Future Treatment Options in Systemic Sclerosis—Potential Targets and Ongoing Clinical Trials
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. CD28-CD80/86 (Cluster of Differentiation 28—Cluster of Differentiation 80/86)
3.2. CD19 (Cluster of Differentiation 19)
3.3. CCL24 (Chemokine C-C Motif Ligand 24, Eotaxin 2)
3.4. CD20 (Cluster of Differentiate 20)
3.5. CD30 (TNFRSF8—Tumor Necrosis Factor Receptor Superfamily Member 8)
3.6. TNF (Tumor Necrosis Factor)
3.7. TGF-β (Transforming Growth Factor β)
3.8. BAFF (B Cell Activating Factor)
3.9. LPA1 Receptor (Lysophosphatidic Acid Receptor1)
3.10. sGC (Soluble Guanylate Cyclase)
3.11. JAK (Janus Kinases)
3.12. IL-6 (Interleukin 6)
3.13. IL-17 (Interleukin 17)
3.14. Endothelin Receptor
3.15. Autotaxin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kowal-Bielecka, O.; Fransen, J.; Avouac, J.; Becker, M.; Kulak, A.; Allanore, Y.; Distler, O.; Clements, P.; Cutolo, M.; Czirjak, L.; et al. Update of EULAR recommendations for the treatment of systemic sclerosis. Ann. Rheum. Dis. 2017, 76, 1327–1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawlik, K.K.; Bohdziewicz, A.; Chrabąszcz, M.; Stochmal, A.; Sikora, M.; Alda-Malicka, R.; Czuwara, J.; Rudnicka, L. Biomarkers of disease activity in systemic sclerosis. Wiad Lek. 2020, 73, 2300–2305. [Google Scholar] [CrossRef] [PubMed]
- Castellvi, I.; Elhai, M.; Bruni, C.; Airo, P.; Jordan, S.; Beretta, L.; Codullo, V.; Montecucco, C.M.; Bokarewa, M.; Iannonne, F.; et al. Safety and effectiveness of abatacept in systemic sclerosis: The EUSTAR experience. Semin. Arthritis Rheum. 2020, 50, 1489–1493. [Google Scholar] [CrossRef] [PubMed]
- Khanna, D.; Spino, C.; Johnson, S.; Chung, L.; Whitfield, M.L.; Denton, C.P.; Berrocal, V.; Franks, J.; Mehta, B.; Molitor, J.; et al. Abatacept in Early Diffuse Cutaneous Systemic Sclerosis: Results of a Phase II Investigator-Initiated, Multicenter, Double-Blind, Randomized, Placebo-Controlled Trial. Arthritis Rheumatol. 2020, 72, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, K.; Clauder, A.K.; Manz, R.A. Targeting B Cells and Plasma Cells in Autoimmune Diseases. Front Immunol. 2018, 9, 835. [Google Scholar] [CrossRef]
- Schiopu, E.; Chatterjee, S.; Hsu, V.; Flor, A.; Cimbora, D.; Patra, K.; Yao, W.; Li, J.; Streicher, K.; McKeever, K.; et al. Safety and tolerability of an anti-CD19 monoclonal antibody, MEDI-551, in subjects with systemic sclerosis: A phase I, randomized, placebo-controlled, escalating single-dose study. Arthritis Res. Ther. 2016, 18, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mor, A.; Segal Salto, M.; Katav, A.; Barashi, N.; Edelshtein, V.; Manetti, M.; Levi, Y.; George, J.; Matucci-Cerinic, M. Blockade of CCL24 with a monoclonal antibody ameliorates experimental dermal and pulmonary fibrosis. Ann. Rheum. Dis. 2019, 78, 1260–1268. [Google Scholar] [CrossRef]
- Daoussis, D.; Melissaropoulos, K.; Sakellaropoulos, G.; Antonopoulos, I.; Markatseli, T.E.; Simopoulou, T.; Georgiou, P.; Andonopoulos, A.P.; Drosos, A.A.; Sakkas, L.; et al. A multicenter, open-label, comparative study of B-cell depletion therapy with Rituximab for systemic sclerosis-associated interstitial lung disease. Semin. Arthritis Rheum. 2017, 46, 625–631. [Google Scholar] [CrossRef]
- Ebata, S.; Yoshizaki, A.; Fukasawa, T.; Miura, S.; Takahashi, T.; Sumida, H.; Asano, Y.; Sato, S. Rituximab therapy is more effective than cyclophosphamide therapy for Japanese patients with anti-topoisomerase I-positive systemic sclerosis-associated interstitial lung disease. J. Dermatol. 2019, 46, 1006–1013. [Google Scholar] [CrossRef]
- ClinicalTrials Page. Available online: https://ClinicalTrials.gov/show/NCT03844061 (accessed on 29 September 2021).
