Understanding the Bioactivity and Prognostic Implication of Commonly Used Surface Antigens in Multiple Myeloma
Abstract
:1. Introduction
- # CD38
- # CD138
- # CD45
- # CD19
- # CD117
- # CD56
- # CD81
- # CD27
- # CD28
- # CD24
2. Summary
Author Contributions
Funding
Conflicts of Interest
References
- van de Donk, N.W.C.J.; Pawlyn, C.; Yong, K.L. Multiple myeloma. Lancet 2021, 397, 410–427. [Google Scholar] [CrossRef]
- Kumar, S.K.; Rajkumar, V.; Kyle, R.A.; Van Duin, M.; Sonneveld, P.; Mateos, M.-V.; Gay, F.; Anderson, K.C. Multiple myeloma. Nat. Rev. Dis. Prim. 2017, 3, 17046. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Tejedor, A.; Lorenzo-Mohamed, M.; Puig, N.; García-Sanz, R.; Mateos, M.-V.; Garayoa, M.; Paíno, T. Immune System Alterations in Multiple Myeloma: Molecular Mechanisms and Therapeutic Strategies to Reverse Immunosuppression. Cancers 2021, 13, 1353. [Google Scholar] [CrossRef]
- García-Ortiz, A.; Rodríguez-García, Y.; Encinas, J.; Maroto-Martín, E.; Castellano, E.; Teixidó, J.; Martínez-López, J. The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression. Cancers 2021, 13, 217. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.S.; Li, Y.; Mitra, A.; Bi, L.; Abyzov, A.; Van Wijnen, A.J.; Baughn, L.B.; Van Ness, B.; Rajkumar, V.; Kumar, S.; et al. Molecular signatures of multiple myeloma progression through single cell RNA-Seq. Blood Cancer J. 2019, 9, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahindra, A.; Hideshima, T.; Anderson, K.C. Multiple myeloma: Biology of the disease. Blood Rev. 2010, 24 (Suppl. 1), S5–S11. [Google Scholar] [CrossRef]
- Pinto, V.; Bergantim, R.; Caires, H.R.; Seca, H.; Guimarães, J.E.; Vasconcelos, M.H. Multiple Myeloma: Available Therapies and Causes of Drug Resistance. Cancers 2020, 12, 407. [Google Scholar] [CrossRef] [Green Version]
- Katz, B.-Z. Adhesion molecules—The lifelines of multiple myeloma cells. Semin. Cancer Biol. 2010, 20, 186–195. [Google Scholar] [CrossRef]
- Giannakoulas, N.; Ntanasis-Stathopoulos, I.; Terpos, E. The Role of Marrow Microenvironment in the Growth and Development of Malignant Plasma Cells in Multiple Myeloma. Int. J. Mol. Sci. 2021, 22, 4462. [Google Scholar] [CrossRef]
- Cook, G.; Dumbar, M.; Franklin, I.M. The Role of Adhesion Molecules in Multiple Myeloma. Acta Haematol. 1997, 97, 81–89. [Google Scholar] [CrossRef]
- Di Meo, F.; Yu, C.; Cesarano, A.; Arafat, A.; Marino, S.; Roodman, G.D.; Broxmeyer, H.E.; Perna, F. Mapping the High-Risk Multiple Myeloma Cell Surface Proteome Identifies T-Cell Inhibitory Receptors for Immune Targeting. Blood 2021, 138 (Suppl. 1), 265. [Google Scholar] [CrossRef]
- Alaterre, E.; Raimbault, S.; Goldschmidt, H.; Bouhya, S.; Requirand, G.; Robert, N.; Boireau, S.; Seckinger, A.; Hose, D.; Klein, B.; et al. CD24, CD27, CD36 and CD302 gene expression for outcome prediction in patients with multiple myeloma. Oncotarget 2017, 8, 98931–98944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jelínek, T.; Bezdekova, R.; Zátopková, M.; Burgos, L.; Simicek, M.; Sevcikova, T.; Paiva, B.; Hajek, R. Current applications of multiparameter flow cytometry in plasma cell disorders. Blood Cancer J. 2017, 7, e617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, K.; Okazuka, K.; Ishida, T.; Sakamoto, J.; Kaneko, S.; Nashimoto, J.; Uto, Y.; Ogura, M.; Yoshiki, Y.; Abe, Y.; et al. Minimal residual disease detection in multiple myeloma: Comparison between BML single-tube 10-color multiparameter flow cytometry and EuroFlow multiparameter flow cytometry. Ann. Hematol. 2021, 100, 2989–2995. [Google Scholar] [CrossRef]
- Paiva, B.D.L.; Almeida, J.; Pérez-Andrés, M.; Mateo, G.; López, A.; Rasillo, A.; Vídriales, M.-B.; López-Berges, M.-C.; Miguel, J.F.S.; Orfao, A. Utility of flow cytometry immunophenotyping in multiple myeloma and other clonal plasma cell-related disorders. Cytom. Part B Clin. Cytom. 2010, 78, 239–252. [Google Scholar] [CrossRef]
- Caers, J.; Garderet, L.; Kortüm, K.M.; O’Dwyer, M.E.; Van De Donk, N.W.; Binder, M.; Dold, S.M.; Gay, F.; Corre, J.; Beguin, Y.; et al. European Myeloma Network recommendations on tools for the diagnosis and monitoring of multiple myeloma: What to use and when. Haematologica 2018, 103, 1772–1784. [Google Scholar] [CrossRef]
