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Abstract: Several optical imaging techniques have been developed to ease the burden of skin cancer
disease on our health care system. Hyperspectral images can be used to identify biological tissues
by their diffuse reflected spectra. In this second part of a three-phase pilot study, we used a novel
hand-held SICSURFIS Spectral Imager with an adaptable field of view and target-wise selectable
wavelength channels to provide detailed spectral and spatial data for lesions on complex surfaces. The
hyperspectral images (33 wavelengths, 477–891 nm) provided photometric data through individually
controlled illumination modules, enabling convolutional networks to utilise spectral, spatial, and skin-
surface models for the analyses. In total, 42 lesions were studied: 7 melanomas, 13 pigmented and
7 intradermal nevi, 10 basal cell carcinomas, and 5 squamous cell carcinomas. All lesions were excised
for histological analyses. A pixel-wise analysis provided map-like images and classified pigmented
lesions with a sensitivity of 87% and a specificity of 93%, and 79% and 91%, respectively, for non-
pigmented lesions. A majority voting analysis, which provided the most probable lesion diagnosis,
diagnosed 41 of 42 lesions correctly. This pilot study indicates that our non-invasive hyperspectral
imaging system, which involves shape and depth data analysed by convolutional neural networks,
is feasible for differentiating between malignant and benign pigmented and non-pigmented skin
tumours, even on complex skin surfaces.

Keywords: biomedical optical imaging; convolutional neural networks; hyperspectral imaging;
non-invasive imaging; optical modelling; photometric stereo; skin cancer; skin imaging

1. Introduction

Skin cancers comprise one third of all cancer diagnoses worldwide, and their inci-
dence is continuously increasing [1]. This increase is producing a substantial burden on
our health care system, introducing a need for fast and precise diagnostic tools. Der-
moscopy, reflectance confocal microscopy (RCM), optical coherence tomography (OCT),
and multispectral (MS) imaging are examples of non-invasive imaging tools that have
been studied. Among these tools, dermoscopy is the most widely used and accepted, with
good evidence for improving diagnostic accuracy [2]. Hyperspectral (HS) imaging is a
promising non-invasive imaging option for biomedical and dermatological applications.
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In contrast to MS imaging, the higher number and width of the spectral channels in HS
imaging enables a higher spectral resolution, and thus, recognizes more subtle spectral
differences [3]. Longer wavelengths penetrate deeper into the tissue revealing structures
and biophysical phenomena, and HS can utilize up to near-infrared (NIR) wavelengths [4].

In dermatological applications, a hyperspectral imaging system (HSI) can identify
biological tissues by their diffuse reflected spectra, which depend upon certain tissue chro-
mophores such as melanin, haemoglobin, water, beta-carotene, collagen, and bilirubin [5].
Thus, the advantages of HS imaging offer the unique possibility of visualizing deeper
structures (up to 3.5 mm) [4] with a large field of view and fast processing.

In the field of skin tumours, HSI has been used to successfully identify solar field can-
cerization [6]. HSI can also distinguish lentigo maligna from lentigo maligna melanoma [7],
and pigmented basal cell carcinomas (BCCs) from malignant melanomas (MMs) [8], as
well as identifying the borders of lentigo maligna [9] and BCCs [10]. HSI has been used
successfully in melanoma screening [11–14] and the diagnosis of skin lesions [15]. However,
there are few HSI studies on non-pigmented lesions [6,10], and in several studies, the
diagnosis of supposedly benign lesions was not histologically confirmed, possibly biasing
the results. Based on previous HSI studies, one of the major challenges is the complex
surface topography and tomography of certain areas of the body, such as the shoulder,
nose, ear, and other parts of the face.

