Statins and Colorectal Cancer Risk: A Population-Based Case-Control Study and Synthesis of the Epidemiological Evidence
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Source of Data
2.2. Design
2.3. Selection of Cases and Controls
2.4. Drugs Included and Exposure Definition
2.5. Confounding Assessment
2.6. Statistical Analysis
2.7. Sensitivity Analysis
2.8. Systematic Review and Meta-Analysis
3. Results
3.1. Characteristics of Cases and Controls
3.2. Association of Statins with Colorectal Cancer, by Recency, Duration and Subgroup Analyses
3.3. Association of Statins with CRC by Active Principle, Lipophilicity and Intensity
3.4. Potential Interaction of Statins with Other Drugs
3.5. Systematic Review and Meta-Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOR | adjusted odds ratio |
BIFAP | base de datos para la investigación farmacoepidemiológica en atención primaria |
BMI | body mass index |
CI | confidence interval |
COX | cyclooxygenase |
CRC | colorectal cancer |
CV | cardiovascular |
CVD | cardiovascular disease |
ES | effect size |
GI | gastrointestinal |
H2 | type-2 histamine receptor |
HMG-CoA | 3-hydroxy-3-methylglutaryl-coenzyme A |
ICPC | international classification in primary care |
ICD | international classification of diseases |
IQR | interquartile range |
LDL | low-density lipoproteins |
MICE | multiple imputation by chained equations |
NSAID | nonsteroidal anti-inflammatory drugs |
OR | odds ratio |
PCP | primary care physician |
PGE2 | prostaglandin-E2 |
PPAR | peroxisome proliferator-activated receptor |
PRISMA | preferred reporting items for systematic reviews and meta-analysis |
PPI | proton-pump inhibitors |
SD | standard deviation |
SYSADOA | symptomatic slow-acting drugs for osteoarthritis |
USPSTF | United States Preventive Services Task Force |
References
- International Agency for Research on Cancer—World Health Organization. Cancer Today. Available online: http://gco.iarc.fr/today (accessed on 16 November 2021).
- Brenner, H.; Kloor, M.; Pox, C.P. Colorectal cancer. Lancet 2014, 383, 1490–1502. [Google Scholar] [CrossRef]
- Binefa, G.; Rodríguez-Moranta, F.; Teule, À.; Medina-Hayas, M. Colorectal cancer: From prevention to personalized medicine. World J. Gastroenterol. 2014, 20, 6786–6808. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Dubois, R.N. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 2010, 29, 781–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreira, L.; Castells, A. Cyclooxygenase as a target for colorectal cancer chemoprevention. Curr. Drug Targets 2011, 12, 1888–1894. [Google Scholar] [CrossRef]
- Davì, G.; Patrono, C. Platelet activation and atherothrombosis. N. Engl. J. Med. 2007, 357, 2482–2494. [Google Scholar] [CrossRef]
- Murai, T. Cholesterol lowering: Role in cancer prevention and treatment. Biol. Chem. 2015, 396, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Katona, B.W.; Weiss, J.M. Chemoprevention of Colorectal Cancer. Gastroenterology 2020, 158, 368–388. [Google Scholar] [CrossRef]
- Bibbins-Domingo, K.; U.S. Preventive Services Task Force. Aspirin use for the primary prevention of cardiovascular disease and colorectal cancer: U.S. Preventive Services Task Force Recommendation Statement. Ann. Intern. Med. 2016, 164, 836–845. [Google Scholar] [CrossRef] [Green Version]
- United States Preventive Services Task Force. Available online: https://www.uspreventiveservicestaskforce.org/uspstf/draft-update-summary/aspirin-use-to-prevent-cardiovascular-disease-preventive-medication (accessed on 1 December 2021).
