Clinical, Immunological, and Genetic Findings in a Cohort of Patients with the DiGeorge Phenotype without 22q11.2 Deletion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Data Collection
2.2. Flow Cytometry and Immunological Assessment
2.3. Genomic Analysis
3. Results
3.1. Patients Characteristics
3.2. Infections and Autoimmunity
3.3. Auxological and Endocrine Features
3.4. Immunological Features
3.5. Genomic Features
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morrow, B.E.; McDonald-McGinn, D.M.; Emanuel, B.S.; Vermeesch, J.R.; Scambler, P.J. Molecular genetics of 22q11.2 deletion syndrome. Am. J. Med. Genet. A 2018, 176, 2070–2081. [Google Scholar] [CrossRef] [PubMed]
- McDonald-McGinn, D.M.; Sullivan, K.E.; Marino, B.; Philip, N.; Swillen, A.; Vorstman, J.A.; Zackai, E.H.; Emanuel, B.S.; Vermeesch, J.R.; Morrow, B.E.; et al. 22q11.2 deletion syndrome. Nat. Rev. Dis. Primers 2015, 1, 15071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnside, R.D. 22q11.21 Deletion Syndromes: A Review of Proximal, Central, and Distal Deletions and Their Associated Features. Cytogenet. Genome Res. 2015, 146, 89–99. [Google Scholar] [CrossRef] [PubMed]
- McDonald-McGinn, D.M.; Sullivan, K.E. Chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Medicine (Baltimore) 2011, 90, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Cancrini, C.; Puliafito, P.; Digilio, M.C.; Soresina, A.; Martino, S.; Rondelli, R.; Consolini, R.; Ruga, E.M.; Cardinale, F.; Finocchi, A.; et al. Clinical features and follow-up in patients with 22q11.2 deletion syndrome. J. Pediatr. 2014, 164, 1475–1480.e2. [Google Scholar] [CrossRef]
- Bassett, A.S.; McDonald-McGinn, D.M.; Devriendt, K.; Digilio, M.C.; Goldenberg, P.; Habel, A.; Marino, B.; Oskarsdottir, S.; Philip, N.; Sullivan, K.; et al. Practical guidelines for managing patients with 22q11.2 deletion syndrome. J. Pediatr. 2011, 159, 332–339.e1. [Google Scholar] [CrossRef]
- Bernstock, J.D.; Totten, A.H.; Elkahloun, A.G.; Johnson, K.R.; Hurst, A.C.; Goldman, F.; Groves, A.K.; Mikhail, F.M.; Atkinson, T.P. Recurrent microdeletions at chromosome 2p11.2 are associated with thymic hypoplasia and features resembling DiGeorge syndrome. J. Allergy Clin. Immunol. 2020, 145, 358–367.e2. [Google Scholar] [CrossRef] [Green Version]
- Koczkowska, M.; Wierzba, J.; Śmigiel, R.; Sąsiadek, M.; Cabała, M.; Ślężak, R.; Iliszko, M.; Kardaś, I.; Limon, J.; Lipska-Ziętkiewicz, B.S. Genomic findings in patients with clinical suspicion of 22q11.2 deletion syndrome. J. Appl. Genet. 2017, 58, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Daw, S.C.; Taylor, C.; Kraman, M.; Call, K.; Mao, J.; Schuffenhauer, S.; Meitinger, T.; Lipson, T.; Goodship, J.; Scambler, P. A common region of 10p deleted in DiGeorge and velocardiofacial syndromes. Nat. Genet. 1996, 13, 458–460. [Google Scholar] [CrossRef]
