Short- and Long-Term Visual Outcomes in Patients Receiving Intravitreal Injections: The Impact of the Coronavirus 2019 Disease (COVID-19)—Related Lockdown
Abstract
:1. Introduction
2. Methods
2.1. Data Collection
2.2. Statistical Analysis
3. Results
3.1. Neovascular AMD (nvAMD)
3.2. Diabetic Retinopathy (DR)
3.3. Central Retinal Vein Occlusion (CRVO)
3.4. Branch Retinal Vein Occlusion (BRVO)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shikari, H.; Samant, P. Intravitreal injections: A review of pharmacological agents and techniques. J. Clin. Ophthalmol. Res. 2016, 4, 51. [Google Scholar] [CrossRef]
- Kodjikian, L.; Souied, E.H.; Mimoun, G.; Mauget-Faÿsse, M.; Behar-Cohen, F.; Decullier, E.; Huot, L.; Aulagner, G.; GEFAL Study Group. Ranibizumab versus bevacizumab for neovascular age-related macular degeneration: Results from the GEFAL noninferiority randomized trial. Ophthalmology 2013, 120, 2300–2309. [Google Scholar] [CrossRef] [PubMed]
- Giancipoli, E.; Pinna, A.; Boscia, F.; Zasa, G.; Sotgiu, G.; Dore, S.; D’Amico Ricci, G. Intravitreal Dexamethasone in Patients with Wet Age-Related Macular Degeneration Resistant to Anti-VEGF: A Prospective Pilot Study. J. Ophthalmol. 2018, 2018, 5612342. [Google Scholar] [CrossRef] [PubMed]
- Pece, A.; Milani, P. Intravitreal aflibercept for myopic choroidal neovascularization. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 2327–2332. [Google Scholar] [CrossRef] [PubMed]
- Giacomelli, G.; Finocchio, L.; Biagini, I.; Sodi, A.; Murro, V.; Introini, U.; Varano, M.; Bandello, F.; Menchini, U. Long-Term Follow-Up of Choroidal Neovascularization due to Angioid Streaks with pro re nata Intravitreal Anti-VEGF Treatment. Ophthalmologica 2017, 238, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Q.D.; Shah, S.M.; Khwaja, A.A.; Channa, R.; Hatef, E.; Do, D.V.; Boyer, D.; Heier, J.S.; Abraham, P.; Thach, A.B.; et al. Two-year outcomes of the ranibizumab for edema of the mAcula in diabetes (READ-2) study. Ophthalmology 2010, 117, 2146–2151. [Google Scholar] [CrossRef] [PubMed]
- Mehta, H.; Hennings, C.; Gillies, M.C.; Nguyen, V.; Campain, A.; Fraser-Bell, S. Anti-vascular endothelial growth factor combined with intravitreal steroids for diabetic macular oedema. Cochrane Database Syst. Rev. 2018, 4, CD011599. [Google Scholar] [CrossRef]
- Brown, D.M.; Campochiaro, P.A.; Bhisitkul, R.B.; Ho, A.C.; Gray, S.; Saroj, N.; Adamis, A.P.; Rubio, R.G.; Murahashi, W.Y. Sustained benefits from ranibizumab for macular edema following branch retinal vein occlusion: 12-month outcomes of a phase III study. Ophthalmology 2011, 118, 1594–1602. [Google Scholar] [CrossRef]
- Brown, D.M.; Campochiaro, P.A.; Singh, R.P.; Li, Z.; Gray, S.; Saroj, N.; Rundle, A.C.; Rubio, R.G.; Murahashi, W.Y.; Cruise Investigators. Ranibizumab for Macular Edema following Central Retinal Vein Occlusion. Six-Month Primary End Point Results of a Phase III Study. Ophthalmology 2010, 117, 1124–1133.e1. [Google Scholar] [CrossRef]
- Qian, T.; Zhao, M.; Xu, X. Comparison between anti-VEGF therapy and corticosteroid or laser therapy for macular oedema secondary to retinal vein occlusion: A meta-analysis. J. Clin. Pharm. Ther. 2017, 42, 519–529. [Google Scholar] [CrossRef] [Green Version]
- Haller, J.A. Current anti-vascular endothelial growth factor dosing regimens: Benefits and burden. Ophthalmology 2013, 120, S3. [Google Scholar] [CrossRef] [PubMed]