- Flores-Montero, J.; Sanoja-Flores, L.; Paiva, B.; Puig, N.; García-Sánchez, O.; Böttcher, S.; Van Der Velden, V.H.J.; Pérez-Morán, J.-J.; Vidriales, M.-B.; García-Sanz, R.; et al. Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia 2017, 31, 2094–2103. [Google Scholar] [CrossRef] [Green Version]
- Deaglio, S.; Mehta, K.; Malavasi, F. Human CD38: A (r)evolutionary story of enzymes and receptors. Leuk. Res. 2001, 25, 1–12. [Google Scholar] [CrossRef]
- Van De Donk, N.W.C.J.; Janmaat, M.L.; Mutis, T.; Lammerts Van Bueren, J.J.; Ahmadi, T.; Sasser, A.K.; Lokhorst, H.M.; Parren, P.W.H.I. Monoclonal antibodies targeting CD 38 in hematological malignancies and beyond. Immunol. Rev. 2016, 270, 95–112. [Google Scholar] [CrossRef] [Green Version]
- Van De Donk, N.W.; Usmani, S.Z. CD38 Antibodies in Multiple Myeloma: Mechanisms of Action and Modes of Resistance. Front. Immunol. 2018, 9, 2134. [Google Scholar] [CrossRef]
- Costa, F.; Palma, B.D.; Giuliani, N. CD38 Expression by Myeloma Cells and Its Role in the Context of Bone Marrow Microenvironment: Modulation by Therapeutic Agents. Cells 2019, 8, 1632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saltarella, I.; DeSantis, V.; Melaccio, A.; Solimando, A.G.; Lamanuzzi, A.; Ria, R.; Storlazzi, C.T.; Mariggiò, M.A.; Vacca, A.; Frassanito, M.A. Mechanisms of Resistance to Anti-CD38 Daratumumab in Multiple Myeloma. Cells 2020, 9, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nooka, A.K.; Kaufman, J.; Hofmeister, C.C.; Joseph, N.S.; Heffner, T.L.; Gupta, V.A.; Sullivan, H.C.; Neish, A.S.; Dhodapkar, M.V.; Lonial, S. Daratumumab in multiple myeloma. Cancer 2019, 125, 2364–2382. [Google Scholar] [CrossRef]
- Jain, A.; Ramasamy, K. Evolving Role of Daratumumab: From Backbencher to Frontline Agent. Clin. Lymphoma Myeloma Leuk. 2020, 20, 572–587. [Google Scholar] [CrossRef]
- Derudas, D.; Capraro, F.; Martinelli, G.; Cerchione, C. How I Manage Frontline Transplant-Ineligible Multiple Myeloma. Hematol. Rep. 2020, 12, 8956. [Google Scholar] [CrossRef] [PubMed]
- Perrot, A. How I Treat Frontline Transplant-eligible Multiple Myeloma. Blood 2021, in press. [CrossRef]
- Kastritis, E.; Palladini, G.; Minnema, M.C.; Wechalekar, A.D.; Jaccard, A.; Lee, H.C.; Sanchorawala, V.; Gibbs, S.; Mollee, P.; Venner, C.P.; et al. Daratumumab-Based Treatment for Immunoglobulin Light-Chain Amyloidosis. N. Engl. J. Med. 2021, 385, 46–58. [Google Scholar] [CrossRef]
- Sanderson, R.; Børset, M. Syndecan-1 in B lymphoid malignancies. Ann. Hematol. 2002, 81, 125–135. [Google Scholar] [CrossRef]
- Akhmetzyanova, I.; McCarron, M.J.; Parekh, S.; Chesi, M.; Bergsagel, P.L.; Fooksman, D.R. Dynamic CD138 surface expression regulates switch between myeloma growth and dissemination. Leukemia 2020, 34, 245–256. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Spaargaren, M.; Pals, S.T. Syndecan-1 and stromal heparan sulfate proteoglycans: Key moderators of plasma cell biology and myeloma pathogenesis. Blood 2021, 137, 1713–1718. [Google Scholar] [CrossRef]
- Yaccoby, S. The Phenotypic Plasticity of Myeloma Plasma Cells as Expressed by Dedifferentiation into an Immature, Resilient, and Apoptosis-Resistant Phenotype. Clin. Cancer Res. 2005, 11, 7599–7606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandl, A.; Solimando, A.; Mokhtari, Z.; Tabares, P.; Medler, J.; Manz, H.; Da Vià, M.C.; Croci, G.A.; Kurzwart, M.; Thusek, S.; et al. Junctional Adhesion Molecule-C expression specifies a CD138low/neg multiple myeloma cell population in mice and humans. Blood Adv. 2021, in press. [CrossRef] [PubMed]
- Purushothaman, A.; Uyama, T.; Kobayashi, F.; Yamada, S.; Sugahara, K.; Rapraeger, A.C.; Sanderson, R.D. Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood 2010, 115, 2449–2457. [Google Scholar] [CrossRef] [Green Version]
- Seidel, C.; Sundan, A.; Hjorth, M.; Turesson, I.; Dahl, I.M.S.; Abildgaard, N.; Waage, A.; Børset, M. Serum syndecan-1: A new independent prognostic marker in multiple myeloma. Blood 2000, 95, 388–392. [Google Scholar] [CrossRef]
