A Computational Text Mining-Guided Meta-Analysis Approach to Identify Potential Xerostomia Drug Targets
Abstract
:1. Introduction
1.1. Epidemiology and Symptomatology
1.2. Etiologies, Pathophysiology, and Treatment
1.3. Data Mining and Objectives
2. Methods
2.1. Conventional Review of the Literature
2.2. Protein–Protein Interaction and Visualization
2.3. The Drug–Gene Interaction Database
3. Results
3.1. Identification of Genetic and Proteomic Profiles Predominantly Associated with Xerostomia/Dry Mouth
3.2. Xerostomia/Dry Mouth Protein–Protein Interactions
3.3. The Drug–Gene Interaction Database
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thakkar, J.P.; Lane, C.J. Hyposalivation and Xerostomia and Burning Mouth Syndrome: Medical Management. Oral Maxillofac. Surg. Clin. N. Am. 2022, 34, 135–146. [Google Scholar] [CrossRef]
- Sasportas, L.S.; Hosford, D.N.; Sodini, M.A.; Waters, D.J.; Zambricki, E.A.; Barral, J.K.; Graves, E.E.; Brinton, T.J.; Yock, P.G.; Le, Q.T.; et al. Cost-effectiveness landscape analysis of treatments addressing xerostomia in patients receiving head and neck radiation therapy. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 116, e37–e51. [Google Scholar] [CrossRef] [Green Version]
- Field, E.A.; Fear, S.; Higham, S.M.; Ireland, R.S.; Rostron, J.; Willetts, R.M.; Longman, L.P. Age and medication are significant risk factors for xerostomia in an English population, attending general dental practice. Gerodontology 2001, 18, 21–24. [Google Scholar] [CrossRef]
- Shinkai, R.S.; Hatch, J.P.; Schmidt, C.B.; Sartori, E.A. Exposure to the oral side effects of medication in a community-based sample. Spec. Care Dent. 2006, 26, 116–120. [Google Scholar] [CrossRef]
- Tanasiewicz, M.; Hildebrandt, T.; Obersztyn, I. Xerostomia of Various Etiologies: A Review of the Literature. Adv. Clin. Exp. Med. 2016, 25, 199–206. [Google Scholar] [CrossRef]
- Mirzaii-Dizgah, I.; Agha-Hosseini, F. Unstimulated whole saliva parathyroid hormone in postmenopausal women with xerostomia. J. Contemp. Dent. Pract. 2011, 12, 196–199. [Google Scholar] [CrossRef]
- Marcott, S.; Dewan, K.; Kwan, M.; Baik, F.; Lee, Y.J.; Sirjani, D. Where Dysphagia Begins: Polypharmacy and Xerostomia. Fed. Pract. 2020, 37, 234–241. [Google Scholar]
- Hopcraft, M.S.; Tan, C. Xerostomia: An update for clinicians. Aust. Dent. J. 2010, 55, 238–244. [Google Scholar] [CrossRef]
- Sivaramakrishnan, G.; Sridharan, K. Electrical nerve stimulation for xerostomia: A meta-analysis of randomised controlled trials. J. Tradit. Complement. Med. 2017, 7, 409–413. [Google Scholar] [CrossRef]
- American Dental Association. Available online: https://www.ada.org/en/member-center/oral-health-topics/xerostomia (accessed on 12 May 2020).