- Bowman, L.; Mafham, M.; Wallendszus, K.; Stevens, W.; Buck, G.; Barton, J.; ASCEND Study Collaborative Group. Effects of Aspirin for Primary Prevention in Persons with Diabetes Mellitus. N. Engl. J. Med. 2018, 379, 1529–1539. [Google Scholar] [CrossRef]
- Gaziano, J.M.; Brotons, C.; Coppolecchia, R.; Cricelli, C.; Darius, H.; Gorelick, P.B.; Howard, G.; Pearson, T.A.; Rothwell, P.M.; Ruilope, L.M.; et al. Use of aspirin to reduce risk of initial vascular events in patients at moderate risk of cardiovascular disease (ARRIVE): A randomised, double-blind, placebo-controlled trial. Lancet 2018, 392, 1036–1046. [Google Scholar] [CrossRef]
- McNeil, J.J.; Wolfe, R.; Woods, R.L.; Tonkin, A.M.; Donnan, G.A.; Nelson, M.R.; Reid, C.M.; Lockery, J.E.; Kirpach, B.; Storey, E.; et al. Effect of Aspirin on Cardiovascular Events and Bleeding in the Healthy Elderly. N. Engl. J. Med. 2018, 379, 1509–1518. [Google Scholar] [CrossRef]
- Mohammad, S.; Nguyen, H.; Nguyen, M.; Abdel-Rasoul, M.; Nguyen, V.; Nguyen, C.D.; Nguyen, K.T.; Li, L.; Kitzmiller, J.P. Pleiotropic Effects of Statins: Untapped Potential for Statin Pharmacotherapy. Curr. Vasc. Pharmacol. 2019, 17, 239–261. [Google Scholar] [CrossRef]
- Lytras, T.; Nikolopoulos, G.; Bonovas, S. Statins and the risk of colorectal cancer: An updated systematic review and meta-analysis of 40 studies. World J. Gastroenterol. 2014, 20, 1858–1870. [Google Scholar] [CrossRef]
- Barbalata, C.I.; Tefas, L.R.; Achim, M.; Tomuta, I.; Porfire, A.S. Statins in risk-reduction and treatment of cancer. World J. Clin. Oncol. 2020, 11, 573–588. [Google Scholar] [CrossRef]
- Maciá-Martínez, M.; Gil, M.; Huerta, C.; Martín-Merino, E.; Álvarez, A.; Bryant, V.; Montero, D.; BIFAP Team. Base de Datos para la Investigación Farmacoepidemiológica en Atención Primaria (BIFAP): A data resource for pharmacoepidemiology in Spain. Pharmacoepidemiol. Drug Saf. 2020, 29, 1236–1245. [Google Scholar] [CrossRef]
- Gil, M.; Rodríguez-Miguel, A.; Montoya-Catalá, H.; González, R.G.; Álvarez-Gutiérrez, A.; Rodríguez-Martín, S.; García-Rodríguez, L.A.; De Abajo, F.J. Validation study of colorectal cancer diagnosis in the Spanish primary care database, BIFAP. Pharmacoepidemiol. Drug Saf. 2018, 28, 209–216. [Google Scholar] [CrossRef]
- Rothman, K.; Greenland, S.; Lash, T.S. Case-control studies. In Modern Epidemiology, 3rd ed.; Rothman, K., Greenland, S., Lash, T.S., Eds.; Wolter Kluwer/Lippincott, William & Wilkins: Philadelphia, PA, USA, 2008; pp. 111–127. [Google Scholar]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; De Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e1082–e1143. [Google Scholar] [CrossRef]
- Flanders, W.D.; Louv, W.C. The exposure odds ratio in nested case-control studies with competing risks. Am. J. Epidemiol. 1986, 124, 684–692. [Google Scholar] [CrossRef]