- Vasuthasawat, A.; Yoo, E.M.; Trinh, K.R.; Lichtenstein, A.; Timmerman, J.M.; Morrison, S.L. Targeted immunotherapy using anti-CD138-interferon α fusion proteins and bortezomib results in synergistic protection against multiple myeloma. MAbs 2016, 8, 1386–1397. [Google Scholar] [CrossRef] [PubMed]
- Yoo, E.M.; Trinh, K.R.; Tran, D.; Vasuthasawat, A.; Zhang, J.; Hoang, B.; Lichtenstein, A.; Morrison, S.L. Anti-CD138-Targeted Interferon Is a Potent Therapeutic Against Multiple Myeloma. J. Interf. Cytokine Res. 2015, 35, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Xing, L.; Lin, L.; Liu, J.; Wen, B.K.; Cho, S.-F.; Hsieh, P.; Myette, J.; Chaganty, B.; Adari, H.; et al. An Immune Based, Anti-CD138 Targeting Antibody for the Treatment of Multiple Myeloma. Blood 2018, 132 (Suppl. 1), 5617. [Google Scholar] [CrossRef]
- Kumar, S.; Rajkumar, S.V.; Kimlinger, T.; Greipp, P.R.; E Witzig, T. CD45 expression by bone marrow plasma cells in multiple myeloma: Clinical and biological correlations. Leukemia 2005, 19, 1466–1470. [Google Scholar] [CrossRef]
- Trowbridge, I.S.; Thomas, M.L. CD45: An Emerging Role as a Protein Tyrosine Phosphatase Required for Lymphocyte Activation and Development. Annu. Rev. Immunol. 1994, 12, 85–116. [Google Scholar] [CrossRef]
- Kimlimger, T.K.; Timm, M.M.; Rajkumar, S.V.; Haug, J.L.; Kline, M.P.; Witzig, T.E.; Kumar, S. Phenotypic Characterization of the CD45+ and CD45− Plasma Cell Compartments in Monoclonal Gammopathies. Blood 2006, 108, 3505. [Google Scholar] [CrossRef]
- Man, W.Y.; Khong, T.; Spencer, A. CRISPR-Cas9 Mediated CD45 Knockout Inactivates Src Family Kinases and Impairs Cell Migration in Multiple Myeloma. Blood 2018, 132 (Suppl. 1), 1907. [Google Scholar] [CrossRef]
- Liu, S.; Ishikawa, H.; Tsuyama, N.; Abroun, S.; Li, F.-J.; Otsuyama, K.-I.; Zheng, X.; Ma, Z.; Maki, Y.; Obata, M.; et al. CD45 Defines Signaling Thresholds Critical for Proliferation and Apoptosis in Myeloma Cells. Blood 2004, 104, 3345. [Google Scholar] [CrossRef]
- Pellat-Deceunynck, C.; Robillard, N.; Bataille, R. The Coexpression of CD11a and CD45bright Is the Hallmark of Proliferating Myeloma Cells. Blood 2004, 104, 3347. [Google Scholar] [CrossRef]
- Descamps, G.; Wuillème-Toumi, S.; Trichet, V.; Venot, C.; Debussche, L.; Hercend, T.; Collette, M.; Robillard, N.; Bataille, R.; Amiot, M. CD45negbut Not CD45posHuman Myeloma Cells Are Sensitive to the Inhibition of IGF-1 Signaling by a Murine Anti-IGF-1R Monoclonal Antibody, mAVE1642. J. Immunol. 2006, 177, 4218–4223. [Google Scholar] [CrossRef] [Green Version]
- Pellat-Deceunynck, C.; Bataille, R. Normal and malignant human plasma cells: Proliferation, differentiation, and expansions in relation to CD45 expression. Blood Cells Mol. Dis. 2004, 32, 293–301. [Google Scholar] [CrossRef]
- Gonsalves, W.I.; Timm, M.M.; Rajkumar, S.; Morice, W.G.; Dispenzieri, A.; Buadi, F.K.; Lacy, M.Q.; Dingli, D.; Leung, N.; Kapoor, P.; et al. The prognostic significance of CD45 expression by clonal bone marrow plasma cells in patients with newly diagnosed multiple myeloma. Leuk. Res. 2016, 44, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Pick, M.; Vainstein, V.; Goldschmidt, N.; Lavie, D.; Libster, D.; Gural, A.; Grisariu, S.; Avni, B.; Ben Yehuda, D.; Gatt, M.E. Daratumumab resistance is frequent in advanced-stage multiple myeloma patients irrespective of CD38 expression and is related to dismal prognosis. Eur. J. Haematol. 2018, 100, 494–501. [Google Scholar] [CrossRef]
- Moreau, P.; Robillard, N.; Avet-Loiseau, H.; Pineau, D.; Morineau, N.; Milpied, N.; Harousseau, J.-L.; Bataille, R. Patients with CD45 negative multiple myeloma receiving high-dose therapy have a shorter survival than those with CD45 positive multiple myeloma. Haematologica 2004, 89, 547–551. [Google Scholar]
- Wang, K.; Wei, G.; Liu, D. CD19: A biomarker for B cell development, lymphoma diagnosis and therapy. Exp. Hematol. Oncol. 2012, 1, 36. [Google Scholar] [CrossRef] [Green Version]
- Scheuermann, R.; Racila, E. CD19 Antigen in Leukemia and Lymphoma Diagnosis and Immunotherapy. Leuk. Lymphoma 1995, 18, 385–397. [Google Scholar] [CrossRef]