- Glore, R.J.; Spiteri-Staines, K.; Paleri, V. A patient with dry mouth. Clin. Otolaryngol. 2009, 34, 358–363. [Google Scholar] [CrossRef]
- Wu, L.S.; Huang, M.C.; Chen, C.K.; Shen, C.Y.; Fann, C.S.; Lin, C.Y.; Lin, C.C.; Cheng, A.T. Genome-Wide Association Study of Lithium-Induced Dry Mouth in Bipolar I Disorder. J. Pers. Med. 2021, 11, 1265. [Google Scholar] [CrossRef]
- Thomson, W.M.; Chalmers, J.M.; Spencer, A.J.; Slade, G.D. Medication and dry mouth: Findings from a cohort study of older people. J. Public Health Dent. 2000, 60, 12–20. [Google Scholar] [CrossRef]
- Nederfors, T.; Isaksson, R.; Mörnstad, H.; Dahlöf, C. Prevalence of perceived symptoms of dry mouth in an adult Swedish population—Relation to age, sex and pharmacotherapy. Community Dent. Oral Epidemiol. 1997, 25, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Assery, M.K.A. Efficacy of Artificial Salivary Substitutes in Treatment of Xerostomia: A Systematic Review. J. Pharm. Bioallied Sci. 2019, 11 (Suppl. S1), S1–S12. [Google Scholar] [CrossRef]
- Vissink, A.; Mitchell, J.B.; Baum, B.J.; Limesand, K.H.; Jensen, S.B.; Fox, P.C.; Elting, L.S.; Langendijk, J.A.; Coppes, R.P.; Reyland, M.E. Clinical management of salivary gland hypofunction and xerostomia in head-and-neck cancer patients: Successes and barriers. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 983–991. [Google Scholar] [CrossRef] [Green Version]
- Furness, S.; Worthington, H.V.; Bryan, G.; Birchenough, S.; McMillan, R. Interventions for the management of dry mouth: Topical therapies. Cochrane Database Syst. Rev. 2011, 12, CD008934. [Google Scholar] [CrossRef]
- Singhal, A.; Leaman, R.; Catlett, N.; Lemberger, T.; McEntyre, J.; Polson, S.; Xenarios, I.; Arighi, C.; Lu, Z. Pressing needs of biomedical text mining in biocuration and beyond: Opportunities and challenges. Database 2016, 2016, baw161. [Google Scholar] [CrossRef]
- Baxevanis, A.D. The importance of biological databases in biological discovery. Curr. Protoc. Bioinform. 2009, 50, 1. [Google Scholar] [CrossRef]
- Jensen, L.J.; Saric, J.; Bork, P. Literature mining for the biologist: From information retrieval to biological discovery. Nat. Rev. Genet. 2006, 7, 119–129. [Google Scholar] [CrossRef]
- NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018, 46, D8–D13. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.J.; Welch, V.A. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions, 2nd ed.; John Wiley & Sons: Chichester, UK, 2019. [Google Scholar]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Syn. Methods 2020, 12, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Baran, J.; Gerner, M.; Haeussler, M.; Nenadic, G.; Bergman, C.M. pubmed2ensembl: A resource for mining the biological literature on genes. PLoS ONE 2011, 6, e24716. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network Analysis and Visualization of Proteomics Data. J. Proteome Res. 2019, 18, 623–632. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Gene Ontology Consortium. Gene Ontology Consortium: Going forward. Nucleic Acids Res. 2015, 43, D1049–D1056. [Google Scholar] [CrossRef]
- Maere, S.; Heymans, K.; Kuiper, M. BiNGO: A Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 2005, 21, 3448–3449. [Google Scholar] [CrossRef] [Green Version]
- Carbon, S.; Ireland, A.; Mungall, C.J.; Shu, S.; Marshall, B.; Lewis, S.; AmiGO Hub; Web Presence Working Group. AmiGO: Online access to ontology and annotation data. Bioinformatics 2009, 25, 288–289. [Google Scholar] [CrossRef]
- Python Software Foundation. Python Laguage Reference. Version 3.6. Available online: http://www.python.org/ (accessed on 12 May 2021).
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Palasca, O.; Santos, A.; Stolte, C.; Gorodkin, J.; Jensen, L.J. TISSUES 2.0: An integrative web resource on mammalian tissue expression. Database 2018, 2018, bay003. [Google Scholar] [CrossRef] [PubMed]
- Freshour, S.L.; Kiwala, S.; Cotto, K.C.; Coffman, A.C.; McMichael, J.F.; Song, J.J.; Griffith, M.; Griffith, O.L.; Wagner, A.H. Integration of the Drug-Gene Interaction Database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 2021, 49, D1144–D1151. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. National Library of Medicine (US). Available online: http://clinicaltrials.gov/ (accessed on 10 August 2021).