HS imaging has advances and challenges. An HS image consists of a stack of frames.
Each frame represents the intensity of a different wavelength of light, and each pixel (px)
has a spectrum. The spectral data have both spectral and spatial domains, which provide
detailed information on the target. Another major challenge for HS image processing is the
large amount of data. An imager can capture tens or hundreds of frames, which can lead
to the Hughes phenomenon, whereby the accuracy gradually increases as the number of
dimensions increases, but decreases after a certain number of dimensions is reached [16], as
well as producing redundancy among the samples [17]. These challenges can be avoided
computationally, for instance, by employing common feature extraction methods. In this
study, our solution was to customise the imager to capture only the necessary wavelengths.
By selecting the wavelength channels and corresponding light-emitting diodes (LEDs) to
represent the spectral absorption peaks of tissue chromophores from visible (VIS) to NIR
light and using common reflectance calculations, the HS image contained the main diffuse
tissue reflectance spectrums, thus providing a multidimensional view of a lesion with
depth information. In this way, we employed a computationally effective solution since the
amount of captured data and pre-processing could be limited.

This study represents the second stage in our three-stage pilot project to introduce
and clinically test a new concept for skin cancer diagnosis. The core of the study is the
SICSURFIS Spectral Imager, which is a compact, hand-held, piezo-actuated metallic mirror
Fabry–Pérot interferometer (FPI)-based hyperspectral imager suitable for complex skin
surfaces, as described in detail elsewhere [18]. The imager has integrated LED-based
illumination, which is set to special lightning angles for photometric stereo imaging. Each
LED and FPI position are individually controllable. Since the FPI is the spectral separator,
the captured wavelengths can be selected by the software to match the LED illumination.
The imager’s field of view is adaptable based on the different sizes of specially designed
light protection cones, which block unwanted light and, through their soft silicon collars,
adapt to complex skin surfaces more easily than the imagers used in previous studies. The
system’s photometric stereo imaging provides skin-surface models, which, combined with
the spectral and spatial domains, introduce more information on the analysed complex
surfaces to the machine learning model. Another advantage of the SICSURFIS Spectral
Imager is its feasibility: the hand-held device is small and light and can be used by one
person without assistance (Figure 1).
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Figure 1. The SICSURFIS imager, light-emitting diode (LED) module, and stray light protection 
cones (A). The imaging setup and software (B). Image source [18]. 
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their likely benign nevus removed. All patients provided their written informed consent. 
The study protocol followed the Declaration of Helsinki and was approved by the Ethical 
Review Board of HUS. 
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in vivo with the HSI, as well as by digital and dermoscopy imaging, and subsequently 
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each sample was performed by an experienced dermatopathologist (L.J.) at the 
dermatopathology laboratory of the Skin and Allergy Hospital, HUS. In total, 42 patients 
with 54 lesions were recruited. Of these, 6 lesions were excluded due to imaging artefacts 

Figure 1. The SICSURFIS imager, light-emitting diode (LED) module, and stray light protection
cones (A). The imaging setup and software (B). Image source [18].

In this study, we captured HS images of pigmented and non-pigmented malignant and
clinically reminiscent benign skin lesions using the novel SICSURFIS Spectral Imager. After
imaging, the lesions were excised for histological analyses. The data were pre-processed
with photometric stereo imaging methods (see the detailed explanation in Hakola et al. [18]),
which provided skin-surface models for each of the captured wavebands. Besides the skin-
surface models, the raw data were calculated from albedo images.

As a classification and delineation method, we used a specially designed convolutional
neural network (CNN) that utilises spectral and spatial information (albedos) with the skin-
surface model. Previous studies have estimated CNNs for diagnosing skin tumours based
on plain red-green-blue (RGB) or dermoscopy pictures as accurately as an experienced
dermatologist—at times even outperforming the human experts [19–23]. We calculated
both the pixel-wise and majority voting classification results.

The aim of this pilot study was to compare the discriminatory capacity of combined
HSI and CNN analysis for pigmented and non-pigmented, malignant, and benign skin
tumours with similar appearances. As this combined analysis includes more data on the
shape and depth of the lesion than previous studies with HSI [18], our hypothesis is that
high resolution photometric stereo imaging and specific depth data for each wavelength
will improve the classification and delineation results compared to previous studies, and
that complex skin surfaces will no longer be a major challenge.

