Comparative Study of Cage Subsidence in Single-Level Lateral Lumbar Interbody Fusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Included Patients
2.2. Surgical Technique
2.3. Radiological Assessment
2.4. Clinical Assessment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elowitz, E.H. Central and foraminal indirect decompression in MIS lateral interbody fusion (XLIF): Video lecture. Eur. Spine J. 2015, 24 (Suppl. S3), 449–450. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.; Marchi, L.; Coutinho, E.; Pimenta, L. A radiographic assessment of the ability of the extreme lateral interbody fusion procedure to indirectly decompress the neural elements. Spine 2010, 35, S331–S337. [Google Scholar] [CrossRef] [Green Version]
- Walker, C.T.; Farber, S.H.; Cole, T.S.; Xu, D.S.; Godzik, J.; Whiting, A.C.; Hartman, C.; Porter, R.W.; Turner, J.D.; Uribe, J. Complications for minimally invasive lateral interbody arthrodesis: A systematic review and meta-analysis comparing prepsoas and transpsoas approaches. J. Neurosurg. Spine 2019, 30, 446–460. [Google Scholar] [CrossRef]
- Ozgur, B.M.; Aryan, H.E.; Pimenta, L.; Taylor, W.R. Extreme Lateral Interbody Fusion (XLIF): A novel surgical technique for anterior lumbar interbody fusion. Spine J. 2006, 6, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Silvestre, C.; Mac-Thiong, J.M.; Hilmi, R.; Roussouly, P. Complications and Morbidities of Mini-open Anterior Retroperitoneal Lumbar Interbody Fusion: Oblique Lumbar Interbody Fusion in 179 Patients. Asian Spine J. 2012, 6, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Hiyama, A.; Katoh, H.; Sakai, D.; Tanaka, M.; Sato, M.; Watanabe, M. Short-term comparison of preoperative and postoperative pain after indirect decompression surgery and direct decompression surgery in patients with degenerative spondylolisthesis. Sci. Rep. 2020, 10, 18887. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.D.; Lee, J.C.; Seo, J.H.; Roh, Y.H.; Choi, S.W.; Shin, B.J. Comparison of Minimally Invasive Lateral Lumbar Interbody Fusion, Minimally Invasive Lateral Lumbar Interbody Fusion, and Open Posterior Lumbar Interbody Fusion in the Treatment of Single-Level Spondylolisthesis of L4–L5. World Neurosurg. 2021, 158, e10–e18. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Fujibayashi, S.; Otsuki, B.; Murata, K.; Matsuda, S. Indirect decompression via oblique lateral interbody fusion for severe degenerative lumbar spinal stenosis: A comparative study with direct decompression transforaminal/posterior lumbar interbody fusion. Spine J. 2021, 21, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, A.O.; Soliman, M.A.R.; Azmy, S.; Khan, A.; Jowdy, P.K.; Mullin, J.P.; Pollina, J. Incidence of major and minor vascular injuries during lateral access lumbar interbody fusion procedures: A retrospective comparative study and systematic literature review. Neurosurg. Rev. 2021. [Google Scholar] [CrossRef] [PubMed]