- ClinicalTrials.gov. National Library of Medicine (US). NCT00001599. Pilot Study of Thalidomide to Treat Sjögren’s Syndrome. Available online: https://clinicaltrials.gov/ct2/show/NCT00001599 (accessed on 10 August 2021).
- ClinicalTrials.gov. National Library of Medicine (US). NCT01782235. Efficacy of Tocilizumab in Primary Sjögren’s Syndrome. Available online: https://clinicaltrials.gov/ct2/show/NCT01782235 (accessed on 10 August 2021).
- Felten, R.; Devauchelle-Pensec, V.; Seror, R.; Duffau, P.; Saadoun, D.; Hachulla, E.; Pierre Yves, H.; Salliot, C.; Perdriger, A.; Morel, J.; et al. Interleukin 6 receptor inhibition in primary Sjögren syndrome: A multicentre double-blind randomised placebo-controlled trial. Ann. Rheum. Dis. 2020, 80, 329–338. [Google Scholar] [CrossRef]
- Pillemer, S.R.; Leakan, R.A.; Sankar, V.; Manny, J.; Baum, B.J.; Smith, J.; Chaudhry, U.; Fox, P.C.; Radfar, L.; Ligier, S.; et al. Prominent adverse effects of thalidomide in primary Sjögren’s syndrome. Arthritis Rheum. 2004, 51, 505–506. [Google Scholar] [CrossRef]
- Lisi, S.; Sisto, M.; Ribatti, D.; D’Amore, M.; De Lucro, R.; Frassanito, M.A.; Lorusso, L.; Vacca, A.; Lofrumento, D.D. Chronic inflammation enhances NGF-β/TrkA system expression via EGFR/MEK/ERK pathway activation in Sjögren’s syndrome. J. Mol. Med. 2014, 92, 523–537. [Google Scholar] [CrossRef] [PubMed]
- Sisto, M.; Lisi, S.; D’Amore, M.; Lofrumento, D.D. The metalloproteinase ADAM17 and the epidermal growth factor receptor (EGFR) signaling drive the inflammatory epithelial response in Sjögren’s syndrome. Clin. Exp. Med. 2015, 15, 215–225. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. National Library of Medicine (US). NCT02430298, Topical/Oral Melatonin for Preventing Concurrent Radiochemotherapy Induced Oral Mucositis/Xerostomia Cancer Patients. Available online: https://clinicaltrials.gov/ct2/show/NCT02430298 (accessed on 10 August 2021).
- ClinicalTrials.gov. National Library of Medicine (US). NCT00057785. Radiation Therapy with or without Chemotherapy in Reducing Mouth Dryness in Patients with Nasopharyngeal Cancer. Available online: https://clinicaltrials.gov/ct2/show/NCT00057785 (accessed on 10 August 2021).
- ClinicalTrials.gov. National Library of Medicine (US). NCT03953703. Levocarnitine for Dry Eye in Sjögren’s Syndrome. Available online: https://clinicaltrials.gov/ct2/show/NCT03953703 (accessed on 10 August 2021).
- ClinicalTrials.gov. National Library of Medicine (US). NCT04392622. d-Limonene +Radiation +Platinum Based Chemo for Xerostomia Prevention in Locally Advanced Head and Neck Squamous Cell Carcinoma. Available online: https://clinicaltrials.gov/ct2/show/NCT04392622 (accessed on 10 August 2021).
- ClinicalTrials.gov. National Library of Medicine (US). NCT02990468. A Trial of Concurrent Radiation Therapy, Cisplatin, and BMX-001 in Locally Advanced Head and Neck Cancer (BMX-HN). Available online: https://clinicaltrials.gov/ct2/show/NCT02990468 (accessed on 10 August 2021).