2. Materials and Methods
2.1. The Clinical Study

The clinical study was performed in February and March, 2020, at the Dermatology
Outpatient Clinic, Helsinki University Hospital (HUS). The volunteering patients were
recruited in an unselected fashion from patients attending the dermatology outpatient
clinic due to diagnosed or suspected skin cancer, or from patients that wished to have
their likely benign nevus removed. All patients provided their written informed consent.
The study protocol followed the Declaration of Helsinki and was approved by the Ethical
Review Board of HUS.

The physicians (V.L., K.I.) and the research nurse (J.Y.) captured images of the lesions
in vivo with the HSI, as well as by digital and dermoscopy imaging, and subsequently
biopsied or removed all lesions for the histological analyses. The histological analysis
of each sample was performed by an experienced dermatopathologist (L.J.) at the der-
matopathology laboratory of the Skin and Allergy Hospital, HUS. In total, 42 patients with
54 lesions were recruited. Of these, 6 lesions were excluded due to imaging artefacts (e.g.,
imaged with a stray light protection cone that was too small) and 6 lesions were excluded
due to other histology (lentigo, seborrheic keratosis, neurofibroma, pyogenic granuloma,
or carcinoma in situ). Thus, the final analyses included 42 lesions from 33 patients. As
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pigmented lesions, we studied 7 MMs and 13 benign pigmented nevi (PN); and as non-
pigmented lesions, we studied 10 BCCs, 5 squamous cell carcinomas (SCCs), and 7 benign
intradermal (ID) nevi. Pigmented nevi included both combined and junctional nevi. ID
nevi were clinically non-pigmented.

2.2. Patient Demographics and Lesion Characteristics

Patient demographics and lesion characteristics are listed in Table 1. Seventeen patients
had a history of one or several skin cancers, and six had a history of one or several other
cancers. Four patients were on immunosuppressive medication, among whom one was
an organ transplant patient. Thirteen (31%) of the lesions were located on the head or
neck, including three lesions on particularly complex sites (the ear, eyelid, and corner of
the eye). The Breslow thicknesses of the SCCs varied between 1.1 and 5.2 mm, and that
of the melanomas varied between 0.2 and 1.6 mm. All melanomas were of the superficial
spreading type. The melanoma with a Breslow thickness 1.6 mm had a diameter of 28 mm
and surrounding satellite lesions.

Table 1. Patient demographics and lesion characteristics (n, %).

PATIENTS 33 LESIONS 42

Mean age 68 Mean diameter 10.3 mm (2–30 mm)

Males 16 (48%) Diagnosis

Females 17 (52%) Pigmented lesions:

Fitzpatrick skin type MM 7 (17%)

I 9 (27%) Superficial spreading MM 7 (17%)

II 12 (36%) PN 13 (31%)

III 12 (36%) Junctional nevi 5 (12%)

History of skin cancer 17 (52%) Compound nevi 8 (19%)

BCC 8 (24%) High-grade dysplastic PN 2 (5%)

MM 7 (21%) Low-grade dysplastic PN 3 (7%)

SCC 2 (6%) Nevus recurrence 1 (2%)

BCC + MM 3 (9%) Non-pigmented lesions:

History of other cancers 6 (18%) BCC 10 (24%)

Breast 3 (9%) Nodular 6 (14%)

GI 2 (6%) Nodular + superficial 3 (7%)

Prostate 2 (6%) Superficial 1 (2%)

Blood 1 (3%) SCC 5 (12%)

Immunosuppression 4 (12%) ID 7 (17%)

Radiation therapy 3 (9%) Location:

Multiple nevus syndrome 2 (6%) Head/neck 13 (31%)

Dysplastic nevi 6 (18%) Torso 21 (50%)

Family history of skin cancer 4 (12%) Upper extremities 2 (5%)

Multiple nevus syndrome in the family 4 (12%) Lower extremities 6 (14%)

BCC = basal cell carcinoma, GI = gastrointestinal, ID = intradermal nevus, MM = malignant melanoma,
PN = pigment nevus, SCC = squamous cell carcinoma.