- Royston, P.; White, I. Multiple Imputation by Chained Equations (MICE): Implementation in Stata. J. Stat. Softw. 2011, 45, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Altman, D.G.; Bland, J.M. Interaction revisited: The difference between two estimates. BMJ 2003, 326, 219. [Google Scholar] [CrossRef] [Green Version]
- Stancu, C.; Sima, A. Statins: Mechanism of action and effects. J. Cell. Mol. Med. 2001, 5, 378–387. [Google Scholar] [CrossRef]
- Clay, S.L.; Fonseca-Pereira, D.; Garrett, W.S. Colorectal cancer: The facts in the case of the microbiota. J. Clin. Investig. 2022, 132, 155101. [Google Scholar] [CrossRef]
- Wu, W.-K.; Ivanova, E.A.; Orekhov, A.N. Gut microbiome: A possible common therapeutic target for treatment of atherosclerosis and cancer. Semin. Cancer Biol. 2021, 70, 85–97. [Google Scholar] [CrossRef]
- Kim, J.; Lee, H.; An, J.; Song, Y.; Lee, C.-K.; Kim, K.; Kong, H. Alterations in Gut Microbiota by Statin Therapy and Possible Intermediate Effects on Hyperglycemia and Hyperlipidemia. Front. Microbiol. 2019, 10, 1947. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Li, H.; Zhao, X.; Zhou, R.; Liu, H.; Sun, Y.; Fan, Y.; Shi, Y.; Qiao, S.; Liu, S.; et al. Multi-omics study reveals that statin therapy is associated with restoration of gut microbiota homeostasis and improvement in outcomes in patients with acute coronary syndrome. Theranostics 2021, 11, 5778–5793. [Google Scholar] [CrossRef]
- Ibáñez-Sanz, G.; Guinó, E.; Pontes, C.; Quijada-Manuitt, M.Á.; De La Peña-Negro, L.C.; Aragón, M.; Domínguez, M.; Rodríguez-Alonso, L.; Blasco, A.; García-Rodríguez, A.; et al. Statin use and the risk of colorectal cancer in a population-based electronic health records study. Sci. Rep. 2019, 9, 13560. [Google Scholar] [CrossRef] [Green Version]
- Hachem, C.; Morgan, R.; Johnson, M.; Kuebeler, M.; El-Serag, H. Statins and the Risk of Colorectal Carcinoma: A Nested Case–Control Study in Veterans with Diabetes. Am. J. Gastroenterol. 2009, 104, 1241–1248. [Google Scholar] [CrossRef] [Green Version]
- Sehdev, A.; Shih, Y.-C.T.; Huo, D.; Vekhter, B.; Lyttle, C.; Polite, B. The role of statins for primary prevention in non-elderly colorectal cancer patients. Anticancer Res. 2014, 34, 5043–5050. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Miguel, A.; García-Rodríguez, L.A.; Gil, M.; Barreira-Hernández, D.; Rodríguez-Martín, S.; de Abajo, F.J. Population-based case-control study: Chemoprotection of colorectal cancer with non-aspirin nonsteroidal anti-inflammatory drugs and other drugs for pain control. Aliment. Pharmacol. Ther. 2019, 50, 295–305. [Google Scholar] [CrossRef]
