrossRef]
- Jarzebska, N.; Georgi, S.; Jabs, N.; Brilloff, S.; Maas, R.; Rodionov, R.N.; Zietz, C.; Montresor, S.; Hohenstein, B.; Weiss, N. Kidney and liver are the main organs of expression of a key metabolic enzyme alanine:glyoxylate aminotransferase 2 in humans. Atheroscler. Suppl. 2019, 40, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, J.A.; Caplin, B.; Boruc, O.; Bruce-Cobbold, C.; Cutillas, P.; Dormann, D.; Faull, P.; Grossman, R.C.; Khadayate, S.; Mas, V.R.; et al. Reduced Renal Methylarginine Metabolism Protects against Progressive Kidney Damage. J. Am. Soc. Nephrol. 2015, 26, 3045–3059. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.M.; Lin, S.J.; Lin, M.W.; Hsu, C.P.; Chung, M.Y. The association of dimethylarginine dimethylaminohydrolase 1 gene polymorphism with type 2 diabetes: A cohort study. Cardiovasc. Diabetol. 2011, 10, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trittmann, J.K.; Gastier-Foster, J.M.; Zmuda, E.J.; Frick, J.; Rogers, L.K.; Vieland, V.J.; Chicoine, L.G.; Nelin, L.D. A single nucleotide polymorphism in the dimethylarginine dimethylaminohydrolase gene is associated with lower risk of pulmonary hypertension in bronchopulmonary dysplasia. Acta Paediatr. 2016, 105, e170–e175. [Google Scholar] [CrossRef] [Green Version]
- Amir, M.; Hassanein, S.I.; Abdel Rahman, M.F.; Gad, M.Z. AGXT2 and DDAH-1 genetic variants are highly correlated with serum ADMA and SDMA levels and with incidence of coronary artery disease in Egyptians. Mol. Biol. Rep. 2018, 45, 2411–2419. [Google Scholar] [CrossRef]
- Seppälä, I.; Kleber, M.E.; Bevan, S.; Lyytikäinen, L.P.; Oksala, N.; Hernesniemi, J.A.; Mäkelä, K.M.; Rothwell, P.M.; Sudlow, C.; Dichgans, M.; et al. Associations of functional alanine-glyoxylate aminotransferase 2 gene variants with atrial fibrillation and ischemic stroke. Sci. Rep. 2016, 6, 23207. [Google Scholar] [CrossRef]
- Lee, K.H.; Tsai, W.J.; Chen, Y.W.; Yang, W.C.; Lee, C.Y.; Ou, S.M.; Chen, Y.T.; Chien, C.C.; Lee, P.C.; Chung, M.Y.; et al. Genotype polymorphisms of genes regulating nitric oxide synthesis determine long-term arteriovenous fistula patency in male hemodialysis patients. Ren. Fail. 2016, 38, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Hannemann, J.; Appel, D.; Seeberger-Steinmeister, M.; Brüning, T.; Zummack, J.; Böger, R. Sequence Variation in the DDAH1 Gene Predisposes for Delayed Cerebral Ischemia in Subarachnoidal Hemorrhage. J. Clin. Med. 2020, 9, 3900. [Google Scholar] [CrossRef]
- Schonfeld, M.; Zhao, J.; Komatz, A.; Weinman, S.A.; Tikhanovich, I. The polymorphism rs975484 in the protein arginine methyltransferase 1 gene modulates expression of immune checkpoint genes in hepatocellular carcinoma. J. Biol. Chem. 2020, 295, 7126–7137. [Google Scholar] [CrossRef] [Green Version]
All | Low ADMA (First Tertile) | Medium ADMA (Second Tertile) | High ADMA (Third Tertile) | |
---|---|---|---|---|
Demographics | N = 377 | N = 121 | N = 128 | N = 128 |
Age, years | 59.4 ± 13.1 | 58.5 ± 13.4 | 57.0 ± 12.9 | 62.6 ± 12.6 * |
Age range, years | 18–92 | 22–91 | 21–92 | 18–90 |
Male sex | 192 (50.9) | 47 (38.8) | 65 (50.8) # | 80 (62.5) # |
Female sex | 185 (49.1) | 74 (61.2) | 63 (49.2) # | 48 (38.5) # |
ADMA concentration in whole blood | ||||
ADMA, µmol/L | 0.98 ± 0.35 | 0.62 ± 0.15 | 0.93 ± 0.07 * | 1.35 ± 0.27 * |
Laboratory parameters | ||||
Systolic BP, mm Hg | 128.9 ± 16.5 | 129.9 ± 15.9 | 130.3 ± 17.7 | 126.8 ± 15.7 |
Diastolic BP, mm Hg | 77.9 ± 9.5 | 77.2 ± 10.2 | 79.2 ± 9.0 | 77.2 ± 9.3 |