- Haas, K.M.; Tedder, T.F. Role of the CD19 and CD21/35 Receptor Complex in Innate Immunity, Host Defense and Autoimmunity. Adv. Exp. Med. Biol. 2005, 560, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Otero, D.C.; Anzelon, A.N.; Rickert, R.C. CD19 Function in Early and Late B Cell Development: I. Maintenance of Follicular and Marginal Zone B Cells Requires CD19-Dependent Survival Signals. J. Immunol. 2003, 170, 73–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, S. CD19 is a central response regulator of B lymphocyte signaling thresholds governing autoimmunity. J. Dermatol. Sci. 1999, 22, 1–10. [Google Scholar] [CrossRef]
- Chung, E.Y.; Psathas, J.N.; Yu, D.; Li, Y.; Weiss, M.; Thomas-Tikhonenko, A. CD19 is a major B cell receptor–independent activator of MYC-driven B-lymphomagenesis. J. Clin. Investig. 2012, 122, 2257–2266. [Google Scholar] [CrossRef] [PubMed]
- Morbach, H.; Schickel, J.-N.; Cunningham-Rundles, C.; Conley, M.E.; Reisli, I.; Franco, J.; Meffre, E. CD19 controls Toll-like receptor 9 responses in human B cells. J. Allergy Clin. Immunol. 2016, 137, 889–898.e6. [Google Scholar] [CrossRef] [Green Version]
- Poe, J.C.; Minard-Colin, V.; Kountikov, E.I.; Haas, K.M.; Tedder, T.F. A c-Myc and Surface CD19 Signaling Amplification Loop Promotes B Cell Lymphoma Development and Progression in Mice. J. Immunol. 2012, 189, 2318–2325. [Google Scholar] [CrossRef] [Green Version]
- Barwick, B.G.; Gupta, V.A.; Vertino, P.M.; Boise, L.H. Cell of Origin and Genetic Alterations in the Pathogenesis of Multiple Myeloma. Front. Immunol. 2019, 10, 1121. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Kong, Y.; Yang, G.; Gao, L.; Shi, J. Multiple myeloma cancer stem cells. Oncotarget 2016, 7, 35466–35477. [Google Scholar] [CrossRef] [Green Version]
- Johnsen, H.E.; Bøgsted, M.; Schmitz, A.; Bødker, J.S.; El-Galaly, T.C.; Johansen, P.; Valent, P.; Zojer, N.; Van Valckenborgh, E.; Vanderkerken, K.; et al. The myeloma stem cell concept, revisited: From phenomenology to operational terms. Haematologica 2016, 101, 1451–1459. [Google Scholar] [CrossRef]
- Johnson, P.C.; Abramson, J.S. Engineered T Cells: CAR T Cell Therapy and Beyond. Curr. Oncol. Rep. 2022, 24, 23–31. [Google Scholar] [CrossRef]
- Zinzani, P.L.; Minotti, G. Anti-CD19 monoclonal antibodies for the treatment of relapsed or refractory B-cell malignancies: A narrative review with focus on diffuse large B-cell lymphoma. J. Cancer Res. Clin. Oncol. 2022, 148, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Garfall, A.; Maus, M.; Hwang, W.-T.; Lacey, S.F.; Mahnke, Y.; Melenhorst, J.J.; Zheng, Z.; Vogl, D.T.; Cohen, A.; Weiss, B.M.; et al. Chimeric Antigen Receptor T Cells against CD19 for Multiple Myeloma. N. Engl. J. Med. 2015, 373, 1040–1047. [Google Scholar] [CrossRef] [PubMed]
- Garfall, A.L.; Stadtmauer, E.A.; Hwang, W.-T.; Lacey, S.F.; Melenhorst, J.J.; Krevvata, M.; Carroll, M.P.; Matsui, W.H.; Wang, Q.; Dhodapkar, M.V.; et al. Anti-CD19 CAR T cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma. JCI Insight 2019, 3, e120505. [Google Scholar] [CrossRef]
- Mohyuddin, G.R.; Rooney, A.; Balmaceda, N.; Aziz, M.; Sborov, D.W.; McClune, B.; Kumar, S.K. Chimeric antigen receptor T-cell therapy in multiple myeloma: A systematic review and meta-analysis of 950 patients. Blood Adv. 2021, 5, 1097–1101. [Google Scholar] [CrossRef] [PubMed]
- Kraj, M.; Pogłód, R.; Kopeć-Szlęzak, J.; Sokołowska, U.; Woźniak, J.; Kruk, B. C-kit Receptor (CD117) Expression on Plasma Cells in Monoclonal Gammopathies. Leuk. Lymphoma 2004, 45, 2281–2289. [Google Scholar] [CrossRef]
- Ocqueteau, M.; Orfao, A.; García-Sanz, R.; Almeida, J.; Gonzalez, M.; Miguel, J.F.S. Expression of the CD117 antigen (C-Kit) on normal and myelomatous plasma cells. Br. J. Haematol. 1996, 95, 489–493. [Google Scholar] [CrossRef]
- Bataille, R.; Pellat-Deceunynck, C.; Robillard, N.; Avet-Loiseau, H.; Harousseau, J.-L.; Moreau, P. CD117 (c-kit) is aberrantly expressed in a subset of MGUS and multiple myeloma with unexpectedly good prognosis. Leuk. Res. 2008, 32, 379–382. [Google Scholar] [CrossRef]