- Rodríguez, L.A.G.; Soriano-Gabarró, M.; Bromley, S.; Lanas, A.; Soriano, L.C. New use of low-dose aspirin and risk of colorectal cancer by stage at diagnosis: A nested case–control study in UK general practice. BMC Cancer 2017, 17, 637. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Miguel, A.; García-Rodríguez, L.A.; Gil, M.; Montoya, H.; Rodríguez-Martín, S.; de Abajo, F.J. Clopidogrel and Low-Dose Aspirin, Alone or Together, Reduce Risk of Colorectal Cancer. Clin. Gastroenterol. Hepatol. 2019, 17, 2024–2033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, D.J.; Riis, A.H.; Friis, S.; Pedersen, L.; Baron, J.A.; Sørensen, H.T. Neither Long-Term Statin Use nor Atherosclerotic Disease Is Associated with Risk of Colorectal Cancer. Clin. Gastroenterol. Hepatol. 2010, 8, 1056–1061. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, K.; Chan, A.T.; Meyerhardt, J.A.; Giovannucci, E.L. Long-Term Statin Use, Total Cholesterol Level, and Risk of Colorectal Cancer: A Prospective Cohort Study. Am. J. Gastroenterol. 2022, 117, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Clancy, Z.; Keith, S.W.; Rabinowitz, C.; Ceccarelli, M.; Gagne, J.J.; Maio, V. Statins and colorectal cancer risk: A longitudinal study. Cancer Causes Control 2013, 24, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Setoguchi, S.; Glynn, R.J.; Avorn, J.; Mogun, H.; Schneeweiss, S. Statins and the Risk of Lung, Breast, and Colorectal Cancer in the Elderly. Circulation 2007, 115, 27–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papanagnou, P.; Stivarou, T.; Papageorgiou, I.; Papadopoulos, G.E.; Pappas, A. Marketed drugs used for the management of hypercholesterolemia as anticancer armament. Onco-Targets Ther. 2017, 10, 4393–4411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gelman, L.; Fruchart, J.-C.; Auwerx, J. An update on the mechanisms of action of the peroxisome proliferator-activated receptors (PPARs) and their roles in inflammation and cancer. Cell. Mol. Life Sci. 1999, 55, 932–943. [Google Scholar] [CrossRef]
- Jänne, P.A.; Mayer, R.J. Chemoprevention of Colorectal Cancer. N. Engl. J. Med. 2000, 342, 1960–1968. [Google Scholar] [CrossRef]
Cases n = 15,491 | Controls n = 60,000 | Non-Adjusted OR * (95% CI) | Fully-Adjusted-OR † (95% CI) | |
---|---|---|---|---|
Age, mean (±SD), years | 68.6 (11.8) | 68.6 (11.8) | Matched | Matched |
Women, n (%) | 6376 (41.2) | 24,693 (41.2) | Matched | Matched |
Follow-up in years, median (IQR) | 3.05 (4.57) | 2.80 (4.28) | 1.03 (1.02–1.04) | 1.04 (1.03–1.05) |
Visits to primary care in the prior year, n (%): | ||||
<6 | 3248 (21.0) | 19,508 (32.5) | Reference | Reference |
6–10 | 3639 (23.5) | 13,357 (22.3) | 1.71 (1.62–1.80) | 1.83 (1.73–1.93) |
11–20 | 5298 (34.2) | 17,118 (28.5) | 2.01 (1.91–2.11) | 2.23 (2.11–2.36) |
>20 | 3306 (21.3) | 10,017 (16.7) | 2.23 (2.11–2.37) | 2.52 (2.35–2.70) |
BMI, kg/m2, n (%): | ||||
<24.99 | 2123 (13.7) | 7635 (12.7) | Reference | Reference |
25–30 | 4933 (31.8) | 18,108 (30.2) | 1.00 (0.95–1.05) | 0.98 (0.93–1.03) |
>30 | 3652 (23.6) | 13,421 (22.4) | 0.99 (0.93–1.05) | 0.97 (0.91–1.03) |