- Cirillo, E.; Prencipe, M.R.; Giardino, G.; Romano, R.; Scalia, G.; Genesio, R.; Nitsch, L.; Pignata, C. Clinical Phenotype, Immunological Abnormalities, and Genomic Findings in Patients with DiGeorge Spectrum Phenotype without 22q11.2 Deletion. J. Allergy Clin. Immunol. Pract. 2020, 8, 3112–3120. [Google Scholar] [CrossRef]
- Tobias, E.S.; Morrison, N.; Whiteford, M.L.; Tolmie, J.L. Towards earlier diagnosis of 22q11 deletions. Arch. Dis. Child. 1999, 81, 513–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiappini, E.; Santamaria, F.; Marseglia, G.L.; Marchisio, P.; Galli, L.; Cutrera, R.; de Martino, M.; Antonini, S.; Becherucci, P.; Biasci, P.; et al. Prevention of recurrent respiratory infections: Inter-society Consensus. Ital. J. Pediatrics 2021, 47, 211. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.C.; Manson, J.E.; Abrams, S.A.; Aloia, J.F.; Brannon, P.M.; Clinton, S.K.; Durazo-Arvizu, R.A.; Gallagher, J.C.; Gallo, R.L.; Jones, G.; et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: What clinicians need to know. J. Clin. Endocrinol. Metab. 2011, 96, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.L.; Greer, F.R. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics 2008, 122, 1142–1152. [Google Scholar] [CrossRef] [Green Version]
- Braegger, C.; Campoy, C.; Colomb, V.; Decsi, T.; Domellof, M.; Fewtrell, M.; Hojsak, I.; Mihatsch, W.; Molgaard, C.; Shamir, R.; et al. Vitamin D in the healthy European paediatric population. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 692–701. [Google Scholar] [CrossRef] [Green Version]
- Cacciari, E.; Milani, S.; Balsamo, A.; Spada, E.; Bona, G.; Cavallo, L.; Cerutti, F.; Gargantini, L.; Greggio, N.; Tonini, G.; et al. Italian cross-sectional growth charts for height, weight and BMI (2 to 20 yr). J. Endocrinol. Invest. 2006, 29, 581–593. [Google Scholar] [CrossRef]
- Schatorjé, E.J.; Gemen, E.F.; Driessen, G.J.; Leuvenink, J.; van Hout, R.W.; de Vries, E. Paediatric reference values for the peripheral T cell compartment. Scand. J. Immunol. 2012, 75, 436–444. [Google Scholar] [CrossRef]
- Schatorjé, E.J.; Gemen, E.F.; Driessen, G.J.; Leuvenink, J.; van Hout, R.W.; van der Burg, M.; de Vries, E. Age-matched reference values for B-lymphocyte subpopulations and CVID classifications in children. Scand. J. Immunol. 2011, 74, 502–510. [Google Scholar] [CrossRef]
- Shearer, W.T.; Rosenblatt, H.M.; Gelman, R.S.; Oyomopito, R.; Plaeger, S.; Stiehm, E.R.; Wara, D.W.; Douglas, S.D.; Luzuriaga, K.; McFarland, E.J.; et al. Lymphocyte subsets in healthy children from birth through 18 years of age: The Pediatric AIDS Clinical Trials Group P1009 study. J. Allergy Clin. Immunol. 2003, 112, 973–980. [Google Scholar] [CrossRef]
- Tosato, F.; Bucciol, G.; Pantano, G.; Putti, M.C.; Sanzari, M.C.; Basso, G.; Plebani, M. Lymphocytes subsets reference values in childhood. Cytom. A 2015, 87, 81–85. [Google Scholar] [CrossRef]
