Efficacy and Safety of Zero-Fluoroscopy Approach during Catheter Ablation of Accessory Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. Electrophysiological Study
2.3. Fluoroscopy Navigation
2.4. Electroanatomic Mapping
2.5. Catheter Ablation
2.6. Follow-Up
2.7. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Procedural Data
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brugada, J.; Katritsis, D.G.; Arbelo, E.; Arribas, F.; Bax, J.J.; Blomström-Lundqvist, C.; Calkins, H.; Corrado, D.; Deftereos, S.G.; Diller, G.-P.; et al. 2019 ESC Guidelines for the management of patients with supraventricular tachycardia The Task Force for the management of patients with supraventricular tachycardia of the European Society of Cardiology (ESC): Developed in collaboration with the association for European paediatric and congenital Cardiology (AEPC). Eur. Heart J. 2020, 41, 655–720. [Google Scholar]
- Members, W.C.; Hirshfeld, J.W., Jr.; Balter, S.; Brinker, J.A.; Kern, M.J.; Klein, L.W.; Lindsay, B.D.; Tommaso, C.L.; Tracy, C.M.; Wagner, L.K.; et al. ACCF/AHA/HRS/SCAI clinical competence statement on physician knowledge to optimize patient safety and image quality in fluoroscopically guided invasive cardiovascular procedures: A report of the American College of Cardiology Foundation/American Heart Association/American College of Physicians Task Force on Clinical Competence and Training. Circ. Am. Heart Assoc. 2005, 111, 511–532. [Google Scholar]
- Gepstein, L.; Hayam, G.; Ben-Haim, S.A. A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart: In vitro and in vivo accuracy results. Circ. Am. Heart Assoc. 1997, 95, 1611–1622. [Google Scholar] [CrossRef]
- Tuzcu, V. A nonfluoroscopic approach for electrophysiology and catheter ablation procedures using a three-dimensional navigation system. Pacing Clin. Electrophysiol. 2007, 30, 519–525. [Google Scholar] [CrossRef]
- Hindricks, G.; Willems, S.; Kautzner, J.; De Chillou, C.; Wiedemann, M.; Schepel, S.; Piorkowski, C.; Risius, T.; Kottkamp, H.; The EuroFlutter Investigators. Effect of electroanatomically guided versus conventional catheter ablation of typical atrial flutter on the fluoroscopy time and resource use: A prospective randomized multicenter study. J. Cardiovasc. Electrophysiol. 2009, 20, 734–740. [Google Scholar] [CrossRef]
- Casella, M.; Pelargonio, G.; Russo, A.D.; Riva, S.; Bartoletti, S.; Santangeli, P.; Scarà, A.; Sanna, T.; Proietti, R.; Di Biase, L.; et al. “Near-zero” fluoroscopic exposure in supraventricular arrhythmia ablation using the EnSite NavXTM mapping system: Personal experience and review of the literature. J. Interv. Card. Electrophysiol. 2011, 31, 109–118. [Google Scholar] [CrossRef]
- Álvarez, M.; Tercedor, L.; Almansa, I.; Ros, N.; Galdeano, R.S.; Burillo, F.; Santiago, P.; Peñas, R. Safety and feasibility of catheter ablation for atrioventricular nodal re-entrant tachycardia without fluoroscopic guidance. Heart Rhythm. 2009, 6, 1714–1720. [Google Scholar] [CrossRef] [PubMed]
- Earley, M.J.; Showkathali, R.; Alzetani, M.; Kistler, P.M.; Gupta, D.; Abrams, D.J.; Horrocks, J.A.; Harris, S.J.; Sporton, S.C.; Schilling, R.J. Radiofrequency ablation of arrhythmias guided by non-fluoroscopic catheter location: A prospective randomized trial. Eur. Heart J. 2006, 27, 1223–1229. [Google Scholar] [CrossRef] [PubMed]