Missing | 4783 (30.9) | 20,836 (34.7) | Imputed | Imputed |
Smoking, n (%): | ||||
Non-smoker | 4904 (31.7) | 18,016 (30.0) | Reference | Reference |
Current smoker | 2384 (15.4) | 8960 (14.9) | 0.99 (0.92–1.06) | 1.04 (0.97–1.12) |
Past smoker | 1217 (7.86) | 3821 (6.37) | 1.19 (1.10–1.28) | 1.19 (1.11–1.29) |
Missing | 6986 (45.1) | 29,203 (48.7) | Imputed | Imputed |
History of, n (%): | ||||
Alcohol abuse ‡ | 552 (3.56) | 1578 (2.63) | 1.38 (1.25–1.52) | 1.24 (1.12–1.38) |
Diabetes | 3170 (20.5) | 10,778 (18.0) | 1.18 (1.13–1.23) | 1.06 (0.98–1.16) |
Non-gout hyperuricemia | 984 (6.35) | 3829 (6.38) | 1.01 (0.93–1.08) | 0.92 (0.86–1.00) |
Gout | 718 (4.63) | 2363 (3.94) | 1.19 (1.09–1.30) | 1.12 (1.02–1.22) |
Hypertension | 7527 (48.6) | 28,051 (46.8) | 1.09 (1.05–1.13) | 0.98 (0.94–1.04) |
Perypheral artery disease | 466 (3.01) | 1420 (2.37) | 1.28 (1.15–1.43) | 1.17 (1.04–1.31) |
Acute myocardial infarction | 502 (3.24) | 2213 (3.69) | 0.88 (0.79–0.97) | 0.86 (0.77–0.96) |
Angina pectoris | 467 (3.01) | 1600 (2.67) | 1.13 (1.02–1.26) | 1.10 (0.98–1.23) |
Stroke § | 559 (3.61) | 2249 (3.75) | 0.96 (0.87–1.06) | 0.87 (0.79–0.97) |
Transient ischemic attack | 281 (1.81) | 1109 (1.85) | 0.98 (0.86–1.12) | 0.94 (0.82–1.08) |
Chronic gastritis | 154 (0.99) | 604 (1.01) | 0.99 (0.83–1.18) | 0.84 (0.70–1.01) |
Gastroesophageal reflux | 1866 (12.1) | 6896 (11.5) | 1.05 (1.00–1.11) | 0.93 (0.87–0.98) |
Inflammatory bowel disease | 51 (0.33) | 238 (0.40) | 0.83 (0.61–1.12) | 0.41 (0.30–0.57) |
Irritable bowel syndrome | 238 (1.54) | 941 (1.57) | 0.98 (0.85–1.13) | 0.84 (0.72–0.97) |
Constipation | 1601 (10.3) | 5424 (9.04) | 1.16 (1.10–1.24) | 0.93 (0.81–1.06) |
Anorectal pathology ¶ | 1995 (12.9) | 5741 (9.57) | 1.40 (1.32–1.48) | 1.24 (1.17–1.31) |
Complicated upper GI disorders ** | 459 (2.96) | 1062 (1.77) | 1.73 (1.55–1.94) | 1.41 (1.26–1.59) |
Non-complicated upper GI disorders †† | 1103 (7.12) | 3889 (6.48) | 1.14 (1.06–1.22) | 1.02 (0.95–1.10) |
Dyspepsia | 1797 (11.6) | 6549 (10.9) | 1.10 (1.04–1.16) | 0.97 (0.92–1.03) |
Lower GI bleeding | 898 (5.80) | 1310 (2.18) | 2.76 (2.53–3.01) | 2.44 (2.23–2.67) |
Cases n = 15,491 | Controls n = 60,000 | Non-Adjusted OR * (95% CI) | Fully-Adjusted OR † (95% CI) | |
---|---|---|---|---|
Non-users | 10,826 (69.9) | 42,008 (70.0) | Reference | Reference |
Recency of use, in days, n (%): | ||||
Current (0–90) | 3332 (21.5) | 13,105 (21.8) | 0.99 (0.94–1.03) | 0.87 (0.83–0.91) |
Recent (91–365) | 540 (3.49) | 2068 (3.45) | 1.01 (0.92–1.12) | 0.91 (0.83–1.01) |
Past (>365) | 793 (5.12) | 2819 (4.70) | 1.09 (1.01–1.18) | 1.09 (1.00–1.19) |
Continuous duration, among current users: | ||||
≤1 year: | 1055 (6.81) | 4006 (6.68) | 1.02 (0.95–1.10) | 0.91 (0.84–0.98) |
<91 days | 409 (2.64) | 1575 (2.62) | 1.01 (0.90–1.13) | 0.94 (0.84–1.05) |
91–180 days | 249 (1.61) | 924 (1.54) | 1.05 (0.91–1.20) | 0.95 (0.82–1.10) |