- Chen, F.; Hu, Y.; Wang, X.; Fu, S.; Liu, Z.; Zhang, J. Expression of CD81 and CD117 in plasma cell myeloma and the relationship to prognosis. Cancer Med. 2018, 7, 5920–5927. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Wang, H.; Tao, Q.; Zhang, C.; Yang, D.; Qin, H.; Xiong, S.; Tao, L.; Wu, F.; Zhang, J.; et al. Absence of both CD56 and CD117 expression on malignant plasma cells is related with a poor prognosis in patients with newly diagnosed multiple myeloma. Leuk. Res. 2016, 40, 77–82. [Google Scholar] [CrossRef]
- Schmidt-Hieber, M.; Perez-Andres, M.; Paiva, B.; Flores-Montero, J.; Perez, J.J.; Gutierrez, N.C.; Vidriales, M.-B.; Matarraz, S.; Miguel, J.F.S.; Orfao, A. CD117 expression in gammopathies is associated with an altered maturation of the myeloid and lymphoid hematopoietic cell compartments and favorable disease features. Haematologica 2011, 96, 328–332. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhou, X.; Zhu, J.; Ye, J.; Guo, H.; Sun, C. Association of CD117 and HLA-DR expression with shorter overall survival and/or progression-free survival in patients with multiple myeloma treated with bortezomib and thalidomide combination treatment without transplantation. Oncol. Lett. 2018, 16, 5655–5666. [Google Scholar] [CrossRef] [PubMed]
- Dispenzieri, A.; Gertz, M.A.; Lacy, M.Q.; Geyer, S.M.; Greipp, P.R.; Rajkumar, S.V.; Kimlinger, T.; Lust, J.A.; Fonseca, R.; Allred, J.; et al. A phase II trial of imatinib in patients with refractory/relapsed myeloma. Leuk. Lymphoma 2006, 47, 39–42. [Google Scholar] [CrossRef] [PubMed]
- Van Camp, B.; Durie, B.; Spier, C.; De Waele, M.; Van Riet, I.; Vela, E.; Frutiger, Y.; Richter, L.; Grogan, T. Plasma cells in multiple myeloma express a natural killer cell- associated antigen: CD56 (NKH-1; Leu-19). Blood 1990, 76, 377–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraj, M.; Sokołowska, U.; Kopeć-Szlęzak, J.; Pogłód, R.; Kruk, B.; Woźniak, J.; Szpila, T. Clinicopathological correlates of plasma cell CD56 (NCAM) expression in multiple myeloma. Leuk. Lymphoma 2008, 49, 298–305. [Google Scholar] [CrossRef]
- Flores-Montero, J.; De Tute, R.; Paiva, B.D.L.; Perez, J.J.; Böttcher, S.; Wind, H.; Sanoja, L.; Puig, N.; Lecrevisse, Q.; Vidriales, M.-B.; et al. Immunophenotype of normal vs. myeloma plasma cells: Toward antibody panel specifications for MRD detection in multiple myeloma. Cytom. Part B Clin. Cytom. 2015, 90, 61–72. [Google Scholar] [CrossRef]
- Cottini, F.; Rodriguez, J.; Birmingham, M.; Hughes, T.; Sharma, N.; Lozanski, G.; Liu, B.; Yang, Y.; Cocucci, E.; Benson, D.M. CD56 Has a Critical Role in Regulating Multiple Myeloma Cell Growth and Response to Therapies. Blood 2021, 138 (Suppl. 1), 889. [Google Scholar] [CrossRef]
- Deceunynck, C.; Barille-Nion, S.; Jego, G.; Puthier, D.; Robillard, N.; Pineau, D.; Rapp, M.-J.; Harousseau, J.-L.; Amiot, M.; Bataille, R. The absence of CD56 (NCAM) on malignant plasma cells is a hallmark of plasma cell leukemia and of a special subset of multiple myeloma. Leukemia 1998, 12, 1977–1982. [Google Scholar] [CrossRef] [Green Version]
- Ngo, N.-T.; Brodie, C.; Giles, C.; Horncastle, D.; Klammer, M.; Lampert, I.A.; Rahemtulla, A.; Naresh, K.N. The significance of tumour cell immunophenotype in myeloma and its impact on clinical outcome. J. Clin. Pathol. 2009, 62, 1009–1015. [Google Scholar] [CrossRef]
- Koumpis, E.; Tassi, I.; Malea, T.; Papathanasiou, K.; Papakonstantinou, I.; Serpanou, A.; Tsolas, E.; Kapsali, E.; Vassilakopoulos, T.P.; Papoudou-Bai, A.; et al. CD56 expression in multiple myeloma: Correlation with poor prognostic markers but no effect on outcome. Pathol.-Res. Pract. 2021, 225, 153567. [Google Scholar] [CrossRef]
- Miyazaki, K.; Suzuki, K. CD56 for Multiple Myeloma: Lack of CD56 May Be Associated with Worse Prognosis. Acta Haematol. 2018, 140, 40–41. [Google Scholar] [CrossRef]
- Škerget, M.; Skopec, B.; Zadnik, V.; Žontar, D.; Podgornik, H.; Reberšek, K.; Furlan, T.; Cernelc, P. CD56 Expression Is an Important Prognostic Factor in Multiple Myeloma Even with Bortezomib Induction. Acta Haematol. 2018, 139, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Okura, M.; Ida, N.; Yamauchi, T. The clinical significance of CD49e and CD56 for multiple myeloma in the novel agents era. Med. Oncol. 2020, 37, 103. [Google Scholar] [CrossRef] [PubMed]