2.3. The SICSURFIS Hyperspectral Imager

The SICSURFIS Spectral Imager (VTT Technical Research Centre of Finland, Espoo,
Finland) prototype used in this study is composed of a hand-held Piezo-actuated metallic
mirror FPI hyperspectral imager, an RGB sensor, and an LED light source. The hand-held
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device weighs only 890 g. The light source has three series of intentionally selected nine
LEDs, emitting light from white to 940 nm. The LEDs can be tilted at specific angles to
enable photometric stereo imaging. Each LED and FPI position are individually controllable.
Since the FPI is the spectral separator, the captured wavelengths can be selected to match
the LED illumination by the software. To enable the imaging of complex skin surfaces, the
imager has four stray light protection cones (Figure 1) that block unwanted light and adjust
the imager on the skin. The stray light protection cones are different sizes (3.1–26.4 cm2),
and thus, offer the imager an adaptable field of view for different-sized lesions [18]. The soft
silicon collars adapt to the shape the skin and provide comfort. Detailed block diagrams
and details of the imager and its calibration processes can be found in [18].

The imager is connected to a computer via Cube View software [24] (University of
Jyväskylä, Spectral Imaging Laboratory [25]). The software is pre-set to capture 33 wave-
bands with wavelengths from visible to near infrared light (477–891 nm) [18]. The user
interface is designed for an effortless workflow, allowing the user to concentrate on the
patient. With one click, the imager captures three sets of raw frames (in total, six HS
images) of one lesion with different light directions, providing spectral data for the three-
dimensional skin-surface models and the albedos. The imager has a pixel resolution of
1 px ≈ 24 × 24 µm. The tissue penetration depth depends upon the wavelength; for the
wavelengths used in this work, the penetration depth was 0–6 mm [26]. Ease of use was
considered when developing the software, which guides the user to capture dark and white
references, followed by images, using three different LED light and waveband combinations
with one click.

2.4. Data Pre-Processing

The three sets of raw frames, each including 33 wavelengths, were pre-processed twice.
The two stages were raw image pre-processing and machine learning pre-processing. The
detailed information and mathematical formulas for this process can be found in [18].

2.5. Raw Data Pre-Processing

The SICSURFIS imager is a high-quality wavelength scan HS imager with a collection
speed similar to that of a snapshot scan imager [3], which captures the wavelengths frame by
frame. The raw image pre-processing was conducted as shown in Figure 2. We obtained six
raw HS images for each lesion. The VIS and visible and near-infrared (VNIR) channels were
captured under three different angles of light. These images were calculated to determine
their radiances and white references. The radiances and white references provided six
reflectance HS images. The different light angles were combined into three HS images. The
albedos and normals were calculated based on these images, forming one HS cube per
lesion. The depth maps (the skin-surface model) were calculated from these cubes, and,
after smoothening, one HS cube per lesion was formed. Each cube contained the albedo
images and skin-surface models for each of the 33 captured wavelengths.

Since an HS image (HS cube) is a stack of frames, and the size of one frame was
1605 × 1640 px, the size of the whole processed HS cube was 1605 × 1640 × 66 px after the
raw image pre-processing phase. Here, the first 33 of 66 pixels represented the skin-surface
albedo images and the last 33 pixels were the respective skin-surface models. An “RGB
image” reconstruction from the albedo images consisting of three wavelength channels is
illustrated in Figure 3 on the left. On the right is a reconstruction of the skin-surface model
for the same ID.

2.6. Machine Learning Pre-Processing

A physician (V.L.) manually annotated the RGB images (i.e., marked the areas of
tumour and healthy skin based on a histological diagnosis). The annotations were digitised
to binary form and formed the ground truth (Figure 4). We then created healthy skin
masks, which were necessary for selecting the healthy skin pixels around the lesion. Our
first SICSURFIS study highlighted that the skin-surface models had the best quality in
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the middle of the images. We also noted some uncertainly labelled pixels in the lesion
border areas, which may have influenced the results [18]. To overcome this, we created an
algorithm that provided an annular boundary around the lesions to leave out low-quality
areas at the periphery of the images. A 60-px-wide margin at the lesion border was also left
out of the analyses to reduce bias from the annotations.
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After finishing the masks, we selected the most significant skin-surface frame, which
was the 575 nm wavelength. Each HS image consisted of 33 albedo images and the 575 nm
skin-surface frame. Selection was based on our first pilot study [18]. The data were
normalised between 0 and 1, and the possible infinity and NaN values were set to 0.