181 days–1 year | 397 (2.56) | 1507 (2.51) | 1.02 (0.91–1.14) | 0.85 (0.76–0.96) |
>1 year: | 2277 (14.7) | 9099 (15.2) | 0.97 (0.92–1.02) | 0.85 (0.81–0.90) |
366 days–3 years | 1195 (7.71) | 5081 (8.47) | 0.91 (0.85–0.98) | 0.79 (0.73–0.84) |
>3 years | 1082 (6.98) | 4018 (6.70) | 1.04 (0.97–1.12) | 0.94 (0.87–1.02) |
p for trend < 0.001 | ||||
Excluding prior use of NSAIDs ‡ and/or antiplatelet drugs, § among current users: | ||||
Ever: | n = 4646 | n = 18,086 | ||
Any duration | 558 (12.0) | 2229 (12.3) | 0.98 (0.89–1.08) | 0.79 (0.71–0.88) |
Continuous duration: | ||||
≤1 year | 187 (4.02) | 805 (4.45) | 0.91 (0.77–1.07) | 0.77 (0.65–0.92) |
>1 year | 371 (7.99) | 1424 (7.87) | 1.02 (0.90–1.15) | 0.80 (0.71–0.91) |
In the prior year: | n = 8826 | n = 33,277 | ||
Any duration | 1211 (13.7) | 4520 (13.6) | 1.01 (0.94–1.08) | 0.82 (0.76–0.89) |
Continuous duration: | ||||
≤1 year | 411 (4.66) | 1518 (4.56) | 1.02 (0.91–1.15) | 0.85 (0.76–0.96) |
>1 year | 800 (9.06) | 3002 (9.02) | 1.00 (0.92–1.09) | 0.81 (0.74–0.88) |
Cases n = 15,491 | Controls n = 60,000 | Non-Adjusted OR * (95% CI) | Fully-Adjusted OR † (95% CI) | |
---|---|---|---|---|
Non-users | 10,826 (69.9) | 42,008 (70.0) | Reference | Reference |
Any duration: | ||||
Simvastatin | 1097 (8.85) | 4310 (8.97) | 0.99 (0.92–1.06) | 0.86 (0.80–0.93) |
Atorvastatin | 951 (7.85) | 3642 (7.76) | 1.01 (0.94–1.09) | 0.92 (0.84–1.00) |
Pravastatin | 253 (2.26) | 966 (2.23) | 1.02 (088–1.17) | 0.92 (0.80–1.06) |
Lovastatin | 177 (1.60) | 684 (1.59) | 1.00 (0.85–1.19) | 0.96 (0.81–1.13) |
Fluvastatin | 117 (1.06) | 448 (1.05) | 1.01 (0.82–1.24) | 0.91 (0.74–1.13) |
Rosuvastatin | 37 (0.34) | 221 (0.52) | 0.65 (0.46–0.92) | 0.58 (0.41–0.83) |
Pitavastatin | 10 (0.09) | 35 (0.08) | 1.11 (0.55–2.24) | 0.93 (0.46–1.91) |
Cases n = 15,491 | Controls n = 60,000 | Non-Adjusted OR * (95% CI) | Fully-Adjusted OR † (95% CI) | |
---|---|---|---|---|
Non-users | 10,826 (69.9) | 42,008 (70.0) | Reference | Reference |
Intensity: ‡ | ||||
Any duration: | ||||
Low intensity | 747 (4.82) | 2748 (4.58) | 1.05 (0.97–1.15) | 0.93 (0.85–1.01) |
Moderate intensity | 1714 (11.1) | 6855 (11.4) | 0.97 (0.92–1.03) | 0.84 (0.79–0.90) |
High intensity | 285 (1.84) | 1103 (1.84) | 1.00 (0.88–1.14) | 0.85 (0.74–0.98) |
Missing dose | 586 (3.78) | 2399 (4.00) | 0.95 (0.86–1.04) | 0.88 (0.80–0.97) |
Continuous duration: | ||||
Low intensity: | ||||
≤1 year | 235 (1.52) | 793 (1.32) | 1.15 (0.99–1.33) | 1.02 (0.88–1.18) |
>1 year | 512 (3.31) | 1955 (3.26) | 1.02 (0.92–1.12) | 0.89 (0.81–0.99) |
Moderate intensity: | ||||
≤1 year | 536 (3.46) | 2083 (3.47) | 1.00 (0.91–1.10) | 0.87 (0.78–0.96) |
>1 year | 1178 (7.60) | 4772 (7.95) | 0.96 (0.89–1.02) | 0.83 (0.77–0.89) |
High intensity: | ||||
≤1 year | 87 (0.56) | 332 (0.55) | 1.02 (0.80–1.29) | 0.89 (0.70–1.14) |