- Lee, N.; Harris, J.; Garden, A.S.; Straube, W.; Glisson, B.; Xia, P.; Bosch, W.; Morrison, W.H.; Quivey, J.; Thorstad, W.; et al. Intensity-modulated radiation therapy with or without chemotherapy for nasopharyngeal carcinoma: Radiation therapy oncology group phase II trial 0225. J. Clin. Oncol. 2009, 27, 3684–3690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiter, R.J.; Rosales-Corral, S.A.; Liu, X.Y.; Acuna-Castroviejo, D.; Escames, G.; Tan, D.X. Melatonin in the oral cavity: Physiological and pathological implications. J. Periodontal. Res. 2015, 50, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Kaur, G. Potential role of melatonin in prevention and treatment of oral carcinoma. Indian J. Dent. 2014, 5, 86–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Moreno, G.; Guardia, J.; Ferrera, M.J.; Cutando, A.; Reiter, R.J. Melatonin in diseases of the oral cavity. Oral Dis. 2010, 16, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Sinjari, B.; Feragalli, B.; Cornelli, U.; Belcaro, G.; Vitacolonna, E.; Santilli, M.; Rexhepi, I.; D’Addazio, G.; Zuccari, F.; Caputi, S. Artificial Saliva in Diabetic Xerostomia (ASDIX): Double Blind Trial of Aldiamed® Versus Placebo. J. Clin. Med. 2020, 9, 2196. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. DrugBank: A knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008, 36, D901–D906. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov. National Library of Medicine (US). NCT02631538, Safety and Efficacy Study of Subcutaneous Belimumab and Intravenous Rituximab Co-administration in Subjects with Primary Sjögren’s Syndrome. Available online: https://clinicaltrials.gov/ct2/show/NCT02631538 (accessed on 10 August 2021).
- ClinicalTrials.gov. National Library of Medicine (US). NCT01160666. Efficacy and Safety of Belimumab in Subjects with Primary Sjögren’s Syndrome (BELISS). Available online: https://clinicaltrials.gov/ct2/show/NCT01160666 (accessed on 10 August 2021).
- Seror, R.; Nocturne, G.; Lazure, T.; Hendel-Chavez, H.; Desmoulins, F.; Belkhir, R.; Ravaud, P.; Benbijja, M.; Poirier-Colame, V.; Taoufik, Y.; et al. Low numbers of blood and salivary natural killer cells are associated with a better response to belimumab in primary Sjögren’s syndrome: Results of the BELISS study. Arthritis Res. Ther. 2015, 17, 241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Hou, J.; Wang, Z.; Chang, J.; Xu, W. TNFSF13B correlated with poor prognosis and immune infiltrates in KIRC: A study based on TCGA data. Int. J. Clin. Exp. Med. 2019, 12, 12057–12067. [Google Scholar]
Category | Search Term (n = 64) |
---|---|
Autoimmune Disease a | Amyloid build up, chronic inflammatory autoimmune disorder, chronic juvenile arthritis, crest syndrome, dry mouth, hypohidrotic ectodermal dysplasia, juvenile rheumatoid arthritis, sarcoidosis, scleroderma, Sjögren’s Syndrome; underactive thyroid gland, xerostomia (n = 12) |