- ElMenshawy, N.; Farag, N.A.; Atia, D.M.; Abousamra, N.; Shahin, D.; Fawzi, E.; Ghazi, H.; El-Kott, A.F.; Eissa, M. Prognostic Relevance of Concordant Expression CD69 and CD56 in Response to Bortezomib Combination Therapy in Multiple Myeloma Patients. Cancer Investig. 2021, 39, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Carter, R.; Barrington, R. Signaling by the CD19/CD21 Complex on B Cells. Curr. Dir. Autoimmun. 2004, 7, 4–32. [Google Scholar] [CrossRef] [PubMed]
- Shoham, T.; Rajapaksa, R.; Kuo, C.-C.; Haimovich, J.; Levy, S. Building of the Tetraspanin Web: Distinct Structural Domains of CD81 Function in Different Cellular Compartments. Mol. Cell. Biol. 2006, 26, 1373–1385. [Google Scholar] [CrossRef] [Green Version]
- Shoham, T.; Rajapaksa, R.; Boucheix, C.; Rubinstein, E.; Poe, J.C.; Tedder, T.F.; Levy, S. The Tetraspanin CD81 Regulates the Expression of CD19 During B Cell Development in a Postendoplasmic Reticulum Compartment. J. Immunol. 2003, 171, 4062–4072. [Google Scholar] [CrossRef] [Green Version]
- Susa, K.J.; Seegar, T.C.; Blacklow, S.C.; Kruse, A.C. A dynamic interaction between CD19 and the tetraspanin CD81 controls B cell co-receptor trafficking. eLife 2020, 9, e52337. [Google Scholar] [CrossRef]
- Tohami, T.; Drucker, L.; Shapiro, H.; Radnay, J.; Lishner, M. Overexpression of tetraspanins affects multiple myeloma cell survival and invasive potential. FASEB J. 2007, 21, 691–699. [Google Scholar] [CrossRef]
- Zismanov, V.; Drucker, L.; Attar-Schneider, O.; Matalon, S.T.; Pasmanik-Chor, M.; Lishner, M. Tetraspanins stimulate protein synthesis in myeloma cell lines. J. Cell. Biochem. 2012, 113, 2500–2510. [Google Scholar] [CrossRef]
- Paiva, B.; Gutiérrez, N.-C.; Chen, X.; Vídriales, M.-B.; Montalbán, M.Á.; Rosiñol, L.; Oriol, A.; Martínez-López, J.; Mateos, M.-V.; López-Corral, L.; et al. Clinical significance of CD81 expression by clonal plasma cells in high-risk smoldering and symptomatic multiple myeloma patients. Leukemia 2012, 26, 1862–1869. [Google Scholar] [CrossRef] [Green Version]
- Tembhare, P.R.; Yuan, C.M.; Venzon, D.; Braylan, R.; Korde, N.; Manasanch, E.; Zuchlinsky, D.; Calvo, K.; Kurlander, R.; Bhutani, M.; et al. Flow cytometric differentiation of abnormal and normal plasma cells in the bone marrow in patients with multiple myeloma and its precursor diseases. Leuk. Res. 2014, 38, 371–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arana, P.; Paiva, B.; Cedena, M.-T.; Puig, N.; Cordon, L.; Vidriales, M.-B.; Gutierrez, N.C.; Chiodi, F.; Burgos, L.; Anglada, L.-L.; et al. Prognostic value of antigen expression in multiple myeloma: A PETHEMA/GEM study on 1265 patients enrolled in four consecutive clinical trials. Leukemia 2018, 32, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Tarín, F.; López-Castaño, F.; García-Hernández, C.; Beneit, P.; Sarmiento, H.; Manresa, P.; Alda, O.; Villarrubia, B.; Blanes, M.; Bernabéu, J.; et al. Multiparameter Flow Cytometry Identification of Neoplastic Subclones: A New Biomarker in Monoclonal Gammopathy of Undetermined Significance and Multiple Myeloma. Acta Haematol. 2019, 141, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Paiva, B.; Puig, N.; Cedena, M.T.; de Jong, B.G.; Ruiz, Y.; Rapado, I.; Martinez-Lopez, J.; Cordon, L.; Alignani, D.; Delgado, J.A.; et al. Differentiation stage of myeloma plasma cells: Biological and clinical significance. Leukemia 2017, 31, 382–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurer, D.; Holter, W.; Majdic, O.; Fischer, G.F.; Knapp, W. CD27 expression by a distinct subpopulation of human B lymphocytes. Eur. J. Immunol. 1990, 20, 2679–2684. [Google Scholar] [CrossRef]
- Jung, J.; Choe, J.; Mustelin, T.; Choi, Y.S. Regulation of CD27 expression in the course of germinal center B cell differentiation: The pivotal role of IL-10. Eur. J. Immunol. 2000, 30, 2437–2443. [Google Scholar] [CrossRef]