>1 year | 198 (1.28) | 771 (1.29) | 1.00 (0.85–1.17) | 0.83 (0.70–0.98) |
Lipophilicity: | ||||
Any duration: | ||||
Lipophilic § | 2947 (19.0) | 11,503 (19.2) | 0.99 (0.95–1.04) | 0.88 (0.83–0.92) |
Hydrophilic ¶ | 385 (2.49) | 1604 (2.67) | 0.93 (0.83–1.04) | 0.81 (0.72–0.91) |
Continuous duration: | ||||
Lipophilic: | ||||
≤1 year | 933 (6.02) | 3536 (5.89) | 1.02 (0.95–1.10) | 0.91 (0.84–0.98) |
>1 year | 2014 (13.0) | 7965 (13.3) | 0.98 (0.93–1.03) | 0.86 (0.81–0.92) |
Hydrophilic: | ||||
≤1 year | 122 (0.79) | 470 (0.78) | 1.01 (0.82–1.23) | 0.88 (0.72–1.08) |
>1 year | 263 (1.70) | 1134 (1.89) | 0.90 (0.78–1.03) | 0.78 (0.68–0.90) |
Cases n = 15,491 | Controls n = 60,000 | Non-Adjusted OR * (95% CI) | Fully-Adjusted OR † (95% CI) | |
---|---|---|---|---|
Antihypertensive drugs: | ||||
Non-users | 10,453 (67.5) | 40,572 (67.6) | Ref. | Ref. |
Statins only | 3121 (20.2) | 12,273 (20.5) | 0.99 (0.94–1.03) | 0.87 (0.82–0.91) |
Alpha blockers only | 199 (1.28) | 895 (1.49) | 0.86 (0.74–1.01) | 0.76 (0.65–0.89) |
Statins + Alpha blockers | 141 (0.91) | 484 (0.81) | 1.13 (0.94–1.37) | 0.97 (0.80–1.18) |
Non-users | 9834 (63.5) | 38,316 (63.9) | Ref. | Ref. |
Statins only | 2399 (15.5) | 9488 (15.8) | 0.99 (0.94–1.04) | 0.86 (0.81–0.91) |
Beta blockers only | 644 (4.16) | 2263 (3.77) | 1.11 (1.01–1.21) | 0.94 (0.85–1.03) |
Statins + Beta blockers | 744 (4.80) | 2901 (4.83) | 0.99 (0.92–1.09) | 0.84 (0.76–0.92) |
Non-users | 9765 (63.0) | 38,146 (63.6) | Ref. | Ref. |
Statins only | 2589 (16.7) | 10,252 (17.1) | 0.99 (0.94–1.04) | 0.86 (0.82–0.91) |
ARBs only | 647 (4.18) | 2306 (3.84) | 1.10 (1.00–1.20) | 0.92 (0.84–1.01) |
Statins + ARBs | 484 (3.12) | 1851 (3.08) | 1.02 (0.92–1.13) | 0.84 (0.76–0.94) |
Non-users | 8906 (57.5) | 35,050 (58.4) | Ref. | Ref. |
Statins only | 2076 (13.4) | 8449 (14.1) | 0.97 (0.92–1.02) | 0.84 (0.80–0.89) |
ACEIs only | 1033 (6.67) | 3829 (6.38) | 1.06 (0.99–1.15) | 0.88 (0.81–0.95) |
Statins + ACEIs | 788 (5.09) | 2917 (4.95) | 1.05 (0.96–1.14) | 0.83 (0.76–0.91) |
Non-users | 9566 (61.8) | 37,225 (62.0) | Ref. | Ref. |
Statins only | 2424 (15.7) | 9623 (16.0) | 0.98 (0.93–1.03) | 0.85 (0.81–0.90) |
CCBs only | 758 (4.89) | 2916 (4.86) | 1.01 (0.93–1.10) | 0.89 (0.82–0.97) |
Statins + CCBs | 625 (4.03) | 2440 (4.07) | 1.00 (0.91–1.09) | 0.84 (0.76–0.93) |
Non-users | 9570 (61.8) | 37,309 (62.2) | Ref. | Ref. |
Statins only | 2529 (16.3) | 10,081 (16.8) | 0.98 (0.93–1.03) | 0.85 (0.80–0.90) |
Diuretics only ‡ | 839 (5.42) | 3201 (5.33) | 1.02 (0.94–1.11) | 0.88 (0.81–0.96) |
Statins + diuretics | 545 (3.52) | 2269 (3.78) | 0.94 (0.85–1.03) | 0.78 (0.71–0.87) |
Antiplatelet drugs: | ||||
Non-users | 9626 (62.1) | 37,319 (62.2) | Ref. | Ref. |
Statins only | 1970 (12.7) | 7942 (13.2) | 0.96 (0.91–1.02) | 0.83 (0.78–0.88) |
Low-dose aspirin only | 712 (4.60) | 2928 (4.88) | 0.94 (0.86–1.03) | 0.81 (0.74–0.88) |