- Ebata, S.; Yoshizaki, A.; Oba, K.; Kashiwabara, K.; Ueda, K.; Uemura, Y.; Watadani, T.; Fukasawa, T.; Miura, S.; Yoshizaki-Ogawa, A.; et al. Safety and efficacy of rituximab in systemic sclerosis (DESIRES): A double-blind, investigator-initiated, randomised, placebo-controlled trial. Lancet Rheumatol. 2021, 3, e489–e497. [Google Scholar] [CrossRef]
- Ebata, S.; Yoshizaki, A.; Oba, K.; Kashiwabara, K.; Ueda, K.; Umemura, Y.; Watadani, T.; Fukasawa, T.; Miura, S.; Yoshizaki-Ogawa, A.; et al. Safety and Efficacy of Rituximab for Systemic Sclerosis: A Double-Blind, Parallel-Group Comparison, Investigators Initiated Confirmatory Randomized Clinical Trial (DESIRES Study) (abstract). Arthritis Rheumatol. 2021, 73 (Suppl. 10). Available online: https://acrabstracts.org/abstract/safety-and-efficacy-of-rituximab-for-systemic-sclerosis-a-double-blind-parallel-group-comparison-investigators-initiated-confirmatory-randomized-clinical-trial-desires-study/ (accessed on 7 January 2022).
- Mavalia, C.; Scaletti, C.; Romagnani, P.; Carossino, A.M.; Pignone, A.; Emmi, L.; Pupilli, C.; Pizzolo, G.; Maggi, E.; Romagnani, S. Type 2 helper T-cell predominance and high CD30 expression in systemic sclerosis. Am. J. Pathol. 1997, 151, 1751–1758. [Google Scholar] [PubMed]
- ClinicalTrials Page. Available online: https://ClinicalTrials.gov/show/NCT03222492 (accessed on 29 September 2021).
- ClinicalTrials Page. Available online: https://ClinicalTrials.gov/show/NCT03198689 (accessed on 29 September 2021).
- Pehlivan, Y.; Onat, A.M.; Ceylan, N.; Turkbeyler, I.H.; Buyukhatipoglu, H.; Comez, G.; Babacan, T.; Tarakcioglu, M. Serum leptin, resistin and TNF-alpha levels in patients with systemic sclerosis: The role of adipokines in scleroderma. Int. J. Rheum. Dis. 2012, 15, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Phumethum, V.; Jamal, S.; Johnson, S.R. Biologic therapy for systemic sclerosis: A systematic review. J. Rheumatol. 2011, 38, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Denton, C.P.; Engelhart, M.; Tvede, N.; Wilson, H.; Khan, K.; Shiwen, X.; Carreira, P.E.; Diaz Gonzalez, F.; Black, C.M.; van den Hoogen, F.H. An open-label pilot study of infliximab therapy in diffuse cutaneous systemic sclerosis. Ann. Rheum. Dis. 2009, 68, 1433–1439. [Google Scholar] [CrossRef]
- Herenius, M.M.; Oliveira, A.S.; Wijbrandts, C.A.; Gerlag, D.M.; Tak, P.P.; Lebre, M.C. Anti-TNF therapy reduces serum levels of chemerin in rheumatoid arthritis: A new mechanism by which anti-TNF might reduce inflammation. PLoS ONE 2013, 8, e57802. [Google Scholar] [CrossRef] [Green Version]
- Murdaca, G.; Spanò, F.; Contatore, M.; Guastalla, A.; Penza, E.; Magnani, O.; Puppo, F. Immunogenicity of infliximab and adalimumab: What is its role in hypersensitivity and modulation of therapeutic efficacy and safety? Expert Opin. Drug Saf. 2016, 15, 43–52. [Google Scholar] [CrossRef]