- Agematsu, K.; Nagumo, H.; Oguchi, Y.; Nakazawa, T.; Fukushima, K.; Yasui, K.; Ito, S.; Kobata, T.; Morimoto, C.; Komiyama, A. Generation of plasma cells from peripheral blood memory B cells: Synergistic effect of interleukin-10 and CD27/CD70 interaction. Blood 1998, 91, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Katayama, Y.; Sakai, A.; Oue, N.; Asaoku, H.; Otsuki, T.; Shiomomura, T.; Masuda, R.; Hino, N.; Takimoto, Y.; Imanaka, F.; et al. A possible role for the loss of CD27-CD70 interaction in myelomagenesis. Br. J. Haematol. 2003, 120, 223–234. [Google Scholar] [CrossRef]
- Guikema, J.E.J.; Hovenga, S.; Vellenga, E.; Conradie, J.J.; Abdulahad, W.H.; Bekkema, R.; Smit, J.W.; Zhan, F.; Shaughnessy, J., Jr.; Bos, N.A. CD27 is heterogeneously expressed in multiple myeloma: Low CD27 expression in patients with high-risk disease. Br. J. Haematol. 2003, 121, 36–43. [Google Scholar] [CrossRef] [Green Version]
- Chu, B.; Bao, L.; Wang, Y.; Lu, M.; Shi, L.; Gao, S.; Fang, L.; Xiang, Q.; Liu, X. CD27 antigen negative expression indicates poor prognosis in newly diagnosed multiple myeloma. Clin. Immunol. 2020, 213, 108363. [Google Scholar] [CrossRef]
- Guikema, J.E.J.; Vellenga, E.; Abdulahad, W.H.; Hovenga, S.; Bos, N.A. CD27-triggering on primary plasma cell leukaemia cells has anti-apoptotic effects involving mitogen activated protein kinases. Br. J. Haematol. 2004, 124, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Harding, F.A.; McArthur, J.G.; Gross, J.A.; Raulet, D.; Allison, J. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 1992, 356, 607–609. [Google Scholar] [CrossRef] [PubMed]
- Borowski, A.B.; Boesteanu, A.C.; Mueller, Y.M.; Carafides, C.; Topham, D.J.; Altman, J.D.; Jennings, S.R.; Katsikis, P.D. Memory CD8+ T cells require CD28 costimulation. J. Immunol. 2007, 179, 6494–6503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robillard, N.; Jego, G.; Pellat-Deceunynck, C.; Pineau, D.; Puthier, D.; Mellerin, M.P.; Barillé, S.; Rapp, M.J.; Harousseau, J.L.; Amiot, M.; et al. CD28, a marker associated with tumoral expansion in multiple myeloma. Clin. Cancer Res. 1998, 4, 1521–1526. [Google Scholar]
- Nair, J.R.; Carlson, L.M.; Koorella, C.; Rozanski, C.H.; Byrne, G.E.; Bergsagel, P.L.; Shaughnessy, J.P.; Boise, L.H.; Chanan-Khan, A.; Lee, K.P. CD28 Expressed on Malignant Plasma Cells Induces a Prosurvival and Immunosuppressive Microenvironment. J. Immunol. 2011, 187, 1243–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahlis, N.J.; King, A.M.; Kolonias, D.; Carlson, L.M.; Liu, H.Y.; Hussein, M.A.; Terebelo, H.R.; Byrne, G.E.; Levine, B.L.; Boise, L.H.; et al. CD28-mediated regulation of multiple myeloma cell proliferation and survival. Blood 2007, 109, 5002–5010. [Google Scholar] [CrossRef] [Green Version]
- Hunte, B.E.; Capone, M.; Zlotnik, A.; Rennick, D.; Moore, T.A. Acquisition of CD24 expression by Lin-CD43+B220(low)ckit(hi) cells coincides with commitment to the B cell lineage. Eur. J. Immunol. 1998, 28, 3850–3856. [Google Scholar] [CrossRef]
- Kristiansen, G.; Sammar, M.; Altevogt, P. Tumour Biological Aspects of CD24, a Mucin-Like Adhesion Molecule. J. Mol. Histol. 2004, 35, 255–262. [Google Scholar] [CrossRef]
- Wenger, R.H.; Kopf, M.; Nitschke, L.; Lamers, M.C.; Köhler, G.; Nielsen, P.J. B-cell maturation in chimaeric mice deficient for the heat stable antigen (HSA/mouse CD24). Transgenic Res. 1995, 4, 173–183. [Google Scholar] [CrossRef]
- Kristiansen, G.; Pilarsky, C.; Pervan, J.; Stürzebecher, B.; Stephan, C.; Jung, K.; Loening, S.; Rosenthal, A.; Dietel, M. CD24 expression is a significant predictor of PSA relapse and poor prognosis in low grade or organ confined prostate cancer. Prostate 2004, 58, 183–192. [Google Scholar] [CrossRef]
- Kristiansen, G.; Winzer, K.-J.; Mayordomo, E.; Bellach, J.; Schlüns, K.; Denkert, C.; Dahl, E.; Pilarsky, C.; Altevogt, P.; Guski, H.; et al. CD24 expression is a new prognostic marker in breast cancer. Clin. Cancer Res. 2003, 9, 4906–4913. [Google Scholar] [PubMed]
- Kristiansen, G.; Schlüns, K.; Yongwei, Y.; Denkert, C.; Dietel, M.; Petersen, I. CD24 is an independent prognostic marker of survival in nonsmall cell lung cancer patients. Br. J. Cancer 2003, 88, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Gilad, N.; Zukerman, H.; Pick, M.; Gatt, M.E. The role of CD24 in multiple myeloma tumorigenicity and effects of the microenvironment on its expression. Oncotarget 2019, 10, 5480–5491. [Google Scholar] [CrossRef] [PubMed]