- Papagiannis, J.; Tsoutsinos, A.; Kirvassilis, G.; Sofianidou, I.; Koussi, T.; Laskari, C.; Kiaffas, M.; Apostolopoulou, S.; Rammos, S. Nonfluoroscopic catheter navigation for radiofrequency catheter ablation of supraventricular tachycardia in children. Pacing Clin. Electrophysiol. 2006, 29, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.; Clark, J.M. Elimination of fluoroscopy use in a pediatric electrophysiology laboratory utilizing three-dimensional mapping. Pacing Clin. Electrophysiol. 2007, 30, 510–518. [Google Scholar] [CrossRef]
- Papez, A.L.; Al-Ahdab, M.; Dick, M.; Fischbach, P.S. Impact of a computer assisted navigation system on radiation exposure during pediatric ablation procedures. J. Interv. Card. Electrophysiol. 2007, 19, 121–127. [Google Scholar] [CrossRef]
- Fernandez-Gomez, J.M.; Morina-Vazques, P.; Morales, E.D.R.; Venegas-Gamero, J.; Barba-Pichardo, R.; Carranza, M.H. Exclusion of fluoroscopy use in catheter ablation procedures: Six years of experience at a single center. J. Cardiovasc. Electrophysiol. 2014, 25, 638–644. [Google Scholar] [CrossRef]
- Stec, S.; Śledź, J.; Mazij, M.; Raś, M.; Ludwik, B.; Chrabąszcz, M.; Śledź, A.; Banasik, M.; Bzymek, M.; Młynarczyk, K.; et al. Feasibility of implementation of a “simplified, No-X-ray, no-lead apron, two-catheter approach” for ablation of supraventricular arrhythmias in children and adults. J. Cardiovasc. Electrophysiol. 2014, 25, 866–874. [Google Scholar] [CrossRef]
- Ergul, Y.; Tola, H.T.; Kiplapinar, N.; Akdeniz, C.; Saygi, M.; Tuzcu, V. Cryoablation of anteroseptal accessory pathways in children with limited fluoroscopy exposure. Pediatr. Cardiol. 2013, 34, 802–808. [Google Scholar] [CrossRef]
- Atienza, F.; Arenal, A.; Torrecilla, E.G.; Garcia-Alberola, A.; Jiménez, J.; Ortiz, M.; Puchol, A.; Almendral, J. Acute and long-term outcome of transvenous cryoablation of midseptal and parahissian accessory pathways in patients at high risk of atrioventricular block during radiofrequency ablation. Am. J. Cardiol. 2004, 93, 1302–1305. [Google Scholar] [CrossRef]
- Koźluk, E.; Gawrysiak, M.; Piatkowska, A.; Lodziński, P.; Kiliszek, M.; Małkowska, S.; Zaczek, R.; Piatkowski, R.; Opolski, G.; Kozłowski, D. Radiofrequency ablation without the use of fluoroscopy-in what kind of patients is it feasible? Arch. Med. Sci. AMS 2013, 9, 821. [Google Scholar] [CrossRef]
- Koźluk, E.; Piątkowska, A.; Kiliszek, M.; Lodziński, P.; Małkowska, S.; Balsam, P.; Rodkiewicz, D.; Piątkowski, R.; Zyśko, D.; Opolski, G. Catheter ablation of cardiac arrhythmias in pregnancy without fluoroscopy: A case control retrospective study. Adv. Clin. Exp. Med. 2017, 26, 129–134. [Google Scholar] [CrossRef]
- Szumowski, L.; Szufladowicz, E.; Orczykowski, M.; Bodalski, R.; Derejko, P.; Przybylski, A.; Urbanek, P.; Kuśmierczyk, M.; Koźluk, E.; Sacher, F.; et al. Ablation of severe drug-resistant tachyarrhythmia during pregnancy. J. Cardiovasc. Electrophysiol. 2010, 21, 877–882. [Google Scholar] [CrossRef]
- National Research Council. Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- R Protection. ICRP publication 103. Ann. ICRP 2007, 37, 2. [Google Scholar]
- Beels, L.; Bacher, K.; De Wolf, D.; Werbrouck, J.; Thierens, H. γ-H2AX Foci as a Biomarker for Patient X-Ray Exposure in Pediatric Cardiac Catheterization. Are We Underestimating Radiation Risks? Circulation 2009, 120, 1903–1909. [Google Scholar] [CrossRef] [Green Version]
- Tubiana, M.; Feinendegen, L.E.; Yang, C.; Kaminski, J.M. The linear no-threshold relationship is inconsistent with radiation biologic and experimental data. Radiology 2009, 251, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Tubiana, M.; Aurengo, A.; Averbeck, D.; Bonnin, A.; Le Guen, B.; Masse, R.; Monier, R.; Valleron, A.J.; De Vathaire, F. Dose-effect relationships and estimation of the carcinogenic effects of low doses of ionizing radiation. Int. J. Radiat. Oncol. Biol. Phys. 2005, 63, 317–319. [Google Scholar] [CrossRef]