Figure 4 presents the training and test pixel selection, and the masks. Before window-
ing and selecting the training and test pixels, the images were vertically sliced through the
middle of the lesions. The left side of each HS image was taken as the training image and
the right side as the test image.

For each training and test image, 250 lesion and 100 healthy skin pixels were se-
lected randomly. These pixels were the middle pixels of 30 × 30 pixel windows with
34 channels, which were selected using a rolling-window algorithm [18]. After data se-
lection, the training set’s windowed pixels were balanced using the imbalanced learn
library random over-sampling method [27] and augmented with vertical and horizon-
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tal flipping. The training set for classification of the pigmented lesions (MM, PN, and
healthy skin) included 29,136 px, the validation set included 1400 px, and the test set in-
cluded 7000 windowed px. The non-pigmented (BCC, SCC, ID, and healthy skin) training
set encompassed 31,168 px, the validation set totalled 1540 px, and the test set totalled
7700 px. The machine learning models were tested via pixel-wise classification with whole
HS images (1605 × 1640 × 34 px), which were pre-processed similarly with the test and
training data. The windowed pixels from whole HS images were used for predicting
the classification and confidence maps for each lesion image and for the majority voting
analysis. Detailed information on the applied pre-processing algorithms has been described
elsewhere [18].
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represents the healthy skin pixels; red represents the lesion pixels (C). The size of the original lesion
annotation was minimized to a lesion binary map of 30 pixels and similarly enlarged to a healthy
skin mask. A 60-pixel margin at the lesion border was applied where no pixels were selected.

2.7. Data Analysis

The pre-processed training and validation data were analysed at the University of
Jyväskylä using CNN models. We used two models, a three-class classifier (MM, PN,
and healthy skin) for the pigmented lesions and a four-class classifier (BCC, SCC, ID, and
healthy skin) for the non-pigmented lesions. Both models had similar structures, wherein
the 3D and 2D layers were used to utilize the spectral, spatial, and depth information
from the data. The CNN 3D layer extracted features from the albedo images, and the 2D
layer extracted features from the skin-surface models. The CNN construction included the
LeakyReLu activation function and max-pooling layers as shown in Figure 5.

After feature extraction, the 2D and 3D layer results were flattened, concatenated, and
used as input for the hidden layers. Depending on the examination, the final output dense
layer provided the results for three- or four-class classification. The model was trained via
the Adam optimizer with default parameters using the categorical cross-entry loss function.

With both test setups (i.e., the three- and four-class classifiers), the results were ob-
tained both pixel-wise and for the whole HS image. The pixel-wise results were conducted
from randomly selected windowed test data containing the lesion types and healthy skin
samples. The whole windowed HS images were classified to produce the classification
confident and classification maps for visual evaluation. Since the whole HS images also
contained pixels outside the imager’s field of view (the black area seen in image C, Figure 4),
the overall accuracy results were biased by these outlier pixels. Therefore, we performed
a majority voting test for the whole image classification results. With the original lesion
binary maps delineated by a dermatologist and confirmed via histology, we selected all
pixels that were annotated as lesion pixels from the right side of the image (sliced vertically
as in the training and test data, Figure 4). Then, we calculated the number of lesion pixels
for each lesion type. By assuming that there was only one type of lesion pixel per lesion,
we re-classified the images to the majority class. That way, majority voting provided one
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primary diagnosis for each lesion based on the most common diagnosis for the lesion pixels
in the test data.

We provided accuracy reports for both the pixel-wise analysis and majority voting.
The analysis included sensitivity, specificity, positive predictive values (PPVs), and F1-
score measurements, which were provided by Scikit-Learn metrics [28]. The results were
completed via confusion matrices.
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Figure 5. A visualization of the convolutional neural network. The 3D convolutional layers were
used with the albedo images, and the 2D convolutional layers processed the skin-surface model. The
outputs were concatenated, flattened, and used as input for the hidden layers. Depending on the
examination, the output layer was 3- or 4-class classification (dense layer). Image source [18].