- Kohler, S.; Thiel, A. Life after the thymus: CD31+ and CD31− human naive CD4+ T-cell subsets. Blood 2009, 113, 769–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orsini, G.; Legitimo, A.; Failli, A.; Massei, F.; Biver, P.; Consolini, R. Enumeration of human peripheral blood dendritic cells throughout the life. Int. Immunol. 2012, 24, 347–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legitimo, A.; Bertini, V.; Costagliola, G.; Baroncelli, G.I.; Morganti, R.; Valetto, A.; Consolini, R. Vitamin D status and the immune assessment in 22q11.2 deletion syndrome. Clin. Exp. Immunol. 2020, 200, 272–286. [Google Scholar] [CrossRef] [PubMed]
- Pohl, E.; Aykut, A.; Beleggia, F.; Karaca, E.; Durmaz, B.; Keupp, K.; Arslan, E.; Palamar, M.; Yigit, G.; Ozkinay, F.; et al. A hypofunctional PAX1 mutation causes autosomal recessively inherited otofaciocervical syndrome. Hum. Genet. 2013, 132, 1311–1320. [Google Scholar] [CrossRef]
- Paganini, I.; Sestini, R.; Capone, G.L.; Putignano, A.L.; Contini, E.; Giotti, I.; Gensini, F.; Marozza, A.; Barilaro, A.; Porfirio, B.; et al. A novel PAX1 null homozygous mutation in autosomal recessive otofaciocervical syndrome associated with severe combined immunodeficiency. Clin. Genet. 2017, 92, 664–668. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Urrutia, R.; Franco, L.M.; Giliani, S.; Zhang, K.; Alazami, A.M.; Dobbs, A.K.; Masneri, S.; Joshi, A.; Otaizo-Carrasquero, F.; et al. PAX1 is essential for development and function of the human thymus. Sci. Immunol. 2020, 5, eaax1036. [Google Scholar] [CrossRef]
- Tropeano, M.; Howley, D.; Gazzellone, M.J.; Wilson, C.E.; Ahn, J.W.; Stavropoulos, D.J.; Murphy, C.M.; Eis, P.S.; Hatchwell, E.; Dobson, R.J.; et al. Microduplications at the pseudoautosomal SHOX locus in autism spectrum disorders and related neurodevelopmental conditions. J. Med. Genet. 2016, 53, 536–547. [Google Scholar] [CrossRef]
- Koolen, D.A.; Kramer, J.M.; Neveling, K.; Nillesen, W.M.; Moore-Barton, H.; Elmslie, F.V.; Toutain, A.; Amiel, J.; Malan, V.; Tsai, A.C.-H.; et al. Mutations in the chromatin modifier gene KANSL1 cause the 17q21.31 microdeletion syndrome. Nat. Genet. 2012, 44, 639–641. [Google Scholar] [CrossRef]
- Smith, E.R.; Cayrou, C.; Huang, R.; Lane, W.S.; Cote, J.; Lucchesi, J.C. A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol. Cell. Biol. 2005, 25, 9175–9188. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, K.E. Chromosome 22q11.2 deletion syndrome and DiGeorge syndrome. Immunol. Rev. 2019, 287, 186–201. [Google Scholar] [CrossRef]
- Piliero, L.M.; Sanford, A.N.; McDonald-McGinn, D.M.; Zackai, E.H.; Sullivan, K.E. T-cell homeostasis in humans with thymic hypoplasia due to chromosome 22q11.2 deletion syndrome. Blood 2004, 103, 1020–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcovecchio, G.E.; Bortolomai, I.; Ferrua, F.; Fontana, E.; Imberti, L.; Conforti, E.; Amodio, D.; Bergante, S.; Macchiarulo, G.; D’Oria, V.; et al. Thymic Epithelium Abnormalities in DiGeorge and Down Syndrome Patients Contribute to Dysregulation in T Cell Development. Front. Immunol. 2019, 10, 447. [Google Scholar] [CrossRef] [PubMed]