Diet b | Alcohol use, caffeine drink, food avoidance, food modification, morbidly obese, nutritional benefit, specialized metabolites, sugared beverages, tobacco use, unhealthy eating (n = 10) |
Genetics and Physiology c | Burning mouth, difficulty swallowing, glycosylation, high flow salivary hypofunction, high-quality saliva, low-quality saliva, normal salivary composition, oncogenomics, optimal salivary function, poor saliva composition, saliva composition, salivary flow pH 5.5, salivary flow pH 7.8, salivary device, salivary flow between 0.4 mL and 0.5 mL, salivary hypofunction, sore throat (n = 17) |
Medication d | Acetylcholine blocker, amphetamines, atropine, biotene, gustatory stimulants, histamine receptor inhibitor, lozenge, mucosal coating agent, opioid drug class, parasympathomimetic prescription, replacement saliva, saliva substitute, serotonin reuptake inhibition, valium (n = 14) |
Radiation e | Radiation therapy, RTx, XRT (n = 3) |
Other f | Feverishness, free water loss, impoverishment, multicultural populations, oral health care, oral thrush, thallium poisoning, vitamin A deficiency (n = 8) |
Drug a | Disease b | Clinical Trial ID c | DrugBank Identified Drug Target d | DGIdb Gene e |
---|---|---|---|---|
Belimumab | SS | NCT02631538; NCT01160666 | TNFSF13B | TNFSF13B |
Cisplatin | HNC-OC; Xerostomia | NCT00057785; NCT04392622; NCT02990468 | DNA; MPG; A2M; TF; ATOX1; MPO; XDH; CYP4A11; PTGS2; NAT; CYP2C9; CYP2B6; BCHE; GSTT1; MT1A; MT2A; SOD1; GSTP1; NQO1; GSTM1; ALB; ABCC3; ABCC5; ABCC2; SLC22A2; SLC31A1; SLC31A2; ABCC6; ATP7B; ATP7A; ABCG2 | E2F1; CXCR4; IL6; RB1; IFNG; EGFR; FAS |
Cyclosporine | SS | NCT00025818 | HRH1; HRH2; HRH3; S100A1; S100A2; S100B; S100A13; S100A2; CYP3A4; FMO1; FMO3; ALB; ABCB1 | IL2; TNF; IL10 |
Dexamethasone | SS; Xerostomia; HNC-OC | NCT01316770; NCT01748942; NCT00631358 | NR3C1; NR0B1; ANXA1; NOS2; NR1I2; HSD11B2; CYP3A4; HSD11B1; CYP3A5; CYP3A7; CYP17A1; CYP1A1; CYP2A6; CYP2B6; CYP2C19; CYP2C8; CYP2E1; CYP3A43; CYP4A11; CYP11B1; ALB; ABCB1; SLC22A8; ABCB11; ABCC2; ABCG2; SLCO1A2 | ND |
Etanercept | SS | NCT00001954 | TNF; FCGR1A; FCGR2A; FCGR2B; FCGR2C; FCGR3A; FCGR3B; LTA; C1Q PROTEIN GROUP | TNFRSF1B |
Fluorouracil | HNC-OC | NCT00057785 | TYMS; DNA; RNA; CYP2C9; CYP1A2; TYMP; DPYD; UPP1; UPP2; CYP2A6; CYP2C8; MTHFR; TYMS; UMPS; PPAT; ALB; SERPINA7; SLC22A7; SLC29A1; ABCG2; ABCC3; ABCC4; ABCC5 | IL6R |
Hydroxychloroquine | SS | NCT01601028; NCT00431041; NCT00873496 | DNA; TLR7; TLR9; ACE2; CYP3A4; CYP2D6; CYP2C8; ALB | TNF |
Levocarnitine | SS | NCT03953703 | SLC22A4; SLC22A5; CRAT; SLC24A29; SLC25A20; CROT; CPT2; CPT1A; XDH; CES1; MPO; SLC22A4; SLCO1B1; SLC22A5; SLC22A16; SLC22A8 | ND |