- Murdaca, G.; Spano, F.; Contatore, M.; Guastalla, A.; Puppo, F. Potential use of TNF-alpha inhibitors in systemic sclerosis. Immunotherapy 2014, 6, 283–289. [Google Scholar] [CrossRef]
- Li, J.; Bao, J.; Zeng, J.; Yan, A.; Zhao, C.; Shu, Q. Iguratimod: A valuable remedy from the Asia Pacific region for ameliorating autoimmune diseases and protecting bone physiology. Bone Res. 2019, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Gao, H.; Wang, Q.; Wang, M.; Wu, B. Molecular mechanisms and clinical application of Iguratimod: A review. Biomed. Pharmacother. 2020, 122, 109704. [Google Scholar] [CrossRef]
- ClinicalTrials Page. Available online: https://ClinicalTrials.gov/show/NCT04515706 (accessed on 29 December 2021).
- Roberts, A.B.; Heine, U.I.; Flanders, K.C.; Sporn, M.B. Transforming growth factor-beta. Major role in regulation of extracellular matrix. Ann. N. Y. Acad. Sci. 1990, 580, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Rice, L.M.; Padilla, C.M.; McLaughlin, S.R.; Mathes, A.; Ziemek, J.; Goummih, S.; Nakerakanti, S.; York, M.; Farina, G.; Whitfield, M.L.; et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J. Clin. Investig. 2015, 125, 2795–2807. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, T.; Hasegawa, M.; Yanaba, K.; Kodera, M.; Takehara, K.; Sato, S. Elevated serum BAFF levels in patients with systemic sclerosis: Enhanced BAFF signaling in systemic sclerosis B lymphocytes. Arthritis Rheum. 2006, 54, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Gordon, J.K.; Martyanov, V.; Franks, J.M.; Bernstein, E.J.; Szymonifka, J.; Magro, C.; Wildman, H.F.; Wood, T.A.; Whitfield, M.L.; Spiera, R.F. Belimumab for the Treatment of Early Diffuse Systemic Sclerosis: Results of a Randomized, Double-Blind, Placebo-Controlled, Pilot Trial. Arthritis Rheumatol. 2018, 70, 308–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokumura, A.; Carbone, L.D.; Yoshioka, Y.; Morishige, J.; Kikuchi, M.; Postlethwaite, A.; Watsky, M.A. Elevated serum levels of arachidonoyl-lysophosphatidic acid and sphingosine 1-phosphate in systemic sclerosis. Int. J. Med. Sci. 2009, 6, 168–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allanore, Y.; Distler, O.; Jagerschmidt, A.; Illiano, S.; Ledein, L.; Boitier, E.; Agueusop, I.; Denton, C.P.; Khanna, D. Lysophosphatidic Acid Receptor 1 Antagonist SAR100842 for Patients With Diffuse Cutaneous Systemic Sclerosis: A Double-Blind, Randomized, Eight-Week Placebo-Controlled Study Followed by a Sixteen-Week Open-Label Extension Study. Arthritis Rheumatol. 2018, 70, 1634–1643. [Google Scholar] [CrossRef] [Green Version]
- Beyer, C.; Zenzmaier, C.; Palumbo-Zerr, K.; Mancuso, R.; Distler, A.; Dees, C.; Zerr, P.; Huang, J.; Maier, C.; Pachowsky, M.L.; et al. Stimulation of the soluble guanylate cyclase (sGC) inhibits fibrosis by blocking non-canonical TGFβ signalling. Ann. Rheum. Dis. 2015, 74, 1408–1416. [Google Scholar] [CrossRef] [Green Version]