- Montin, D.; Marolda, A.; Licciardi, F.; Robasto, F.; Di Cesare, S.; Ricotti, E.; Ferro, F.; Scaioli, G.; Giancotta, C.; Amodio, D.; et al. Immunophenotype Anomalies Predict the Development of Autoimmune Cytopenia in 22q11.2 Deletion Syndrome. J. Allergy Clin. Immunol. Pract. 2019, 7, 2369–2376. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Gupta, A.; Zech, M.; Sigafoos, A.N.; Clark, K.J.; Dincer, Y.; Wagner, M.; Humberson, J.B.; Green, S.; van Gassen, K.; et al. De novo variants of NR4A2 are associated with neurodevelopmental disorder and epilepsy. Genet. Med. 2020, 22, 1413–1417. [Google Scholar] [CrossRef]
- Odagiu, L.; May, J.; Boulet, S.; Baldwin, T.A.; Labrecque, N. Role of the Orphan Nuclear Receptor NR4A Family in T-Cell Biology. Front. Endocrinol. (Lausanne) 2021, 11, 624122. [Google Scholar] [CrossRef]
- Farley, A.M.; Morris, L.X.; Vroegindeweij, E.; Depreter, M.L.; Vaidya, H.; Stenhouse, F.H.; Tomlinson, S.R.; Anderson, R.A.; Cupedo, T.; Cornelissen, J.J.; et al. Dynamics of thymus organogenesis and colonization in early human development. Development 2013, 140, 2015–2026. [Google Scholar] [CrossRef] [Green Version]
- Bhalla, P.; Wysocki, C.A.; van Oers, N.S.C. Molecular Insights into the Causes of Human Thymic Hypoplasia with Animal Models. Front. Immunol. 2020, 11, 830. [Google Scholar] [CrossRef]
- Clement-Jones, M.; Schiller, S.; Rao, E.; Blaschke, R.J.; Zuniga, A.; Zeller, R.; Robson, S.C.; Binder, G.; Glass, I.; Strachan, T.; et al. The short stature homeobox gene SHOX is involved in skeletal abnormalities in Turner syndrome. Hum. Mol. Genet. 2000, 9, 695–702. [Google Scholar] [CrossRef]
- Dingemans, A.J.M.; Stremmelaar, D.E.; van der Donk, R.; Vissers, L.E.L.M.; Koolen, D.A.; Rump, P.; Hehir-Kwa, J.Y.; de Vries, B.B.A. Quantitative facial phenotyping for Koolen-de Vries and 22q11.2 deletion syndrome. Eur. J. Hum. Genet. 2021, 29, 1418–1423. [Google Scholar] [CrossRef]
- Bertini, V.; Azzarà, A.; Legitimo, A.; Milone, R.; Battini, R.; Consolini, R.; Valetto, A. Deletion Extents Are Not the Cause of Clinical Variability in 22q11.2 Deletion Syndrome: Does the Interaction between DGCR8 and miRNA-CNVs Play a Major Role? Front. Genet. 2017, 8, 47. [Google Scholar] [CrossRef] [Green Version]
- León, L.E.; Benavides, F.; Espinoza, K.; Vial, C.; Alvarez, P.; Palomares, M.; Lay-Son, G.; Miranda, M.; Repetto, G.M. Partial microduplication in the histone acetyltransferase complex member KANSL1 is associated with congenital heart defects in 22q11.2 microdeletion syndrome patients. Sci. Rep. 2017, 7, 1795. [Google Scholar] [CrossRef] [PubMed]
- Cordeddu, V.; Macke, E.L.; Radio, F.C.; Lo Cicero, S.; Pantaleoni, F.; Tatti, M.; Bellacchio, E.; Ciolfi, A.; Agolini, E.; Bruselles, A.; et al. Refinement of the clinical and mutational spectrum of UBE2A deficiency syndrome. Clin. Genet. 2020, 98, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Wolańska, E.; Pollak, A.; Rydzanicz, M.; Pesz, K.; Kłaniewska, M.; Rozensztrauch, A.; Skiba, P.; Stawiński, P.; Płoski, R.; Śmigiel, R. The Role of the Reanalysis of Genetic Test Results in the Diagnosis of Dysmorphic Syndrome Caused by Inherited xq24 Deletion including the UBE2A and CXorf56 Genes. Genes 2021, 12, 350. [Google Scholar] [CrossRef] [PubMed]