- Mateo, G.; Montalbán, M.A.; Vidriales, M.-B.; Lahuerta, J.J.; Mateos, M.V.; Gutierrez, N.; Rosiñol, L.; Montejano, L.; Bladé, J.; Martínez, R.; et al. Prognostic Value of Immunophenotyping in Multiple Myeloma: A Study by the PETHEMA/GEM Cooperative Study Groups on Patients Uniformly Treated with High-Dose Therapy. J. Clin. Oncol. 2008, 26, 2737–2744. [Google Scholar] [CrossRef] [PubMed]
- Perez-Andres, M.; Almeida, J.; Martín-Ayuso, M.; Heras, N.D.L.; Moro, M.J.; Martín-Núñez, G.; Galende, J.; Cuello, R.; Abuín, I.; Moreno, I.; et al. Soluble and membrane levels of molecules involved in the interaction between clonal plasma cells and the immunological microenvironment in multiple myeloma and their association with the characteristics of the disease. Int. J. Cancer 2009, 124, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Klimienė, I.; Radzevičius, M.; Matuzevičienė, R.; Sinkevič-Belliot, K.; Kučinskienė, Z.A.; Pečeliūnas, V. Adhesion molecule immunophenotype of bone marrow multiple myeloma plasma cells impacts the presence of malignant circulating plasma cells in peripheral blood. Int. J. Lab. Hematol. 2021, 43, 403–408. [Google Scholar] [CrossRef]
- Paiva, B.; Paino, T.; Sayagues, J.-M.; Garayoa, M.; San-Segundo, L.; Martín, M.; Mota, I.; Sanchez, M.-L.; Bárcena, P.; Aires-Mejia, I.; et al. Detailed characterization of multiple myeloma circulating tumor cells shows unique phenotypic, cytogenetic, functional, and circadian distribution profile. Blood 2013, 122, 3591–3598. [Google Scholar] [CrossRef] [Green Version]
Cellular Activity | Expression on Normal PC | Expression on MM Cells | Prognostic Value of Expression | Therapeutic Applications | |
---|---|---|---|---|---|
CD38 | Adhesion, enzymatic activity (calcium regulation) | +++ | +++ | Low-level clones are associated with extra-medullary disease | Anti-CD38 antibodies are among the most important therapies |
CD138 | Adhesion, binding cytokines, and promoting proliferation | +++ | +++ | High levels signify proliferative clones, low levels signify disseminative clones | Anti-CD138 antibodies not successful |
CD45 | Promotes proliferation and activation | Balanced CD45+/CD45- PC milieu | ++ | Controversial | Not developed |
CD117 | Promotes proliferation | _ | 30% | Favorable on most reports | Imatinib not successful |
CD19 | differentiation and activation of B-cells | + (low proportion) | Absent (but present on MM stem cells) | Adverse | CD19 CAR-T/combined BCMA/CD19 CAR-T is promising |
CD56 | Adhesion, induction of anti-apoptotic proteins | _ | 65–80% | Controversial | Not developed |
CD28 | Interaction with stromal support cells and T-cells | _ | ++ | Adverse, commonly expressed in aggressive progressions | Not developed |
CD27 | Differentiation from B-cell to PC | ++ | Usually absent | Favorable (but usually absent) | Not applicable |
CD81 | Regulation of BCR and CD19 | ++ | 40–45% | Adverse | Not developed |
CD24 | B-cell maturation | + | Variable | Favorable even in low levels | Not applicable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebel, E.; Nachmias, B.; Pick, M.; Gross Even-Zohar, N.; Gatt, M.E. Understanding the Bioactivity and Prognostic Implication of Commonly Used Surface Antigens in Multiple Myeloma. J. Clin. Med. 2022, 11, 1809. https://doi.org/10.3390/jcm11071809
Lebel E, Nachmias B, Pick M, Gross Even-Zohar N, Gatt ME. Understanding the Bioactivity and Prognostic Implication of Commonly Used Surface Antigens in Multiple Myeloma. Journal of Clinical Medicine. 2022; 11(7):1809. https://doi.org/10.3390/jcm11071809
Chicago/Turabian StyleLebel, Eyal, Boaz Nachmias, Marjorie Pick, Noa Gross Even-Zohar, and Moshe E. Gatt. 2022. "Understanding the Bioactivity and Prognostic Implication of Commonly Used Surface Antigens in Multiple Myeloma" Journal of Clinical Medicine 11, no. 7: 1809. https://doi.org/10.3390/jcm11071809
APA StyleLebel, E., Nachmias, B., Pick, M., Gross Even-Zohar, N., & Gatt, M. E. (2022). Understanding the Bioactivity and Prognostic Implication of Commonly Used Surface Antigens in Multiple Myeloma. Journal of Clinical Medicine, 11(7), 1809. https://doi.org/10.3390/jcm11071809