- Hwang, E.S.; Kim, K.J.; Lee, C.S.; Lee, M.Y.; Yoon, S.J.; Park, J.W.; Cho, J.H.; Lee, D.H. Bowel Injury and Insidious Pneumoperitoneum after Lateral Lumbar Interbody Fusion. Asian Spine J. 2021. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.Y.; Xu, Z.W.; He, D.W.; Zhao, X.; Ma, W.H.; Ni, W.F.; Song, Y.X.; Zhang, J.Q.; Yu, W.; Fang, X.Q.; et al. Complications and Prevention Strategies of Oblique Lateral Interbody Fusion Technique. Orthop. Surg. 2018, 10, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Ha, K.Y.; Kim, K.T.; Chang, D.G.; Park, H.Y.; Yoon, E.J.; Kim, S.I. Risk factors for intraoperative endplate injury during minimally-invasive lateral lumbar interbody fusion. Sci. Rep. 2021, 11, 20149. [Google Scholar] [CrossRef] [PubMed]
- Malham, G.M.; Parker, R.M.; Blecher, C.M.; Seex, K.A. Assessment and classification of subsidence after lateral interbody fusion using serial computed tomography. J. Neurosurg. Spine 2015, 23, 589–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchi, L.; Abdala, N.; Oliveira, L.; Amaral, R.; Coutinho, E.; Pimenta, L. Radiographic and clinical evaluation of cage subsidence after stand-alone lateral interbody fusion. J. Neurosurg. Spine 2013, 19, 110–118. [Google Scholar] [CrossRef]
- Yang, H.; Liu, J.; Hai, Y. Is instrumented lateral lumbar interbody fusion superior to stand-alone lateral lumbar interbody fusion for the treatment of lumbar degenerative disease? A meta-analysis. J. Clin. Neurosci. 2021, 92, 136–146. [Google Scholar] [CrossRef]
- Hiyama, A.; Katoh, H.; Sakai, D.; Sato, M.; Tanaka, M.; Watanabe, M. Comparison of radiological changes after single- position versus dual- position for lateral interbody fusion and pedicle screw fixation. BMC Musculoskelet. Disord. 2019, 20, 601. [Google Scholar] [CrossRef] [Green Version]
- Hiyama, A.; Katoh, H.; Sakai, D.; Watanabe, M. A New Technique that Combines Navigation-Assisted Lateral Interbody Fusion and Percutaneous Placement of Pedicle Screws in the Lateral Decubitus Position with the Surgeon Using Wearable Smart Glasses: A Small Case Series and Technical Note. World Neurosurg. 2021, 146, 232–239. [Google Scholar] [CrossRef]
- Hiyama, A.; Nomura, S.; Sakai, D.; Watanabe, M. Utility of Power Tool and Intraoperative Neuromonitoring for Percutaneous Pedicle Screw Placement in Single Position Surgery: A Technical Note. World Neurosurg. 2022, 157, 56–63. [Google Scholar] [CrossRef]
- Hiyama, A.; Sakai, D.; Sato, M.; Watanabe, M. The analysis of percutaneous pedicle screw technique with guide wire-less in lateral decubitus position following extreme lateral interbody fusion. J. Orthop. Surg. Res. 2019, 14, 304. [Google Scholar] [CrossRef] [Green Version]
- Hiyama, A.; Katoh, H.; Sakai, D.; Sato, M.; Tanaka, M.; Nukaga, T.; Watanabe, M. Changes in Spinal Alignment following eXtreme Lateral Interbody Fusion Alone in Patients with Adult Spinal Deformity using Computed Tomography. Sci. Rep. 2019, 9, 12039. [Google Scholar] [CrossRef]
- Hiyama, A.; Katoh, H.; Sakai, D.; Sato, M.; Tanaka, M.; Watanabe, M. Cluster analysis to predict factors associated with sufficient indirect decompression immediately after single-level lateral lumbar interbody fusion. J. Clin. Neurosci. 2021, 83, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.M.; Chung, C.K.; Kim, C.H.; Yang, S.H. Clinical and radiologic outcomes of single-level direct lateral lumbar interbody fusion in patients with osteopenia. J. Clin. Neurosci. 2019, 64, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Fyhrie, D.P.; Schaffler, M.B. Failure mechanisms in human vertebral cancellous bone. Bone 1994, 15, 105–109. [Google Scholar] [CrossRef]