- Khanna, D.; Allanore, Y.; Denton, C.P.; Kuwana, M.; Matucci-Cerinic, M.; Pope, J.E.; Atsumi, T.; Bečvář, R.; Czirják, L.; Hachulla, E.; et al. Riociguat in patients with early diffuse cutaneous systemic sclerosis (RISE-SSc): Randomised, double-blind, placebo-controlled multicentre trial. Ann. Rheum. Dis. 2020, 79, 618–625. [Google Scholar] [CrossRef] [Green Version]
- Nagaraja, V.; Spino, C.; Bush, E.; Tsou, P.-S.; Domsic, R.; Lafyatis, R.; Frech, T.; Gordon, J.; Steen, V.; Khanna, D. A multicenter randomized, double-blind, placebo-controlled pilot study to assess the efficacy and safety of riociguat in systemic sclerosis-associated digital ulcers. Arthritis Res. Ther. 2019, 21, 202. [Google Scholar] [CrossRef] [Green Version]
- Kitanaga, Y.; Imamura, E.; Nakahara, Y.; Fukahori, H.; Fujii, Y.; Kubo, S.; Nakayamada, S.; Tanaka, Y. In vitro pharmacological effects of peficitinib on lymphocyte activation: A potential treatment for systemic sclerosis with JAK inhibitors. Rheumatology 2019, 59, 1957–1968. [Google Scholar] [CrossRef] [Green Version]
- ClinicalTrials Page. Available online: https://ClinicalTrials.gov/show/NCT03274076 (accessed on 29 September 2021).
- ClinicalTrials Page. Available online: https://ClinicalTrials.gov/show/NCT04789850 (accessed on 29 December 2021).
- Gordon, J.K.; Spiera, R.F. Targeting tyrosine kinases: A novel therapeutic strategy for systemic sclerosis. Curr. Opin. Rheumatol. 2010, 22, 690–695. [Google Scholar] [CrossRef] [PubMed]
- Spiera, R.F.; Gordon, J.K.; Mersten, J.N.; Magro, C.M.; Mehta, M.; Wildman, H.F.; Kloiber, S.; Kirou, K.A.; Lyman, S.; Crow, M.K. Imatinib mesylate (Gleevec) in the treatment of diffuse cutaneous systemic sclerosis: Results of a 1-year, phase IIa, single-arm, open-label clinical trial. Ann. Rheum. Dis. 2011, 70, 1003–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haddon, D.J.; Wand, H.E.; Jarrell, J.A.; Spiera, R.F.; Utz, P.J.; Gordon, J.K.; Chung, L.S. Proteomic Analysis of Sera from Individuals with Diffuse Cutaneous Systemic Sclerosis Reveals a Multianalyte Signature Associated with Clinical Improvement during Imatinib Mesylate Treatment. J. Rheumatol. 2017, 44, 631–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, J.K.; Martyanov, V.; Magro, C.; Wildman, H.F.; Wood, T.A.; Huang, W.T.; Crow, M.K.; Whitfield, M.L.; Spiera, R.F. Nilotinib (Tasigna™) in the treatment of early diffuse systemic sclerosis: An open-label, pilot clinical trial. Arthritis Res. Ther. 2015, 17, 213. [Google Scholar] [CrossRef] [Green Version]
- Distler, O.; Highland, K.B.; Gahlemann, M.; Azuma, A.; Fischer, A.; Mayes, M.D.; Raghu, G.; Sauter, W.; Girard, M.; Alves, M.; et al. Nintedanib for Systemic Sclerosis-Associated Interstitial Lung Disease. N. Engl. J. Med. 2019, 380, 2518–2528. [Google Scholar] [CrossRef]
- ClinicalTrials Page. Available online: https://ClinicalTrials.gov/show/NCT03313180 (accessed on 29 December 2021).