Melatonin | HNC-OC | NCT02430298 | MTNR1A; MTNR1B; ESR1; RORB; CALM1; MPO; EPX; CALR; ASMT; NQO2; CYP1A1; CYP1A2; CYP1B1; CYP2C19; CYP2C9; ASMT; IDO1; CYP19A1; SLC22A8 | IFNG |
Methotrexate | Autoimmune diseases | NCT03239600 | DHFR; TYMS; ATIC; DHFR; AOX1; MTHFR; PGD; FPGS; TYMS; ATIC; GGH; CYP3A4; ALB; ABCC3; ABCC4; ABCC1; SLC22A6; ABCC10; SLC22A8; ABCC2; ABCB1; SLC01A2; SLC16A1; ABCC11; SLCO1B3; SLC22A11; SLCO1C1; SLCO3A1; ABCG2; SLC22A7; SLC46A1; SLCO1B1; SLC04C1; SLC19A1; FOLR1; FOLR2; SLC15A1; SLC36A1 | FOXP3; RB1; IL2; E2F1 |
Mirabegron | SS | NCT04909255 | ADRB3; ADRB1; CYP3A4; CYP2D6; BCHE; UGT2B7; UGT1A3; UGT1A8; ALB; ORM1; ABCB1; SLCO1A2; SLC22A1; SLC22A2; SLC22A3 | ND |
Oxybutynin | SS; Overactive bladder | NCT04909255; NCT00431041 | CHRM3; CHRM2; CHRM1; CYP3A4; CYP2C8; CYP2D6; CYP3A5; ORM1; ALB | ND |
Paclitaxel | Xerostomia | NCT00095927 | TUBB1; BCL2; MAP4; MAP2; MAPT; NR1I2; CYP3A4; CYP3A5; CYP3A7; CYP19A1; CYP1B1; CYP2C8; ABCB11; ABCB1; ABCC1; ABCC10; SLCO1B3; ABCC2 | E2F1; CYP19A1; CASP3; EGFR; CXCL8 |
Prednisone | SS | NCT02370550 | NR3C1; CYP3A4; CYP2C19; CYP3A5; CYTOCHROME P450 3A SUBFAMILY GROUP; CYP2A6; CYP1B1; CYP2B6; CYP2CB; CYP2C9; HSD11B1; ALB; SERPINA6 | CXCL12; IFNG |
Tacrolimus | SS; Dry eye | NCT03865888; NCT01850979 | FKBP1A; CYP3A5; CYP3A4; ALB; ORM1; ABCB1; ABCA5; SLCO1B1 | IL18; FOXP3; IL10 |
Thalidomide | SS; Xerostomia | NCT00001599 | CRBN; TNF; NFKB1; DNA; FGFR2; PTGS2; ALPHA1-ACID GLYCOPROTEIN GROUP | IL6R; NFKB1; TNF |
Tocilizumab | SS | NCT01782235 | IL6R; CYP3A4 | IL6R |
Tofacitinib | SS | NCT04496960 | JAK1; JAK2; JAK3; TYK2; CYP3A4; CYP2C19; ALB | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beckman, M.F.; Brennan, E.J.; Igba, C.K.; Brennan, M.T.; Mougeot, F.B.; Mougeot, J.-L.C. A Computational Text Mining-Guided Meta-Analysis Approach to Identify Potential Xerostomia Drug Targets. J. Clin. Med. 2022, 11, 1442. https://doi.org/10.3390/jcm11051442
Beckman MF, Brennan EJ, Igba CK, Brennan MT, Mougeot FB, Mougeot J-LC. A Computational Text Mining-Guided Meta-Analysis Approach to Identify Potential Xerostomia Drug Targets. Journal of Clinical Medicine. 2022; 11(5):1442. https://doi.org/10.3390/jcm11051442
Chicago/Turabian StyleBeckman, Micaela F., Elizabeth J. Brennan, Chika K. Igba, Michael T. Brennan, Farah B. Mougeot, and Jean-Luc C. Mougeot. 2022. "A Computational Text Mining-Guided Meta-Analysis Approach to Identify Potential Xerostomia Drug Targets" Journal of Clinical Medicine 11, no. 5: 1442. https://doi.org/10.3390/jcm11051442
APA StyleBeckman, M. F., Brennan, E. J., Igba, C. K., Brennan, M. T., Mougeot, F. B., & Mougeot, J. -L. C. (2022). A Computational Text Mining-Guided Meta-Analysis Approach to Identify Potential Xerostomia Drug Targets. Journal of Clinical Medicine, 11(5), 1442. https://doi.org/10.3390/jcm11051442