- Alkalay, R.N.; Adamson, R.; Groff, M.W. The effect of interbody fusion cage design on the stability of the instrumented spine in response to cyclic loading: An experimental study. Spine J. 2018, 18, 1867–1876. [Google Scholar] [CrossRef]
- Oh, K.W.; Lee, J.H.; Lee, J.H.; Lee, D.Y.; Shim, H.J. The Correlation Between Cage Subsidence, Bone Mineral Density, and Clinical Results in Posterior Lumbar Interbody Fusion. Clin. Spine Surg. 2017, 30, E683–E689. [Google Scholar] [CrossRef]
- Yuan, W.; Kaliya-Perumal, A.K.; Chou, S.M.; Oh, J.Y. Does Lumbar Interbody Cage Size Influence Subsidence? A Biomechanical Study. Spine 2020, 45, 88–95. [Google Scholar] [CrossRef]
- Mendoza-Lattes, S.A. CORR Insights®: Poor Bone Quality, Multilevel Surgery, and Narrow and Tall Cages Are Associated with Intraoperative Endplate Injuries and Late-onset Cage Subsidence in Lateral Lumbar Interbody Fusion: A Systematic Review. Clin. Orthop. Relat. Res. 2022, 480, 189–190. [Google Scholar] [CrossRef]
- Wu, H.; Shan, Z.; Zhao, F.; Cheung, J.P.Y. Poor Bone Quality, Multilevel Surgery, and Narrow and Tall Cages Are Associated with Intraoperative Endplate Injuries and Late-onset Cage Subsidence in Lateral Lumbar Interbody Fusion: A Systematic Review. Clin. Orthop. Relat. Res. 2022, 480, 163–188. [Google Scholar] [CrossRef] [PubMed]
- Hiyama, A.; Katoh, H.; Sakai, D.; Sato, M.; Watanabe, M. Radiographic and clinical evaluation of single-level lateral interbody fusion in patients with severe stenosis analyzed using cluster analysis. Medicine 2021, 100, e27775. [Google Scholar] [CrossRef]
- Lang, G.; Perrech, M.; Navarro-Ramirez, R.; Hussain, I.; Pennicooke, B.; Maryam, F.; Avila, M.J.; Härtl, R. Potential and Limitations of Neural Decompression in Extreme Lateral Interbody Fusion-A Systematic Review. World Neurosurg. 2017, 101, 99–113. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, C.S.; Chung, S.S.; Kang, S.S.; Park, H.J.; Kim, S.H. The Ideal Cage Position for Achieving Both Indirect Neural Decompression and Segmental Angle Restoration in Lateral Lumbar Interbody Fusion (LLIF). Clin. Spine Surg. 2017, 30, E784–E790. [Google Scholar] [CrossRef] [PubMed]
- Kaliya-Perumal, A.K.; Soh, T.L.T.; Tan, M.; Oh, J.Y. Factors Influencing Early Disc Height Loss Following Lateral Lumbar Interbody Fusion. Asian Spine J. 2020, 14, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Kotheeranurak, V.; Jitpakdee, K.; Lin, G.X.; Mahatthanatrakul, A.; Singhatanadgige, W.; Limthongkul, W.; Yingsakmongkol, W.; Kim, J.S. Subsidence of Interbody Cage Following Oblique Lateral Interbody Fusion: An Analysis and Potential Risk Factors. Glob. Spine J. 2021, 21925682211067210. [Google Scholar] [CrossRef] [PubMed]
- Massaad, E.; Fatima, N.; Kiapour, A.; Hadzipasic, M.; Shankar, G.M.; Shin, J.H. Polyetheretherketone Versus Titanium Cages for Posterior Lumbar Interbody Fusion: Meta-Analysis and Review of the Literature. Neurospine 2020, 17, 125–135. [Google Scholar] [CrossRef] [PubMed]