Statins + Low-dose aspirin | 1064 (6.87) | 4212 (7.02) | 0.98 (0.91–1.05) | 0.80 (0.74–0.87) |
Non-users | 10,671 (68.9) | 41,465 (69.1) | Ref. | Ref. |
Statins only | 2971 (19.2) | 11,701 (19.5) | 0.99 (0.94–1.03) | 0.87 (0.83–0.92) |
Clopidogrel only | 107 (0.69) | 386 (0.64) | 1.08 (0.87–1.34) | 0.82 (0.66–1.03) |
Statins + Clopidogrel | 229 (1.48) | 927 (1.54) | 0.96 (0.83–1.11) | 0.75 (0.65–0.88) |
Other lipid-modifying agents: | ||||
Non-users | 10,792 (69.7) | 41,848 (69.8) | Ref. | Ref. |
Statins only | 3206 (20.7) | 12,577 (21.0) | 0.99 (0.94–1.03) | 0.87 (0.82–0.91) |
Other lipid-lowering drugs only § | 21 (0.14) | 90 (0.15) | 0.90 (0.56–1.46) | 0.70 (0.43–1.15) |
Statins + Other lipid-lowering drugs | 75 (0.48) | 314 (0.52) | 0.93 (0.72–1.19) | 0.80 (0.62–1.04) |
Non-users | 10,612 (68.5) | 41,143 (68.6) | Ref. | Ref. |
Statins only | 3154 (20.4) | 12,383 (20.6) | 0.99 (0.94–1.03) | 0.87 (0.83–0.91) |
Fibrates only | 113 (0.73) | 485 (0.81) | 0.90 (0.74–1.11) | 0.79 (0.64–0.98) |
Statins + Fibrates | 47 (0.30) | 246 (0.41) | 0.74 (0.54–1.01) | 0.61 (0.44–0.84) |
NSAIDs: ¶ | ||||
Non-users | 4356 (28.1) | 16,996 (28.3) | Ref. | Ref. |
Statins only | 1074 (6.93) | 4227 (7.04) | 0.99 (0.92–1.07) | 0.82 (0.76–0.89) |
NSAIDs only | 1433 (9.25) | 6567 (11.0) | 0.85 (0.80–0.91) | 0.66 (0.61–0.71) |
Statins + NSAIDs | 581 (3.75) | 2632 (4.39) | 0.86 (0.78–0.95) | 0.65 (0.58–0.72) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Miguel, A.; Fernández-Antón, E.; Barreira-Hernández, D.; García-Rodríguez, L.A.; Gil, M.; García-Lledó, A.; De Abajo, F.J. Statins and Colorectal Cancer Risk: A Population-Based Case-Control Study and Synthesis of the Epidemiological Evidence. J. Clin. Med. 2022, 11, 1528. https://doi.org/10.3390/jcm11061528
Rodríguez-Miguel A, Fernández-Antón E, Barreira-Hernández D, García-Rodríguez LA, Gil M, García-Lledó A, De Abajo FJ. Statins and Colorectal Cancer Risk: A Population-Based Case-Control Study and Synthesis of the Epidemiological Evidence. Journal of Clinical Medicine. 2022; 11(6):1528. https://doi.org/10.3390/jcm11061528
Chicago/Turabian StyleRodríguez-Miguel, Antonio, Encarnación Fernández-Antón, Diana Barreira-Hernández, Luis A. García-Rodríguez, Miguel Gil, Alberto García-Lledó, and Francisco J. De Abajo. 2022. "Statins and Colorectal Cancer Risk: A Population-Based Case-Control Study and Synthesis of the Epidemiological Evidence" Journal of Clinical Medicine 11, no. 6: 1528. https://doi.org/10.3390/jcm11061528
APA StyleRodríguez-Miguel, A., Fernández-Antón, E., Barreira-Hernández, D., García-Rodríguez, L. A., Gil, M., García-Lledó, A., & De Abajo, F. J. (2022). Statins and Colorectal Cancer Risk: A Population-Based Case-Control Study and Synthesis of the Epidemiological Evidence. Journal of Clinical Medicine, 11(6), 1528. https://doi.org/10.3390/jcm11061528