The study was implemented with Scikit-Learn [28], Scikit-Image [27], SciPy [29], and
Tensorflow Python libraries [30]. Computing was performed using a Linux GPU server,
1 × Tesla P100, x86_64. The HSI and computational analyses are described in detail in a
previous article by Raita-Hakola et al. [18].

3. Results
3.1. Classification Results for Pigmented Lesions

In total, 20 pigmented lesions, 7 MMs, and 13 benign PNs were studied. The pixel-wise
classification for pigmented lesions reached a weighted sensitivity of 87%, a specificity of
93%, and a PPV of 87%. In majority voting, the weighted sensitivity was 95%, specificity
was 97%, and PPV was 96%. None of the melanomas were classified as nevus, but one
low-grade dysplastic benign compound nevus was classified as melanoma by the majority
voting test. Figure 6 presents the PPVs for the separate diagnoses by each analysis method.
A representative example of a pixel-wise classification map for a pigmented lesion is
illustrated in Figure 7.
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Figure 7. Clinical (A) and dermoscopy images (B) and a classification map (C) of a 10 mm low-grade
dysplastic compound nevus of the chest, clinically and histologically diagnosed as a benign nevus but
classified as a melanoma by the SICSURFIS system. The test data (right half of the image) included
pixels classified as both melanoma and nevus. However, according to the majority voting analysis,
there were more melanoma pixels. Light reflection caused probable artefacts in the surrounding area
of the lesion.

3.2. Classification Results for Non-Pigmented Lesions

The pixel-wise classification for non-pigmented lesions (22 lesions: 10 BCCs, 5 SCCs,
and 7 benign IDs) reached a weighted sensitivity of 79%, a specificity of 91%, and a PPV of
80%. In the majority voting analysis, the weighted sensitivity was 100%, specificity was
100%, and PPV was 100%. Thus, all lesions were classified correctly by majority voting.
Figure 8 presents the PPVs for the separate diagnoses by each analysis method, and Figure 9
illustrates a pixel-wise classification map of a non-pigmented lesion.
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Figure 9. Clinical (A) and dermoscopy image (B) and the classification map (C) of a 15 mm SCC on
the leg. Clinically, this lesion could be either a BCC or a SCC, but it was correctly classified as a SCC
by the system. The SICSURFIS system delineated the lesion accurately, although it was surrounded
by some probable imaging artefacts caused by the uneven skin colour of the healthy skin.

4. Discussion

We achieved a sensitivity of 87% and a specificity of 93% for recognising melanoma
from pigmented nevi and healthy skin with a pixel-wise analysis, and even higher results
using majority voting (95% and 97%, respectively). Two previous studies on melanoma
recognition combined HSI with deep learning. Hirano et al. studied 619 lesions and
classified them utilizing GoogLeNet pretrained with ImageNet [12]. However, the results
were unsatisfactory, achieving a sensitivity of 72% and a specificity of 81% after data
augmentation, likely due to the reduction of the wavelengths used from 84 to 3. Three
wavelengths are considered more comparable to digital or multispectral, rather than
hyperspectral, imaging. Kato et al. similarly utilized a pretrained GoogLeNet to analyse
619 lesions [13]. The authors used automated analyses with transfer learning and reached
somewhat higher classification results based on two analysis methods with sensitivities of
80% and 77% and specificities of 82% and 82% after data augmentation. Our results are
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more accurate but remain in line with those of Kato et al. Thus, it seems that the results
obtained via HS imaging are repeatable.

In previous studies on the recognition of pigmented lesions with HSI that did not uti-
lize machine learning, Christensen et al. studied 202 skin lesions and reached a sensitivity
of 97% for malignant lesions and a specificity of 42% for benign lesions [11]. Three other
well-powered studies reached sensitivities of 88–97% and specificities of 87–100% [14,31,32].
However, none of these previous studies histologically confirmed the diagnosis of suppos-
edly benign lesions [11–14,31,32], and thus, the results are not directly comparable with
those obtained for histologically verified lesions. In the present study, all lesions were
confirmed histologically, and only healthy skin was assessed by clinical inspection alone.