- McGilvray, K.C.; Waldorff, E.I.; Easley, J.; Seim, H.B.; Zhang, N.; Linovitz, R.J.; Ryaby, J.T.; Puttlitz, C.M. Evaluation of a polyetheretherketone (PEEK) titanium composite interbody spacer in an ovine lumbar interbody fusion model: Biomechanical, microcomputed tomographic, and histologic analyses. Spine J. 2017, 17, 1907–1916. [Google Scholar] [CrossRef] [Green Version]
- Phan, K.; Hogan, J.A.; Assem, Y.; Mobbs, R.J. PEEK-Halo effect in interbody fusion. J. Clin. Neurosci. 2016, 24, 138–140. [Google Scholar] [CrossRef]
- Kim, K.J.; Kim, D.H.; Lee, J.I.; Choi, B.K.; Han, I.H.; Nam, K.H. Hounsfield Units on Lumbar Computed Tomography for Predicting Regional Bone Mineral Density. Open Med. 2019, 14, 545–551. [Google Scholar] [CrossRef]
- Schreiber, J.J.; Anderson, P.A.; Hsu, W.K. Use of computed tomography for assessing bone mineral density. Neurosurg. Focus 2014, 37, E4. [Google Scholar] [CrossRef]
- Zaidi, Q.; Danisa, O.A.; Cheng, W. Measurement Techniques and Utility of Hounsfield Unit Values for Assessment of Bone Quality Prior to Spinal Instrumentation: A Review of Current Literature. Spine 2019, 44, E239–E244. [Google Scholar] [CrossRef]
- Xi, Z.; Mummaneni, P.V.; Wang, M.; Ruan, H.; Burch, S.; Deviren, V.; Clark, A.J.; Berven, S.H.; Chou, D. The association between lower Hounsfield units on computed tomography and cage subsidence after lateral lumbar interbody fusion. Neurosurg. Focus 2020, 49, E8. [Google Scholar] [CrossRef]
- Zhou, J.; Yuan, C.; Liu, C.; Zhou, L.; Wang, J. Hounsfield unit value on CT as a predictor of cage subsidence following stand-alone oblique lumbar interbody fusion for the treatment of degenerative lumbar diseases. BMC Musculoskelet. Disord. 2021, 22, 960. [Google Scholar] [CrossRef] [PubMed]
- Satake, K.; Kanemura, T.; Nakashima, H.; Yamaguchi, H.; Segi, N.; Ouchida, J. Cage subsidence in lateral interbody fusion with transpsoas approach: Intraoperative endplate injury or late-onset settling. Spine Surg. Relat. Res. 2017, 1, 203–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, T.; Ao, J.; Li, G.; Lang, Z.; Sun, Y. Additional lateral plate fixation has no effect to prevent cage subsidence in oblique lumbar interbody fusion. J. Orthop. Surg. Res. 2021, 16, 584. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Data | |
---|---|---|
No. of patients | 59 | |
Age (years) | 68.9 (10.6) | |
≤65 | 13 (22.0) | |
>65 | 46 (78.0) | |
Sex (male/female) | 34 (57.6)/25 (42.3) | |
Height (cm) | 159.4 (9.9) | |
Body weight (kg) | 61.6 (13.5) | |
BMI (kg/m2) | 24.0 (4.1) | |
Tobacco use | 12 (20.3) | |
Steroid use | 4 (6.8) | |
Primary diagnosis | LCS + (LDS) | 51 (86.4) |
FS | 6 (10.2) | |
LDH | 2 (3.4) | |
Levels treated, n (%) | L1-L2 | 0 (0) |
L2-L3 | 2 (3.4) | |
L3-L4 | 16 (27.1) | |
L4-L5 | 41 (69.5) | |
Overall | 59 | |
Average OR time (min) | 92.3 (23.5) | |
Average EBL (mL) | 62.8 (78.0) | |
Fixation type of PPS | Bilateral | 49 (83.1) |
Unilateral | 10 (16.9) | |
Average Length of stay (days) | 15.0 (4.2) |
No. | Data | |
---|---|---|
Early Cage Subsidence (ECS) | 9/59 (15.3) | |
Delayed Cage Subsidence (DCS) | 11/59 (18.6) | |
Cage Subsidence | 20/59 (33.9) | |
By location | Unilateral endplate | 16 (80.0) |
Bilateral endplate | 4 (20.0) | |