- Khan, K.; Xu, S.; Nihtyanova, S.; Derrett-Smith, E.; Abraham, D.; Denton, C.P.; Ong, V.H. Clinical and pathological significance of interleukin 6 overexpression in systemic sclerosis. Ann. Rheum. Dis. 2012, 71, 1235–1242. [Google Scholar] [CrossRef]
- Khanna, D.; Lin, C.; Furst, D.; Goldin, J.; Kim, G.; Kuwana, M.; Allanore, Y.; Matucci-Cerinic, M.; Distler, O.; Shima, Y.; et al. Tocilizumab in systemic sclerosis: A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Respir. Med. 2020, 8, 963–974. [Google Scholar] [CrossRef]
- Kyowakirin. News Releases. Available online: https://mdpi-res.com/data/mdpi_references_guide_v5.pdf (accessed on 24 January 2022).
- Morelli, S.; Ferri, C.; Di Francesco, L.; Baldoncini, R.; Carlesimo, M.; Bottoni, U.; Properzi, G.; Santucci, A. Plasma endothelin-1 levels in patients with systemic sclerosis: Influence of pulmonary or systemic arterial hypertension. Ann. Rheum. Dis. 1995, 54, 730–734. [Google Scholar] [CrossRef] [Green Version]
- Galiè, N.; Olschewski, H.; Oudiz, R.J.; Torres, F.; Frost, A.; Ghofrani, H.A.; Badesch, D.B.; McGoon, M.D.; McLaughlin, V.V.; Roecker, E.B.; et al. Ambrisentan for the treatment of pulmonary arterial hypertension: Results of the ambrisentan in pulmonary arterial hypertension, randomized, double-blind, placebo-controlled, multicenter, efficacy (ARIES) study 1 and 2. Circulation 2008, 117, 3010–3019. [Google Scholar] [CrossRef]
- Pan, Z.; Marra, A.M.; Benjamin, N.; Eichstaedt, C.A.; Blank, N.; Bossone, E.; Cittadini, A.; Coghlan, G.; Denton, C.P.; Distler, O.; et al. Early treatment with ambrisentan of mildly elevated mean pulmonary arterial pressure associated with systemic sclerosis: A randomized, controlled, double-blind, parallel group study (EDITA study). Arthritis Res. Ther. 2019, 21, 217. [Google Scholar] [CrossRef] [Green Version]
- Kuwana, M.; Blair, C.; Takahashi, T.; Langley, J.; Coghlan, J.G. Initial combination therapy of ambrisentan and tadalafil in connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH) in the modified intention-to-treat population of the AMBITION study: Post hoc analysis. Ann. Rheum. Dis. 2020, 79, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Khanna, D.; Denton, C.; Furst, D.; Mayes, M.; Matucci-Cerinic, M.; Smith, V.; de Vries, D.; Deberdt, L.; Stiers, P.; Prasad, N.; et al. A Phase 2a Randomized, Double-blind, Placebo-controlled Study of Ziritaxestat in Early Diffuse Cutaneous Systemic Sclerosis (NOVESA) (abstract). Arthritis Rheumatol. 2020, 72. [Google Scholar] [CrossRef] [PubMed]
Drug Name | Target | NCT Number | Phase | Type of Study | Last Update Posted | Study Completion Date | Actual/Estimated | |
---|---|---|---|---|---|---|---|---|
Abatacept | CD80/CD86 | NCT02161406 | II | Randomized | double-blind, placebo-controlled | February, 2020 | October, 2018 | Actual |
MEDI-551 | CD19 | NCT00946699 | I | Randomized | Double-blind placebo-controlled | November, 2014 | March, 2014 | Actual |
Rituximab | CD20 | NCT04274257 | II | Randomized | Double-blind placebo-controlled | February, 2020 | November, 2019 | Actual |
Rituximab/Belimumab | CD20/BAFF | NCT03844061 | II | Randomized | double-blind, placebo-controlled | September, 2020 | February, 2022 | Estimated |
Brentuximab Vedotin | CD30 | NCT03222492 | I/II | Randomized | double-blind, placebo-controlled | November, 2020 | January, 2023 | Estimated |