P | Sex | Age at Diagnosis (Years) | Frequent Morbidity | Autoimmune Disorders | Cardiac Malformations | Otolaryngologic Involvement | Neuro-Behavioural and Psychiatric Involvement | Endocrine Involvement | Dysmorphic Features and Dental Issues | Skeletal Abnormalities |
---|---|---|---|---|---|---|---|---|---|---|
1 | F | 15.5 | Ear infections and sinusitis | nr | VSD, ASD | Psychomotor and language delay, epilepsy, moderate cognitive impairment | Right eye exophoria | Left flat foot, cleft posterior arch in cervical vertebrae C1 | ||
2 | M | 1.7 | Upper and lower respiratory tract infections, urinary infections | nr | VSD, ASD, CoA | Adenoid hypertrophy | Language delay, moderate cognitive impairment | 25OHD deficiency | Long face, hypertelorism, low and flat nasal bridge, low and retracted ears | Syndactyly IV and V finger hands |
3 | M | 7.7 | nr | JIA | HLHS, CoA, BAV | Short lingual frenulum | Motor and language delay, anxiety disorder with an obsessive-compulsive component, vocal tics | Wide ear pad, supernumerary and ectopic teeth in the hard palate | Bilateral clinodactyly V finger, lumbar scoliosis with right dorsal hump, mild leg dysmetria, right leg hypotrophy, valgus right foot, mild retro-tibial torsion | |
4 | F | 10.5 | Ear infections and sinusitis | Chronic autoimmune thyroiditis | Hypo-parathyroidism | Low set ears, preauricular appendix | ||||
5 | F | 2.5 | Ear infections and sinusitis | nr | PFO | Conductive hearing loss | Hypo-parathyroidism | Low set ears | ||
6 | M | 0.8 | Upper respiratory tract infections | nr | TOF | Conductive hearing loss, adenoid hypertrophy | Language delay | 25OHD deficiency | Anteroverse ears, bilateral epicanthal folds | |
7 | F | 13.4 | Upper and lower respiratory tract infections, urinary infections | nr | PDA | Labiopalatoschisis, mild and predominantly conductive mixed hearing loss | Psychomotor, cognitive and language delay, attention-deficit hyperactivity disorder, mixed anxiety disorder with an obsessive-compulsive component, sleep disturbance | 25OHD deficiency | Eyes with elongated and upward rhymes, pyriform aspect of the nose with prominent tip and widened nostrils, lower lip with a thickened edge, wide ear pad with an antiverse and low implantation | Hip dysplasia, hindfoot pronation, scoliosis |
8 | M | 1.4 | nr | nr | TA type 2, RAA | Motor and language delay and mild axial hypotonia | Micrognathia, hypertelorism, long palpebral fissures, and low and depressed nasal bridge |
P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | |
---|---|---|---|---|---|---|---|---|
Age (years) * | 21.5 | 5.8 | 13.6 | 22.8 | 14.8 | 7.7 | 16 | 1.6 |
Lymphocyte (×103/µL) | 1.27 1.8 (0.9–4.5) | 0.92 3.8 (2.3–6.1) | 1.72 2.3 (1.3–3.2) | 1.45 1.8 (0.9–4.5) | 1.20 2.3 (1.3–3.2) | 1.44 2.5 (1.7–3.4) | 1.1 2.3 (1.3–3.2) | 2.89 4.7 (3.9–6.1) |