Endplate cranial to disc | 9 (37.5) | |
Endplate caudal to disc | 15 (62.5) | |
Marchi Classification | Grade 1 | 11 (55.0) |
Grade 2 | 5 (25.0) | |
Grade 3 | 4 (20.0) | |
Levels treated, n (%) | L1-L2 | 0 (0) |
L2-L3 | 1 (5.0) | |
L3-L4 | 10 (50.0) | |
L4-L5 | 9 (45.0) | |
Overall | 20 |
Parameters | Subsidence (−) | Subsidence (+) | p ‡ | |
---|---|---|---|---|
No. of patients | 39 (66.1) | 20 (33.9) | ||
Age (years) | 68.4 (12.0) | 72.8 (6.2) | 0.220 | |
Sex (male/female) | 28/11 | 8/12 | 0.019 * | |
Height (cm) | 161.0 (9.2) | 156.5 (10.9) | 0.145 | |
Body weight (kg) | 63.1 (13.1) | 58.6 (14.2) | 0.231 | |
BMI (kg/m2) | 24.1 (3.5) | 23.8 (5.0) | 0.447 | |
Tobacco use | 8 (20.5) | 4 (20.0) | 0.963 | |
Steroid use | 1 (2.6) | 3 (15.0) | 0.075 | |
Levels treated, n (%) | L1-L2 | 0 (0) | 0 (0) | 0.012 * |
L2-L3 | 1 (2.6) | 1 (5.0) | ||
L3-L4 | 6 (15.4) | 10 (50.0) | ||
L4-L5 | 32 (82.1) | 9 (45.0) | ||
Overall | 39 (100) | 20 (100) | ||
Cage height (mm) | 8 | 8 (20.5) | 1 (5.0) | 0.053 |
9 | 21 (53.8) | 9 (45.0) | ||
10 | 8 (20.5) | 10 (50.0) | ||
11 | 2 (5.1) | 0 (0) | ||
Ave | 9.1 (0.8) | 9.1 (0.6) | ||
Cage width (mm) | 18 | 42 (100) | 21 (100) | - |
Cage length (mm) | 45 | 2 (5.1) | 1 (5.0) | 0.114 |
50 | 7 (17.9) | 8 (40.0) | ||
55 | 23 (59.0) | 9 (45.0) | ||
60 | 7 (17.9) | 1 (5.0) | ||
Ave | 54.5 (3.8) | 52.3 (3.8) | ||
Cage position (%) | 44.8 (11.3) | 49.2 (10.1) | 0.315 | |
Cage Material | PEEK | 37 | 20 | 0.307 |
Titanium | 2 | 0 | ||
Cranial endplate Hounsfield unit (HU) | 325.0 (68.4) | 281.2 (55.2) | 0.016 * | |
Caudal endplate Hounsfield unit (HU) | 293.5 (69.6) | 245.4 (62.8) | 0.012 * | |
Mean endplate Hounsfield unit (HU) | 310.2 (56.5) | 263.3 (54.0) | 0.004 * | |
Average OR time (min) | 95.4 (24.0) | 86.4 (21.9) | 0.147 | |
Average EBL (mL) | 59.2 (83.1) | 69.8 (68.4) | 0.176 | |
Fixation type of PPS | Bilateral | 33 (84.6) | 16 (80.0) | 0.657 |
Unilateral | 6 (15.4) | 4 (20.0) | ||
Average Length of stay (days) | 15.1 (4.6) | 14.8 (3.5) | 0.879 | |
No. of transient motor weakness | 10 (25.6) | 3 (15.0) | 0.355 | |
No. of thigh pain and/or numbness | 9 (23.1) | 4 (20.0) | 0.789 | |
No. of Fusion rate at post-ope one year | 36 (92.3) | 11 (55.0) | 0.001 * |
Radiological Parameter | Preoperative | Postoperative | ΔPost-Pre | p† | |
---|---|---|---|---|---|
ADH (mm) | Subsidence (−) | 8.7 (4.1) | 14.3 (2.4) | 5.7 (3.3) | <0.001 * |
Subsidence (+) | 8.9 (3.7) | 12.6 (3.2) | 3.7 (4.3) | 0.002 * | |
ALL | 8.7 (4.0) | 13.8 (2.8) | 5.1 (3.7) | <0.001 * | |
p‡ | 0.803 | 0.031 * | 0.055 | ||
PDH (mm) | Subsidence (−) | 5.5 (2.8) | 9.1 (2.3) | 3.7 (2.3) | <0.001 * |
Subsidence (+) | 4.7 (2.3) | 8.0 (2.5) | 3.5 (2.0) | <0.001 * | |
ALL | 5.2 (2.6) | 8.8 (2.4) | 3.6 (2.2) | <0.001 * | |
p‡ | 0.242 | 0.102 | 0.711 | ||
AvDH (mm) | Subsidence (−) | 7.1 (2.9) | 11.8 (1.8) | 4.7 (2.4) | <0.001 * |
Subsidence (+) | 6.8 (2.8) | 10.4 (2.4) | 3.6 (2.8) | <0.001 * | |
ALL | 7.0 (2.9) | 11.3 (2.1) | 4.3 (2.6) | <0.001 * | |
p‡ | 0.719 | 0.019* | 0.125 | ||
SDA (°) | Subsidence (−) | 3.1 (5.7) | 5.8 (3.9) | 2.7 (3.8) | <0.001 * |
Subsidence (+) | 4.2 (3.2) | 5.7 (3.9) | 1.4 (3.8) | 0.144 | |
ALL | 3.5 (5.1) | 5.8 (3.8) | 2.3 (4.0) | <0.001 * | |
