Factors Contributing to Residual Low Back Pain after Osteoporotic Vertebral Fractures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient-Reported Outcome Measure
2.2. Radiographic Assessment
2.3. Data Analysis
3. Results
3.1. Demographics
3.2. Factors Contributing to Residual Low Back Pain
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kendler, D.L.; Bauer, D.C.; Davison, K.S.; Dian, L.; Hanley, D.A.; Harris, S.T.; McClung, M.R.; Miller, P.D.; Schousboe, J.T.; Yuen, C.K.; et al. Vertebral Fractures: Clinical Importance and Management. Am. J. Med. 2016, 129, 221.e1–221.e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujiwara, S.; Kasagi, F.; Masunari, N.; Naito, K.; Suzuki, G.; Fukunaga, M. Fracture prediction from bone mineral density in Japanese men and women. J. Bone Miner. Res. 2003, 18, 1547–1553. [Google Scholar] [CrossRef] [PubMed]
- Inose, H.; Kato, T.; Nakamura, H.; Hoshino, M.; Togawa, D.; Hirano, T.; Tokuhashi, Y.; Ohba, T.; Haro, H.; Tsuji, T.; et al. Predictors for quality of life improvement after acute osteoporotic vertebral fracture: Results of post hoc analysis of a prospective randomized study. Qual. Life Res. 2020. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, J.; Davis, A. Diagnosis and Management of Vertebral Compression Fractures. Am. Fam. Physician 2016, 94, 44–50. [Google Scholar] [PubMed]
- Inose, H.; Kato, T.; Shirasawa, S.; Takahashi, S.; Hoshino, M.; Yamato, Y.; Matsukura, Y.; Hirai, T.; Yoshii, T.; Okawa, A. Time Course of Acute Vertebral Fractures: A Prospective Multicenter Cohort Study. J. Clin. Med. 2021, 10, 5961. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.; Atkinson, E.J.; O’Fallon, W.M.; Melton, L.J., 3rd. Incidence of clinically diagnosed vertebral fractures: A population-based study in Rochester, Minnesota, 1985-1989. J. Bone Miner. Res. 1992, 7, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Iwata, A.; Kanayama, M.; Oha, F.; Shimamura, Y.; Hashimoto, T.; Takahata, M.; Iwasaki, N. Is Bone Nonunion, Vertebral Deformity, or Spinopelvic Malalignment the Best Therapeutic Target for Amelioration of Low Back Pain After Osteoporotic Vertebral Fracture? Spine 2020, 45, E760–E767. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Inose, H.; Ichimura, S.; Tokuhashi, Y.; Nakamura, H.; Hoshino, M.; Togawa, D.; Hirano, T.; Haro, H.; Ohba, T.; et al. Comparison of Rigid and Soft-Brace Treatments for Acute Osteoporotic Vertebral Compression Fracture: A Prospective, Randomized, Multicenter Study. J. Clin. Med. 2019, 8, 198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormack, H.M.; Horne, D.J.; Sheather, S. Clinical applications of visual analogue scales: A critical review. Psychol. Med. 1988, 18, 1007–1019. [Google Scholar] [CrossRef]
- Bursac, Z.; Gauss, C.H.; Williams, D.K.; Hosmer, D.W. Purposeful selection of variables in logistic regression. Source Code Biol. Med. 2008, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Kasl, S.V.; Jones, B.A. An epidemiological perspective on research design, measurement, and surveillance strategies. In Handbook of Occupational Health Psychology; American Psychological Association: Washington, DC, USA, 2003; pp. 379–398. [Google Scholar]
- Lafage, R.; Schwab, F.; Elysee, J.; Smith, J.S.; Alshabab, B.S.; Passias, P.; Klineberg, E.; Kim, H.J.; Shaffrey, C.; Burton, D.; et al. Surgical Planning for Adult Spinal Deformity: Anticipated Sagittal Alignment Corrections According to the Surgical Level. Glob. Spine J. 2021. [Google Scholar] [CrossRef] [PubMed]