T cells (×103/µL) | 0.89 1.5 (0.78–3.0) | 0.46 2.6 (1.6–3.7) | 0.94 1.6 (0.95–2.3) | 0.91 1.5 (0.78–3.0) | 0.77 1.6 (0.95–2.3) | 0.78 1.8 (1.2–2.6) | 0.69 1.6 (0.95–2.3) | 1.27 3.1 (2.5–4.9) |
Helper T cells (×103/µL) | 0.46 1.0 (0.5–2.0) | 0.31 1.4 (0.8–2.1) | 0.47 0.9 (0.6–1.4) | 0.60 1.0 (0.5–2.0) | 0.46 0.9 (0.6–1.4) | 0.40 1.0 (0.6–1.5) | 0.39 0.9 (0.6–1.4) | 0.95 1.8 (1.6–2.9) |
Cytotoxic T cells (×103/µL) | 0.36 0.5 (0.2–1.2) | 0.14 0.8 (0.4–1.1) | 0.41 0.5 (0.3–0.7) | 0.17 0.5 (0.2–1.2) | 0.21 0.5 (0.3–0.7) | 0.22 0.6 (0.3–0.9) | 0.28 0.5 (0.3–0.7) | 0.17 0.9 (0.6–1.4) |
B cells (×103/µL) | 0.18 0.23 (0.06–0.8) | 0.27 0.73 (0.4–1.2) | 0.37 0.32 (0.2–0.7) | 0.21 0.23 (0.06–0.8) | 0.20 0.32 (0.2–0.7) | 0.21 0.40 (0.3–0.6) | 0.94 0.32 (0.2–0.7) | 1.03 0.29 (0.19–0.7) |
NK cells (×103/µL) | 0.20 0.34 (0.10–1.2) | 0.13 0.29 (0.16–0.6) | 0.40 0.23 (0.09–0.5) | 0.27 0.34 (0.1–1.2) | 0.19 0.23 (0.09–0.5) | 0.44 0.26 (0.12–0.5) | 0.30 0.23 (0.09–0.5) | 0.58 0.29 (0.19–0.7) |
P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | |
---|---|---|---|---|---|---|---|---|
Age (years) * | 21.5 | 5.8 | 13.6 | 22.8 | 14.8 | 7.7 | 16 | 1.6 |
T cells (%) a | 69.1 67 (50–91) | 50.2 69 (60–77.6) | 54.6 73 (62.6–80.4) | 62.5 67 (50–91) | 64.3 73 (62.6–80.4) | 54.0 72 (63.2–77.8) | 63.0 73 (62.6–80.4) | 44.0 68 (60.7–75.8) |
Helper T cells (%) a | 36.5 42 (28–64) | 33.2 38 (31.1–47.4) | 27.2 44 (32.6–51.5) | 41.7 42 (28–64) | 38.4 44 (32.6–51.5) | 27.5 40 (31.7–47) | 28.1 44(32.6–51.5) | 33.0 41 (35–52) |
Cytotoxic T cells (%) a | 28.2 22 (12–40) | 14.8 21 (16–27) | 24.0 23 (19–29) | 12.0 22 (12–40) | 17.2 23 (19–29) | 15.0 24 (17.1–30) | 25.3 23 (19–29) | 6.0 19.3 (16.1–29.4) |
B cells (%) a | 13.8 10 (4–28) | 29.0 22 (13–29.2) | 21.5 14 (12–21) | 14.3 10 (4–28) | 16.3 14 (12–21) | 14.5 15.6 (12–34) | 8.5 14 (12–21) | 35.5 24 (14.3–28.2) |
NK cells (%) a | 15.5 15 (4–24.6) | 14.0 8 (4.7–16.2) | 23.5 11.7 (4.3–16.2) | 18.3 15 (4–24.6)) | 15.5 11.7 (4.3–16.2) | 30.7 9.8 (5.4–18.6) | 27.6 11.7 (4.3–16.2) | 20.0 6.8 (4–13.8) |
Naïve helper T cells (%) b | 8.8 46 (16–100) | 32.6 70 (50–85) | 12.7 51 (31–65) | 32.1 46 (16–100) | 42.4 51 (31–65) | 51.2 58 (42–74) | 46.5 51 (31–65) | 85.2 79 (62–90) |
RTE (%) b | 2.7 33 (7–100) | 13.0 58 (41–81) | 2.9 50 (31–81) | 20.6 33 (7–100) | 27.0 50 (31–81) | 26.6 58 (41–81) | 41.0 50 (31–81) | 39.9 66 (40–100) |
CM helper T cells(%) b | 58.5 42 (18–95) | 45.7 18 (0.35–100) | 44.2 32 (13–76) | 45.4 42 (18–95) | 45.0 32 (13–76) | 35.0 18 (0.35–100) | 36.4 32 (13–76) | 1.5 10 (0.09–40) |
EM helper T cells (%) b | 32.5 5 (1–23) | 20.0 2 (0.27–18) | 39.0 3 (0.49–25) | 22.0 5 (1–23) | 12.2 3 (0.49–25) | 12.7 2 (0.27–18) | 16.8 3 (0.49–25) | 1.4 0.67 (0.024–4.7) |
TEMRA helper cells (%) b | 0.1 0.35 (0.008–6.8) | 1.6 0.1 (0.003–1.8) | 4.1 0.17 (0.004–5.8) | 0.6 0.35 (0.008–6.8) | 0.3 0.17 (0.004–5.8) | 1.1 0.1 (0.003–1.8) | 0.3 0.17 (0.004–5.8) | 11.9 0.1 (0.0–4.1) |