Total cholesterol, mmol/L | 5.08 ± 1.33 | 5.30 ± 1.00 | 4.82 ± 1.50 | 5.09 ± 1.45 |
Triglycerides, mmol/L | 1.45 ± 1.30 | 1.62 ± 1.38 | 1.51 ± 1.09 | 1.23 ± 1.45 |
Creatinine, mmol/L | 0.91 ± 0.24 | 0.80 ± 0.22 | 0.93 ± 0.19 | 1.00 ± 0.29 * |
CV risk factors | ||||
History of MI | 39 (10.3) | 14 (11.6) | 7 (5.5) | 18 (14.1) |
Family history of heart disease | 88 (23.3) | 32 (26.4) | 27 (21.1) | 29 (22.7) |
Diabetes mellitus | 35 (9.3) | 18 (14.9) | 8 (6.3) | 9 (7.0) |
Hypertension | 53 (14.1) | 18 (14.9) | 14 (10.9) | 21 (16.4) |
Congestive heart failure | 3 (0.8) | 1 (0.8) | 1 (0.8) | 1 (0.8) |
Active smoker | 43 (11.4) | 14 (11.6) | 13 (10.2) | 16 (12.5) |
Gene/SNP | Position | Genetic Consequence | Major/Minor Allele | Measured Allele Frequency | Expected Allele Frequency * | p |
---|---|---|---|---|---|---|
PRMT1 | ||||||
rs10415880 | Intron 8 | Intron variant | G/A | 0.718/0.282 | 0.658/0.342 | 0.008 |
rs975484 | - | Intron variant | C/G | 0.730/0.270 | 0.738/0.262 | 0.696 |
DDAH1 | ||||||
rs1241321 | Intron 1 | Intron variant | A/G | 0.670/0.330 | 0.712/0.288 | 0.057 |
rs233112 | Exon 6 | 3’ UTR variant | T/C | 0.568/0.432 | 0.617/0.383 | 0.038 |
rs480414 | Intron 1 | Intron variant | G/A | 0.735/0.265 | 0.698/0.302 | 0.092 |
DDAH2 | ||||||
rs805304 | - | 2 kb upstream variant | T/G | 0.601/0.399 | 0.639/0.361 | 0.102 |
rs2272592 | - | 2 kb upstream variant | C/T | 0.810/0.190 | 0.844/0.156 | 0.064 |
AGXT2 | ||||||
rs16899974 | Exon 1 | Missense variant | C/A | 0.753/0.247 | 0.773/0.227 | 0.325 |
rs37369 | Exon 13 | Missense variant | C/T | 0.907/0.093 | 0.913/0.087 | 0.640 |
Homozygous Major | Heterozygous | Homozygous Minor | p for Trend | |
---|---|---|---|---|
PRMT1 | ||||
rs10415880 | 0.96 ± 0.32 | 1.00 ± 0.35 | 0.97 ± 0.30 | 0.642 |
rs975484 | 0.98 ± 0.35 | 1.00 ± 0.35 | 0.88 ± 0.29 | 0.275 |
DDAH1 | ||||
rs1241321 | 1.00 ± 0.38 | 0.97 ± 0.32 | 0.90 ± 0.32 | 0.286 |
rs233112 | 0.92 ± 0.39 | 0.99 ± 0.32 | 1.03 ± 0.35 | 0.027 |
rs480414 | 0.96 ± 0.38 | 1.00 ± 0.31 | 0.94 ± 0.31 | 0.333 |
DDAH2 | ||||
rs805304 | 1.01 ± 0.32 | 0.95 ± 0.34 | 0.98 ± 0.41 | 0.157 |
rs2272592 | 0.97 ± 0.37 | 0.98 ± 0.32 | 1.02 ± 0.25 | 0.476 |
AGXT2 | ||||
rs16899974 | 0.97 ± 0.35 | 0.99 ± 0.33 | 1.14 ± 0.40 | 0.232 |
rs37369 | 0.99 ± 0.35 | 0.94 ± 0.31 | 0.95 ± 0.18 | 0.156 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hannemann, J.; Zummack, J.; Hillig, J.; Rendant-Gantzberg, L.; Böger, R. Association of Variability in the DDAH1, DDAH2, AGXT2 and PRMT1 Genes with Circulating ADMA Concentration in Human Whole Blood. J. Clin. Med. 2022, 11, 941. https://doi.org/10.3390/jcm11040941
Hannemann J, Zummack J, Hillig J, Rendant-Gantzberg L, Böger R. Association of Variability in the DDAH1, DDAH2, AGXT2 and PRMT1 Genes with Circulating ADMA Concentration in Human Whole Blood. Journal of Clinical Medicine. 2022; 11(4):941. https://doi.org/10.3390/jcm11040941
Chicago/Turabian StyleHannemann, Juliane, Julia Zummack, Jonas Hillig, Leonard Rendant-Gantzberg, and Rainer Böger. 2022. "Association of Variability in the DDAH1, DDAH2, AGXT2 and PRMT1 Genes with Circulating ADMA Concentration in Human Whole Blood" Journal of Clinical Medicine 11, no. 4: 941. https://doi.org/10.3390/jcm11040941
APA StyleHannemann, J., Zummack, J., Hillig, J., Rendant-Gantzberg, L., & Böger, R. (2022). Association of Variability in the DDAH1, DDAH2, AGXT2 and PRMT1 Genes with Circulating ADMA Concentration in Human Whole Blood. Journal of Clinical Medicine, 11(4), 941. https://doi.org/10.3390/jcm11040941