- Chaléat-Valayer, E.; Mac-Thiong, J.M.; Paquet, J.; Berthonnaud, E.; Siani, F.; Roussouly, P. Sagittal spino-pelvic alignment in chronic low back pain. Eur. Spine J. 2011, 20 (Suppl. S5), 634–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitahara, H.; Ye, Z.; Aoyagi, K.; Ross, P.D.; Abe, Y.; Honda, S.; Kanagae, M.; Mizukami, S.; Kusano, Y.; Tomita, M.; et al. Associations of vertebral deformities and osteoarthritis with back pain among Japanese women: The Hizen-Oshima study. Osteoporos. Int. 2013, 24, 907–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieuwenhuijse, M.J.; van Erkel, A.R.; Dijkstra, P.D. Percutaneous vertebroplasty for subacute and chronic painful osteoporotic vertebral compression fractures can safely be undertaken in the first year after the onset of symptoms. J. Bone Joint Surg. Br. 2012, 94, 815–820. [Google Scholar] [CrossRef] [PubMed]
- Firanescu, C.E.; de Vries, J.; Lodder, P.; Venmans, A.; Schoemaker, M.C.; Smeet, A.J.; Donga, E.; Juttmann, J.R.; Klazen, C.A.H.; Elgersma, O.E.H.; et al. Vertebroplasty versus sham procedure for painful acute osteoporotic vertebral compression fractures (VERTOS IV): Randomised sham controlled clinical trial. BMJ 2018, 361, k1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoshino, M.; Takahashi, S.; Yasuda, H.; Terai, H.; Watanabe, K.; Hayashi, K.; Tsujio, T.; Kono, H.; Suzuki, A.; Tamai, K.; et al. Balloon Kyphoplasty Versus Conservative Treatment for Acute Osteoporotic Vertebral Fractures With Poor Prognostic Factors: Propensity Score Matched Analysis Using Data From Two Prospective Multicenter Studies. Spine 2019, 44, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Clark, W.; Bird, P.; Gonski, P.; Diamond, T.H.; Smerdely, P.; McNeil, H.P.; Schlaphoff, G.; Bryant, C.; Barnes, E.; Gebski, V. Safety and efficacy of vertebroplasty for acute painful osteoporotic fractures (VAPOUR): A multicentre, randomised, double-blind, placebo-controlled trial. Lancet 2016, 388, 1408–1416. [Google Scholar] [CrossRef]
- Chen, D.; An, Z.Q.; Song, S.; Tang, J.F.; Qin, H. Percutaneous vertebroplasty compared with conservative treatment in patients with chronic painful osteoporotic spinal fractures. J. Clin. Neurosci. 2014, 21, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Carli, D.F.M.; Venmans, A.; Lodder, P.; Donga, E.; van Oudheusden, T.; Boukrab, I.; Schoemaker, M.C.; Smeets, A.J.; Schonenberg, C.; Hirsch, J.A.; et al. Vertebroplasty Versus Sham Intervention for Painful Chronic Osteoporotic Vertebral Compression Fractures (VERTOS 5): Randomised Sham Controlled Clinical Trial. SSRN Electron. J. 2020. [Google Scholar] [CrossRef]
- Inose, H.; Kato, T.; Ichimura, S.; Nakamura, H.; Hoshino, M.; Togawa, D.; Hirano, T.; Tokuhashi, Y.; Ohba, T.; Haro, H.; et al. Risk Factors of Nonunion After Acute Osteoporotic Vertebral Fractures: A Prospective Multicenter Cohort Study. Spine 2020, 45, 895. [Google Scholar] [CrossRef] [PubMed]
- Tsuchie, H.; Miyakoshi, N.; Kasukawa, Y.; Nishi, T.; Abe, H.; Segawa, T.; Shimada, Y. The effect of teriparatide to alleviate pain and to prevent vertebral collapse after fresh osteoporotic vertebral fracture. J. Bone Miner. Metab. 2016, 34, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Marongiu, G.; Contini, A.; Cozzi Lepri, A.; Donadu, M.; Verona, M.; Capone, A. The Treatment of Acute Diaphyseal Long-bones Fractures with Orthobiologics and Pharmacological Interventions for Bone Healing Enhancement: A Systematic Review of Clinical Evidence. Bioengineering 2020, 7, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreasen, M.L.; Langhoff, L.; Jensen, T.S.; Albert, H.B. Reproduction of the lumbar lordosis: A comparison of standing radiographs versus supine magnetic resonance imaging obtained with straightened lower extremities. J. Manip. Physiol Ther. 2007, 30, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Benditz, A.; Boluki, D.; Weber, M.; Zeman, F.; Grifka, J.; Völlner, F. Comparison of Lumbar Lordosis in Lateral Radiographs in Standing Position with supine MR Imaging in consideration of the Sacral Slope. Rofo 2017, 189, 233–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | |
---|---|
Age, years (SD) | 75.3 (5.3) |
Fracture level, n | |
T10 | 4 |
T11 | 13 |
T12 | 75 |
L1 | 67 |
L2 | 36 |
48 weeks variables | |
Use of analgesics, n (%) | 30 (15.4) |
VAS for low back pain, point (SD) | 27.5 (26.4) |
Local angle, degree (SD) | −17.7 (6.3) |
T10/L2 Cobb angle, degree (SD) | −16.1 (10.4) |
T10/L5 Cobb angle, degree (SD) | 18.6 (11.6) |
Lumbar lordosis, degree (SD) | 27.3 (13.4) |
Sacral slope, degree (SD) | 35.8 (8.0) |
AVBCP, % (SD) | 54.3 (16.4) |
Nonunion, n (%) | 35 (18) |
Secondary fracture, n (%) | 11 (6) |
Characteristic | B | 95% CI | p-Value |
---|---|---|---|
Baseline variables | |||
Age | 0.18 | −0.54–0.89 | 0.63 |
Fracture level T12, L1, L2 | −6.32 | −12.89–0.26 | 0.06 |
VAS 0 week | 0.34 | 0.20–0.48 | <0.0001 * |
48 weeks variables | |||
Use of analgesics | 10.44 | 5.47–15.41 | <0.0001 * |
Local angle | −0.66 | −1.24–−0.07 | 0.03 * |
T10/L2 Cobb angle | −0.33 | −0.69–0.03 | 0.08 |
T10/L5 Cobb angle | −0.12 | −0.46–0.21 | 0.47 |
Lumbar lordosis | 0.06 | −0.23–0.34 | 0.70 |
Sacral slope | −0.07 | −0.55–0.42 | 0.78 |
AVBCP | −0.30 | −0.52–−0.07 | 0.01 * |
Nonunion | 6.69 | 1.91–11.48 | 0.01 * |
Secondary fracture | 5.79 | −2.28–13.86 | 0.16 |
Factor | B | 95% CI | p-Value |
---|---|---|---|
VAS at 0 week | 0.29 | 0.15–0.42 | <0.0001 * |
Use of analgesics at 48 weeks | 8.84 | 4.10–13.59 | 0.0003 * |
Nonunion | 5.72 | 1.30–10.15 | 0.01 * |
Factor | B | 95% CI | p-Value |
---|---|---|---|
VAS at 0 week | 0.29 | 0.15–0.43 | <0.0001 * |
Use of analgesics at 48 weeks | 8.03 | 3.16–12.91 | 0.001 * |
Nonunion | 6.23 | 1.30–11.16 | 0.01 * |
AVBCP | −0.13 | −0.36–0.10 | 0.26 |
T10/L5 Cobb angle | −0.04 | −0.35–0.27 | 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inose, H.; Kato, T.; Ichimura, S.; Nakamura, H.; Hoshino, M.; Takahashi, S.; Togawa, D.; Hirano, T.; Tokuhashi, Y.; Ohba, T.; et al. Factors Contributing to Residual Low Back Pain after Osteoporotic Vertebral Fractures. J. Clin. Med. 2022, 11, 1566. https://doi.org/10.3390/jcm11061566
Inose H, Kato T, Ichimura S, Nakamura H, Hoshino M, Takahashi S, Togawa D, Hirano T, Tokuhashi Y, Ohba T, et al. Factors Contributing to Residual Low Back Pain after Osteoporotic Vertebral Fractures. Journal of Clinical Medicine. 2022; 11(6):1566. https://doi.org/10.3390/jcm11061566
Chicago/Turabian StyleInose, Hiroyuki, Tsuyoshi Kato, Shoichi Ichimura, Hiroaki Nakamura, Masatoshi Hoshino, Shinji Takahashi, Daisuke Togawa, Toru Hirano, Yasuaki Tokuhashi, Tetsuro Ohba, and et al. 2022. "Factors Contributing to Residual Low Back Pain after Osteoporotic Vertebral Fractures" Journal of Clinical Medicine 11, no. 6: 1566. https://doi.org/10.3390/jcm11061566
APA StyleInose, H., Kato, T., Ichimura, S., Nakamura, H., Hoshino, M., Takahashi, S., Togawa, D., Hirano, T., Tokuhashi, Y., Ohba, T., Haro, H., Tsuji, T., Sato, K., Sasao, Y., Takahata, M., Otani, K., Momoshima, S., Hirai, T., Yoshii, T., & Okawa, A. (2022). Factors Contributing to Residual Low Back Pain after Osteoporotic Vertebral Fractures. Journal of Clinical Medicine, 11(6), 1566. https://doi.org/10.3390/jcm11061566