Naïve cytotoxic T cells (%) c | 10.5 29 (6–100) | 53.9 64 (42–81) | 9.0 56 (42–73) | 17.8 29 (6–100) | 78.8 56 (42–73) | 30.6 58 (39–73) | 75.2 56 (42–73) | 73.1 71(46–85) |
CM cytotoxic T cells (%) c | 35.2 5 (1–20) | 4.0 3 (1–6) | 10.4 3 (0.4–18) | 17.7 5 (1–20) | 10.3 3 (0.4–18) | 10.7 3 (1–6) | 24.8 3 (0.4–18) | 0.5 3 (1–8) |
EM cytotoxic T cells (%) c | 47.4 36 (14–98) | 6.1 24 (5–100) | 33.2 22 (4–100) | 13.3 36 (14–98) | 3.3 22 (4–100) | 35.3 24 (5–100) | 0.1 22 (4–100) | 2.1 15 (2–100) |
TEMRA cytotoxic T cells (%) c | 6.8 19 (7–53) | 22.8 25 (15–41) | 47.3 24 (9–65) | 17.8 19 (7–53) | 7.6 24 (9–65) | 23.3 25 (15–41) | 0.10 24 (9–65) | 24.3 24 (8–71) |
Treg (%) b | 10 8 (4–17) | 15.8 8 (4–14) | 4.4 9 (4–20) | 8.6 8 (4–17) | 9.8 9 (4–20) | 3.4 8 (4–14) | 13.2 9 (4–20) | 6.2 9 (6–13) |
Follicular T helper cells (%) d | 27.4 17 (5–56) | 36.5 24 (7–85) | 22.7 18 (7–47) | 25.9 17 (5–56) | 26.2 18 (7–47) | 44.8 24 (7–85) | 28.6 18 (7–47) | 27.1 20 (8–51) |
Naïve B cells (%) e | 53.8 63 (33–100) | 82.0 76 (62–94) | 91.4 74 (49–100) | 78.1 63 (33–100) | 89.1 74 (49–100) | 61.9 76 (62–94) | 47.2 74 (49–100) | 97.4 88 (78–99) |
Switched memory B cells (%) e | 14.6 12 (3–46) | 4.0 7 (3–18) | 2.0 8 (1–43) | 7.2 12 (3–46) | 2.5 8 (1–43) | 24.0 7 (3–18) | 30.4 8 (1–43) | 1.04 3 (0.3–20) |
P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | |
---|---|---|---|---|---|---|---|---|
Age (years) * | 21.5 | 5.8 | 13.6 | 22.8 | 14.8 | 7.7 | 16 | 1.6 |
DCtot/µL | 31.71 24 (10.7–35.6) | 10.69 41.4 (28.6–69.5) | 26.41 36 (27.1–43.7) | 18.15 24 (10.7–35.6) | 20.74 36 (27.1–43.7) | 32.61 41.4 (28.6–69.5) | 14.3 36 (27.1–43.7) | 59.07 53.6 (44.7–58.9) |
DCtot (%) f | 0.48 0.43 (0.22–0.69) | 0.25 0.56 (0.39–0.68) | 0.56 0.61 (0.5–0.72) | 0.44 0.43 (0.22–0.69) | 0.46 0.61 (0.5–0.72) | 0.72 0.56 (0.39–0.68) | 0.23 0.61 (0.5–0.72) | 1.12 0.63 (0.48–0.89) |
mDC/µL | 18.29 14.7 (7.6–21.1) | 7.33 25.5 (12.4–48.0) | 17.98 23.5 (18.4–30.9) | 11.37 14.7 (7.6–21.1) | 11.36 23.5 (18.4–30.9) | 14.6 25.5 (12.4–48.0) | 5.69 23.5 (18.4–30.9) | 27.62 32.8 (26.9–39.5) |
mDC (%) f | 0.28 0.26 (0.1–0.4) | 0.17 0.34 (0.2–0.5) | 0.38 0.40 (0.3–0.5) | 0.28 0.26 (0.1–0.4) | 0.25 0.40 (0.3–0.5) | 0.32 0.34 (0.2–0.5) | 0.09 0.40 (0.3–0.5) | 0.52 0.38 (0.3–0.5) |
pDC/µL | 13.42 9.4 (3.2–17.0) | 3.36 15.9 (8.6–23.6) | 8.43 12.5 (5.4–18.8) | 6.78 9.4 (3.25–17.0) | 9.38 12.5 (5.4–18.8) | 18.01 15.9 (8.6–23.6) | 8.61 12.5 (5.4–18.8) | 31.45 20.8 (12.6–30.8) |
pDC (%) f | 0.20 0.17 (0.07–0.3) | 0.08 0.22 (0.1–0.4) | 0.18 0.21 (0.1–0.3) | 0.16 0.17 (0.07–0.3) | 0.21 0.21 (0.1–0.3) | 0.4 0.22 (0.1–0.4) | 0.14 0.21 (0.1–0.3) | 0.6 0.25 (0.1–0.4) |
Immunoglobulins | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 |
---|---|---|---|---|---|---|---|---|
Age * | 21.5 | 5.8 | 13.6 | 22.8 | 14.8 | 7.7 | 16 | 1.6 |
IgG (mg/dL) | 1440 (1116 ± 208) | 979 (1007 ± 236) | 841 (1116 ± 208) | 557 (1116 ± 208) | 697 (1116 ± 208) | 1000 (1040 ± 223) | 962 (1116 ± 208) | 361 (655 ± 176) |
IgM (mg/dL) | 256 (92 ± 34) | 57 (87 ± 27) | 96 (92 ± 34) | 304 (92 ± 34) | 91 (92 ± 34) | 49 (90 ± 27) | 127 (92 ± 34) | 21 (67 ± 29) |