Brentuximab Vedotin | CD30 | NCT03198689 | II | Randomized | unblinded, uncontrolled | May, 2019 | July, 2021 | Estimated |
Iguratimod | TNF | NCT04515706 | - | Randomized | high level double-blind | August, 2020 | January, 2024 | Estimated |
Fresolimumab | TGF-β | NCT01284322 | I | Not Applicable | open label | July, 2014 | March, 2014 | Actual |
Belimumab | BAFF | NCT01670565 | II | Randomized | double-blind, placebo-controlled | March, 2017 | February, 2016 | Actual |
Sar100842 | LPAR1 | NCT01651143 | II | Randomized | double-blind, placebo-controlled | March, 2016 | April, 2016 | Actual |
Riociguat | sGC | NCT02915835 | II | Randomized | double-blind, placebo-controlled | September, 2019 | July, 2018 | Actual |
Riociguat | sGC | NCT02283762 | II | Randomized | double-blind, placebo-controlled | February, 2020 | March, 2019 | Actual |
Tofacitinib | JAK | NCT03274076 | I/II | Randomized | double-blind, placebo-controlled | May, 2020 | November,2019 | Actual |
Nilotinib | JAK | NCT01166139 | II | Open-label | uncontrolled | October, 2017 | January, 2015 | Actual |
Imatinib | JAK | NCT00555581 | II | Open-label | uncontrolled | February, 2018 | December, 2011 | Actual |
Nintedanib | JAK | NCT03313180 | III | Open-label | uncontrolled | December, 2020 | December, 2022 | Estimated |
Nintedanib | JAK | NCT02999178 | III | Randomized | double-blind, placebo-controlled | May, 2020 | August, 2019 | Actual |
Peficitinib | JAK | NCT05177471 | - | - | observational Study | January, 2022 | April, 2022 | Estimated |
Tocilizumab | IL-6 | NCT02453256 | III | Randomized | double-blind placebo-controlled | March, 2020 | February, 2019 | Actual |
Brodalumab | IL-17 | NCT04368403 | I | Open-label | uncontrolled | June, 2021 | December, 2022 | Estimated |
Ambrisentan | Endothelin receptor | NCT02290613 | II | Randomized | double-blind placebo-controlled | April, 2020 | December, 2017 | Actual |
GLPG1690 | autotaxin | NCT03798366 | II | Randomized | double-blind, placebo-controlled | May, 2021 | June, 2020 | Actual |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bohdziewicz, A.; Pawlik, K.K.; Maciejewska, M.; Sikora, M.; Alda-Malicka, R.; Czuwara, J.; Rudnicka, L. Future Treatment Options in Systemic Sclerosis—Potential Targets and Ongoing Clinical Trials. J. Clin. Med. 2022, 11, 1310. https://doi.org/10.3390/jcm11051310
Bohdziewicz A, Pawlik KK, Maciejewska M, Sikora M, Alda-Malicka R, Czuwara J, Rudnicka L. Future Treatment Options in Systemic Sclerosis—Potential Targets and Ongoing Clinical Trials. Journal of Clinical Medicine. 2022; 11(5):1310. https://doi.org/10.3390/jcm11051310
Chicago/Turabian StyleBohdziewicz, Anna, Katarzyna Karina Pawlik, Magdalena Maciejewska, Mariusz Sikora, Rosanna Alda-Malicka, Joanna Czuwara, and Lidia Rudnicka. 2022. "Future Treatment Options in Systemic Sclerosis—Potential Targets and Ongoing Clinical Trials" Journal of Clinical Medicine 11, no. 5: 1310. https://doi.org/10.3390/jcm11051310
APA StyleBohdziewicz, A., Pawlik, K. K., Maciejewska, M., Sikora, M., Alda-Malicka, R., Czuwara, J., & Rudnicka, L. (2022). Future Treatment Options in Systemic Sclerosis—Potential Targets and Ongoing Clinical Trials. Journal of Clinical Medicine, 11(5), 1310. https://doi.org/10.3390/jcm11051310