CNN analyses of digital or dermoscope images have achieved similar, or even greater,
accuracy for melanoma recognition than that achieved by dermatologists [19–21,23]. For
instance, in a study by Haenssle et al. on dermoscopy images, 58 dermatologists reached a
sensitivity of 87% and a specificity of 71%, whereas the CNN achieved a higher specificity
of 83% [20]. In a meta-analysis of 22 melanoma recognition-studies, dermoscopy-CNN
achieved a sensitivity of 90% and a specificity of 74% [21]. For MS imaging with computer-
aided diagnosis, the values for sensitivity and specificity based on 15 studies were 93%
and 44%, respectively, demonstrating that MS imaging is often limited by low specificity
values [33]. In a recent meta-analysis of melanoma detection via RCM, the pooled sensi-
tivity and specificity were 92% and 70%, respectively [34]. Two studies on OCT reached
sensitivities of 74–89% and specificities of 61–92% [35,36]. Thus, the results of our HS
analyses are strong and offer high specificity values compared to other analysis methods.
In the studies by Pezzini et al. and Gamblicher et al. on RCM and OCT [34,36], trained
experts were required for the analyses.

For the detection of non-pigmented or non-melanoma skin cancer (NMSC) with HSI,
studies are rare. Our results seem promising with a sensitivity of 79% and a specificity
of 91% for separating BCC, SCC, ID, and healthy skin, considering that non-pigmented
lesions are more difficult than pigmented lesions to diagnose via dermoscopy. For the
majority voting analysis, all non-pigmented lesions were classified correctly (sensitivity and
specificity of 100%). A meta-analysis of the dermoscopy of BCC reached a sensitivity of 93%
with a fixed specificity of 80%, but no conclusions could be drawn on the dermoscopy of
SCCs [37]. CNN has been compared with medical personnel for recognizing malignant pig-
mented and non-pigmented lesions from dermoscopic and digital images, and it achieved
a higher sensitivity of 81% compared to human raters (78%) [22]. Our HSI-CNN system
achieved a higher accuracy compared to the aforementioned study by Tschandl et al. [22].
HSI images include wavelengths of NIR in addition to the VIS light used solely by digital
and dermoscopy imaging; thus, some tissue chromophore-specific information that is not
visible to the human eye may be obtained by HS imaging.

For non-pigmented skin lesions, a meta-analysis of RCM including four studies on BCC
reached a pooled sensitivity of 76% and a specificity of 95% [38]. Another meta-analysis
of three studies utilizing OCT reached a sensitivity of 95% and a specificity of 77% [39].
Notably, in these studies, machine learning was not used for interpretation, and a high-level
of expertise is required for the use of RCM and OCT. Studies on MS imaging of NMSC are
rare [40,41], making it impossible to draw conclusions on this technique’s feasibility.

The PPV can be used to describe the performance of a diagnostic imaging tool. The
pixel-wise analyses of pigmented lesions had a higher PPV for nevus (90%) than for
melanoma (80%) (Figure 6). Thus, most of the pixels classified as nevus were true nevus
pixels (90%), but a high number of pixels classified as melanoma were true nevus pixels
(18%). Additionally, many healthy skin or nevus pixels were classified as melanoma—
in total, 20.1% (false positives). Only 8.1% of true melanoma pixels were misclassified
(false negatives), which is acceptable for a diagnostic tool that is used to recognize a
malignant condition.

For the single case where a 10 mm low-grade dysplastic combined nevus was classified
falsely as a melanoma by majority voting (Figure 7), the lesion’s more strongly pigmented
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parts were classified as melanoma, while the less strongly pigmented parts were classified
as nevus. In the pixel-wise map, about as many pixels were classified as melanoma as
nevus. Dysplastic nevi are atypical both clinically and histologically and can thus have
similar features to melanomas. Clinically speaking, it is better that majority voting classified
a lesion as a melanoma, as it would be more serious to misdiagnose a melanoma as a nevus.
As only a small portion of the lesion was evaluated by histology (we analysed eight cuts),
and the whole lesion was analysed by HSI, it could be speculated that HSI may recognize
areas of early melanoma growth that were overlooked by histology.