IgA (mg/dL) | 138 (189 ± 67) | 84 (123 ± 41) | 113 (189 ± 67) | 59 (189 ± 67) | 48 (189 ± 67) | 163 (136 ± 48) | 155 (189 ± 67) | 35 (42 ± 23) |
IgG1 (mg/dL) | 844 (490–1140) | 664 (370–1000) | NA | 523 (490–1140) | 535 (490–1140) | 730 (370–1000) | 588 (370–1280) | 310 (200–770) |
IgG2 (mg/dL) | 511 (150–640) | 181 (72–340) | NA | 196 (150–640) | 152 (150–640) | 213 (72–340) | 266 (106–610) | 83 (34–230) |
IgG3 (mg/dL) | 64 (20–110) | 77 (13–133) | NA | 23 (20–110) | 30 (20–110) | 59 (13–133) | 57 (18–263) | 13 (15–97) |
IgG4(mg/dL) | 93 (8–140) | 2 (0.01–158) | NA | 0.0 (8–140) | 9 (8–140) | 24 (0.01–158) | 25 (4–230) | 2 (0.01–43) |
Subjects | Position (GRCh37/hg19) | Extent (kb) | NCBI RefSeq Genes (UCSC) | Inheritance |
---|---|---|---|---|
P1 | 2q24.1 (156,761,199_157,075,778)x3 | 314 | LINC01876 | Maternal |
P2 | arr(X,Y)x1,(1-22)x2 * | |||
P3 | arr(X,Y)x1,(1-22)x2 * | |||
P4 | 20p11.22 (21,419,411_21,784,484)x3 | 365 | PAX1, NKX2-2, LINC01727,LINC01726 | Maternal |
P5 | 20p11.22 (21,419,411_21,784,484)x3 | 365 | PAX1, NKX2-2, LINC01727,LINC01726 | Maternal |
P6 | 11p15.5 (723,382_917,649)x3 | 194 | EPS8L2, TALD01, GATD1, LOC171391, CEND1, SLC25A22, PIDD1, RPLP2, SNORA52, PNPLA2, CRACR2B, CD151, POLR2L, TSPAN4, CHID1 | NA |
Xp22.33 or Yp11.32 (61,091_658,258 or 11,091_608,258)x2 | 597 | PLCXD1, GTPBP6, LINC00685, PPP2R3B, SHOX | ||
P7 | 17q21.31 (43,717,703_44,210,822)x1 | 493 | LINC02210, LINC02210-CRHR1, CRHR1, MAPT-AS1, SPPL2C, MAPT, MAPT-TT1, STH, KANSL1 | NA |
P8 | 17p13.2(5882589_6140992)x1 | 258 | WSCD1 | Maternal |
Xq24(118647205_118715504)x0 | 68 | CXorf56, UBE2A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alberio, A.M.Q.; Legitimo, A.; Bertini, V.; Baroncelli, G.I.; Costagliola, G.; Valetto, A.; Consolini, R. Clinical, Immunological, and Genetic Findings in a Cohort of Patients with the DiGeorge Phenotype without 22q11.2 Deletion. J. Clin. Med. 2022, 11, 2025. https://doi.org/10.3390/jcm11072025
Alberio AMQ, Legitimo A, Bertini V, Baroncelli GI, Costagliola G, Valetto A, Consolini R. Clinical, Immunological, and Genetic Findings in a Cohort of Patients with the DiGeorge Phenotype without 22q11.2 Deletion. Journal of Clinical Medicine. 2022; 11(7):2025. https://doi.org/10.3390/jcm11072025
Chicago/Turabian StyleAlberio, Antonino Maria Quintilio, Annalisa Legitimo, Veronica Bertini, Giampiero I. Baroncelli, Giorgio Costagliola, Angelo Valetto, and Rita Consolini. 2022. "Clinical, Immunological, and Genetic Findings in a Cohort of Patients with the DiGeorge Phenotype without 22q11.2 Deletion" Journal of Clinical Medicine 11, no. 7: 2025. https://doi.org/10.3390/jcm11072025
APA StyleAlberio, A. M. Q., Legitimo, A., Bertini, V., Baroncelli, G. I., Costagliola, G., Valetto, A., & Consolini, R. (2022). Clinical, Immunological, and Genetic Findings in a Cohort of Patients with the DiGeorge Phenotype without 22q11.2 Deletion. Journal of Clinical Medicine, 11(7), 2025. https://doi.org/10.3390/jcm11072025