p‡ | 0.446 | 0.923 | 0.223 | ||
SVA (mm) | Subsidence (−) | 68.6 (68.3) | 59.4 (50.9) | −7.2 (59.0) | 0.419 |
Subsidence (+) | 67.0 (50.8) | 71.2 (46.8) | 4.2 (41.0) | 0.666 | |
ALL | 68.0 (62.5) | 64.0 (49.6) | −4.0 (54.0) | 0.588 | |
p‡ | 0.700 | 0.411 | 0.733 | ||
LL (°) | Subsidence (−) | 36.8 (17.4) | 39.9 (12.2) | 3.1 (11.5) | 0.107 |
Subsidence (+) | 37.3 (13.8) | 37.5 (16.6) | 0.2 (10.9) | 0.934 | |
ALL | 36.9 (16.2) | 39.1 (13.7) | 2.2 (11.3) | 0.158 | |
p‡ | 1.000 | 0.542 | 0.200 | ||
TK (°) | Subsidence (−) | 23.4 (10.8) | 25.7 (10.4) | 2.1 (6.0) | 0.025 * |
Subsidence (+) | 24.4 (11.5) | 24.4 (11.1) | 0.0 (5.8) | 0.987 | |
ALL | 23.7 (10.9) | 25.3 (10.5) | 1.6 (6.1) | 0.056 | |
p‡ | 0.753 | 0.664 | 0.182 | ||
PI (°) | Subsidence (−) | 50.5 (8.4) | 51.7 (8.0) | 1.2 (4.5) | 0.110 |
Subsidence (+) | 54.5 (8.3) | 52.6 (7.4) | −1.9 (7.6) | 0.303 | |
ALL | 51.8 (8.5) | 52.0 (7.8) | 0.2 (5.9) | 0.803 | |
p‡ | 0.099 | 0.685 | 0.062 | ||
PT (°) | Subsidence (−) | 20.5 (7.6) | 21.0 (7.0) | 0.5 (4.9) | 0.512 |
Subsidence (+) | 25.3 (8.2) | 22.8 (8.1) | −2.5 (8.2) | 0.217 | |
ALL | 22.1 (8.0) | 21.6 (7.4) | −0.5 (6.3) | 0.591 | |
p‡ | 0.037 * | 0.408 | 0.270 | ||
SS (°) | Subsidence (−) | 30.0 (9.5) | 30.6 (8.2) | 0.7 (6.5) | 0.522 |
Subsidence (+) | 29.2 (7.3) | 29.8 (8.6) | 0.6 (7.1) | 0.734 | |
ALL | 29.7 (8.8) | 30.4 (8.3) | 0.7 (6.7) | 0.468 | |
p‡ | 0.775 | 0.724 | 0.953 |
Preope | Postope (12 M) | Change(Δ) | p‡ | ||
---|---|---|---|---|---|
NRSLBP | Subsidence (−) | 6.6 (2.6) | 2.7 (2.9) | −3.9 (3.3) | <0.001 * |
Subsidence (+) | 5.6 (2.8) | 3.4 (3.5) | −2.2 (4.4) | 0.037 * | |
ALL | 6.2 (2.7) | 2.9 (3.1) | −3.3 (3.8) | <0.001 * | |
p † | 0.123 | 0.795 | 0.139 | ||
NRSLP | Subsidence (−) | 6.5 (2.9) | 1.8 (2.2) | −4.8 (3.3) | <0.001 * |
Subsidence (+) | 6.8 (2.6) | 2.5 (3.3) | −4.3 (3.2) | <0.001 * | |
ALL | 6.6 (2.8) | 2.0 (2.6) | −4.6 (3.2) | <0.001 * | |
p † | 0.864 | 0.880 | 0.530 | ||
NRSLN | Subsidence (−) | 6.5 (2.9) | 2.6 (2.7) | −3.8 (3.6) | <0.001 * |
Subsidence (+) | 6.5 (3.5) | 3.2 (3.5) | −3.4 (3.9) | 0.001 * | |
ALL | 6.5 (3.1) | 2.8 (3.0) | −3.7 (3.7) | <0.001 * | |
p † | 0.593 | 0.935 | 0.645 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiyama, A.; Sakai, D.; Katoh, H.; Nomura, S.; Sato, M.; Watanabe, M. Comparative Study of Cage Subsidence in Single-Level Lateral Lumbar Interbody Fusion. J. Clin. Med. 2022, 11, 1374. https://doi.org/10.3390/jcm11051374
Hiyama A, Sakai D, Katoh H, Nomura S, Sato M, Watanabe M. Comparative Study of Cage Subsidence in Single-Level Lateral Lumbar Interbody Fusion. Journal of Clinical Medicine. 2022; 11(5):1374. https://doi.org/10.3390/jcm11051374
Chicago/Turabian StyleHiyama, Akihiko, Daisuke Sakai, Hiroyuki Katoh, Satoshi Nomura, Masato Sato, and Masahiko Watanabe. 2022. "Comparative Study of Cage Subsidence in Single-Level Lateral Lumbar Interbody Fusion" Journal of Clinical Medicine 11, no. 5: 1374. https://doi.org/10.3390/jcm11051374
APA StyleHiyama, A., Sakai, D., Katoh, H., Nomura, S., Sato, M., & Watanabe, M. (2022). Comparative Study of Cage Subsidence in Single-Level Lateral Lumbar Interbody Fusion. Journal of Clinical Medicine, 11(5), 1374. https://doi.org/10.3390/jcm11051374