- Simmons, J.A. Risk of cancer from diagnostic X-rays. Lancet 2004, 363, 1908–1909. [Google Scholar] [CrossRef]
- Koźluk, E.; Rodkiewicz, D.; Piątkowska, A.; Opolski, G. Safety and efficacy of cryoablation without the use of fluoroscopy. Cardiol. J. 2018, 25, 327–332. [Google Scholar] [CrossRef] [Green Version]
Baseline Characteristics | EAM Group, n = 40 | Control Group, n = 43 | p |
---|---|---|---|
Gender (male) | 21.0 (53.4%) | 27.0 (62.8%) | 0.343 |
Age (years) | 35.5 ± 15.9 | 41.0 ± 15.8 | 0.154 |
Hypertension | 6.0 (15.0%) | 6.0 (14.0%) | 0.892 |
Type 2 diabetes | 2.0 (5.0%) | 3.0 (7.0%) | 0.341 |
Heart failure | 0 (0.0%) | 1.0 (2.3%) | 0.167 |
Sudden cardiac arrest | 2.0 (5.0%) | 1.0 (2.3%) | 0.514 |
Atrial fibrillation | 15.0 (37.5%) | 13.0 (30.2%) | 0.480 |
Pregnancy | 3.0 (7.5%) | 0 | 0.067 |
Right-sided AP | 34.0 (85.0%) | 25.0 (58.1%) | 0.007 |
Left-sided AP | 4.0 (10.0%) | 16.0 (37.2%) | 0.004 |
Complex right and left-sided AP | 2.0 (5.0%) | 2.0 (4.7%) | 0.941 |
Right posteroseptal AP | 17.0 (42.5%) | 12.0 (27.9%) | 0.164 |
Para-Hisian AP | 9.0 (22.5%) | 6.0 (14.0%) | 0.312 |
Multiple AP | 3.0 (7.5%) | 3.0 (7.0%) | 0.927 |
Wide AP | 2.0 (5.0%) | 4.0 (9.3%) | 0.449 |
Permanent pre-excitation | 32.0 (80.0%) | 30.0 (69.8%) | 0.284 |
Intermittent pre-excitation | 3.0 (7.5%) | 7.0 (16.3%) | 0.200 |
Concealed AP | 5.0 (12.5%) | 6.0 (14.0%) | 0.845 |
Procedural Data | EAM Group (n = 40) | Control Group (n = 43) | p |
---|---|---|---|
Procedure duration (minutes) | 93.0 ± 58.3 | 127.6 ± 57.5 | 0.009 |
Application duration (minutes) | 13.4 ± 14.8 | 14.5 ± 14.7 | 0.884 |
Number of applications | 12.8 ± 14.8 | 14.6 ± 14.7 | 0.174 |
Fluoroscopy duration (minutes) | 0 | 11.6 ± 9.7 | <0.001 |
DAP dose (cGy × cm2) | 0 | 1518.5 ±1346.3 | <0.001 |
CARTO | 28 (70.0%) | 30 (69.8%) | 0.982 |
Ensite | 12 (30.0%) | 13 (30.2%) | 0.982 |
RF ablation | 31 (77.5%) | 36 (83.7%) | 0.473 |
Cryoablation | 8 (20.0%) | 6 (14.0%) | 0.462 |
RF ablation + cryoablation | 1 (2.5%) | 1 (2.3%) | 0.959 |
First-time ablation | 25 (62.5%) | 27 (62.8%) | 0.978 |
Acute procedural success | 38 (95.0%) | 39 (90.7%) | 0.449 |
Long-term success | 36 (90.0%) | 36 (83.7%) | 0.399 |
Major complications | 0 | 0 | 0 |
Minor complications | 1 (2.5%) | 0 | 0.138 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodkiewicz, D.; Koźluk, E.; Piątkowska, A.; Gąsecka, A.; Krzemiński, K.; Opolski, G. Efficacy and Safety of Zero-Fluoroscopy Approach during Catheter Ablation of Accessory Pathway. J. Clin. Med. 2022, 11, 1814. https://doi.org/10.3390/jcm11071814
Rodkiewicz D, Koźluk E, Piątkowska A, Gąsecka A, Krzemiński K, Opolski G. Efficacy and Safety of Zero-Fluoroscopy Approach during Catheter Ablation of Accessory Pathway. Journal of Clinical Medicine. 2022; 11(7):1814. https://doi.org/10.3390/jcm11071814
Chicago/Turabian StyleRodkiewicz, Dariusz, Edward Koźluk, Agnieszka Piątkowska, Aleksandra Gąsecka, Krzysztof Krzemiński, and Grzegorz Opolski. 2022. "Efficacy and Safety of Zero-Fluoroscopy Approach during Catheter Ablation of Accessory Pathway" Journal of Clinical Medicine 11, no. 7: 1814. https://doi.org/10.3390/jcm11071814
APA StyleRodkiewicz, D., Koźluk, E., Piątkowska, A., Gąsecka, A., Krzemiński, K., & Opolski, G. (2022). Efficacy and Safety of Zero-Fluoroscopy Approach during Catheter Ablation of Accessory Pathway. Journal of Clinical Medicine, 11(7), 1814. https://doi.org/10.3390/jcm11071814