For the non-pigmented lesions, the PPV was higher for ID (92%) and SCC (89%)
than BCC (77%), as a high number of true BCC pixels were classified as healthy skin
(19%) (Figure 8). In our study, four of the ten BCCs belonged to the superficial or partly
superficial subtypes. Tumours of this subtype can be ill-defined at the tumour border,
and small tumour islands can be spread out among healthy skin at the lateral tumour
border. As these islands are not detectable with the naked eye, parts of the actual BCC can
be annotated falsely as healthy skin, impairing the results of the HSI-CNN. In contrast,
nodular BCC, SCC, and ID usually have a clear and well-defined tumour border.

Because of the small number of samples, the CNN in this study was trained on one half
of a lesion, and the other half of the same lesion was used for the analyses. This approach
may have positively influenced the results, as the training and test data were similar. We
noticed that colour changes in the healthy skin (reflections, uneven skin tone, hair, and
nipples) were occasionally classified as lesions by the CNN and not as healthy skin. This
result is understandable, as we did not have a class for features such as hair, whose colour
and structure differ from healthy skin. Another limitation of this study when considering
biology is that the CNN should have also been trained on actinic keratoses and in situ
carcinomas, which are precursors of SCC and can surround SCCs on sun-damaged skin.

The SICSURFIS Imager can capture lesions of different sizes that are located on difficult
sites, although the risk of imaging artefacts is higher for lesions on complex sites. The
smallest protection cone is ideal when capturing small lesions on complex sites. With
such a cone, the correct distance to the lens is more easily maintained, enabling the image
to remain focused. However, when using the smallest cone, the amount of healthy skin
surrounding the lesion was found to be insufficient. When using the larger cones for these
locations, stray light was able to pass the protection cone and cause artefacts. Using a
broader soft ring or cloth around the protective cone could decrease the risk for artefacts,
and images of exclusively healthy skin would provide the additional data required for
healthy skin. Some artefacts could have been caused by movement of the imager during
imaging, as the process required up to 20 s. A faster imaging process could thus enhance
the image quality.

The strengths of this study include the histological verification of all lesions and the
multi-classification of lesions into different diagnosis categories, not just malignant or
benign. The SICSURFIS imager has a high resolution and was developed for photometric
stereo imaging. Moreover, the feasibility of both the imager and the software has improved.
Unlike other studies [14], we included lesions from complex sites. Additionally, we used
a CNN (not only indexed limit values) for the analyses and employed both spatial and
spectral data. The CNN used in this pilot study could be further trained and applied in
larger-scale studies.

Based on these results and previous studies on HSI, it seems that HSI could be used
not only to aid in the diagnosis of pigmented and non-pigmented lesions but also to form a
classification map of lesions that could be used to delineate lesions more accurately, and to
indicate different diagnoses or parts with deeper invasion in a lesion, thus detecting the
most informative biopsy site of a lesion [10,42]. Although even experienced dermatologists
can mistake malignant skin lesions as benign, this diagnostic aid could be even more helpful
for non-dermatologists. Contrary to many other imaging techniques, HSI does not require
training or histological knowledge for the user [5]. Accurate delineation could, moreover,
reduce the need for re-excisions of skin tumours. Reducing the number of biopsies and
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re-excisions would save costs and thus be important for the treatment of the increasing
number of skin cancer cases in the future.

In conclusion, the results of this pilot study with 42 pigmented and non-pigmented
lesions indicate that the novel SICSURFIS HSI-CNN system with shape and depth data can
reliably aid in the differentiation of malignant and benign skin lesions, even on complex
skin surfaces. All lesions, except one, were diagnosed correctly by the majority voting
analyses. However, the results must still be validated by larger-scale studies, which are
anticipated to reveal the advantages of our 3D spectral imaging system.
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