- Ehlken, C.; Helms, M.; Böhringer, D.; Agostini, H.T.; Stahl, A. Association of treatment adherence with real-life VA outcomes in AMD, DME, and BRVO patients. Clin. Ophthalmol. 2018, 12, 13–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaz-Pereira, S.; Marques, I.P.; Matias, J.; Mira, F.; Ribeiro, L.; Flores, R. Real-World Outcomes of Anti-VEGF Treatment for Retinal Vein Occlusion in Portugal. Eur. J. Ophthalmol. 2017, 27, 756–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okada, M.; Mitchell, P.; Finger, R.P.; Eldem, B.; Talks, S.J.; Hirst, C.; Paladini, L.; Barratt, J.; Wong, T.Y.; Loewenstein, A. Nonadherence or Nonpersistence to Intravitreal Injection Therapy for Neovascular Age-Related Macular Degeneration: A Mixed-Methods Systematic Review. Ophthalmology 2021, 128, 234. [Google Scholar] [CrossRef]
- Ozturk, M.; Harris, M.L.; Nguyen, V.; Barthelmes, D.; Gillies, M.C.; Mehta, H. Real-world visual outcomes in patients with neovascular age-related macular degeneration receiving aflibercept at fixed intervals as per UK licence. Clin. Exp. Ophthalmol. 2018, 46, 407–411. [Google Scholar] [CrossRef]
- Falk, M.K.; Kemp, H.; Sørensen, T.L. Four-year treatment results of neovascular age-related macular degeneration with ranibizumab and causes for discontinuation of treatment. Am. J. Ophthalmol. 2013, 155, 89–95.e3. [Google Scholar] [CrossRef]
- Cucinotta, D.; Vanelli, M. WHO declares COVID-19 a pandemic. Acta Bio Medica 2020, 91, 157. [Google Scholar]
- COVID-19 Updates and Information|Mass.gov. Available online: https://www.mass.gov/info-details/covid-19-updates-and-information#daily-updates- (accessed on 11 December 2020).
- Recommendations for Urgent and Nonurgent Patient Care. American Academy of Ophthalmology. Available online: https://www.aao.org/headline/new-recommendations-urgent-nonurgent-patient-care (accessed on 12 December 2020).
- Tiew, S.; Lim, C.; Sivagnanasithiyar, T. Using an Excel Spreadsheet to Convert Snellen Visual Acuity to LogMAR Visual Acuity. Eye 2020, 34, 2148–2149. [Google Scholar] [CrossRef]
- Kaiser, P.K. Prospective Evaluation of Visual Acuity Assessment: A Comparison of Snellen versus ETDRS Charts in Clinical Practice (An AOS Thesis). Trans. Am. Ophthalmol. Soc. 2009, 107, 311. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2814576/ (accessed on 10 July 2021).
- Gao, X.; Obeid, A.; Adam, M.K.; Hyman, L.; Ho, A.C.; Hsu, J. Loss to Follow-Up in Patients With Retinal Vein Occlusion Undergoing Intravitreal Anti-VEGF Injections. Ophthalmic Surg. Lasers Imaging Retin. 2019, 50, 159–166. [Google Scholar] [CrossRef]
- Obeid, A.; Gao, X.; Ali, F.S.; Aderman, C.M.; Shahlaee, A.; Adam, M.K.; Kasi, S.K.; Hyman, L.; Ho, A.C.; Hsu, J. Loss to Follow-up Among Patients With Neovascular Age-Related Macular Degeneration Who Received Intravitreal Anti-Vascular Endothelial Growth Factor Injections. JAMA Ophthalmol. 2018, 136, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Stokes, E.K.; Zambrano, L.D.; Anderson, K.N.; Marder, E.P.; Raz, K.M.; Felix, S.E.B.; Tie, Y.; Fullerton, K.E. Coronavirus Disease 2019 Case Surveillance—United States, January 22–May 30, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Boulanger-Scemama, E.; Querques, G.; About, F.; Puche, N.; Srour, M.; Mane, V.; Massamba, N.; Canoui-Poitrine, F.; Souied, E.H. Ranibizumab for exudative age-related macular degeneration: A five year study of adherence to follow-up in a real-life setting. J. Fr. D’ophtalmol. 2015, 38, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Sobolewska, B.; Sabsabi, M.; Ziemssen, F. Importance of Treatment Duration: Unmasking Barriers and Discovering the Reasons for Undertreatment of Anti-VEGF Agents in Neovascular Age-Related Macular Degeneration. Clin. Ophthalmol. 2021, 15, 4317–4326. [Google Scholar] [CrossRef]
- Kim, L.N.; Mehta, H.; Barthelmes, D.; Nguyen, V.; Gillies, M.C. Metaanalysis of real-world outcomes of intravitreal ranibizumab for the treatment of neovascular age-related macular degeneration. Retina 2016, 36, 1418–1431. [Google Scholar] [CrossRef] [Green Version]
- Ziemssen, F.; Feltgen, N.; Holz, F.G.; Guthoff, R.; Ringwald, A.; Bertelmann, T.; Wiedon, A.; Korb, C. Demographics of patients receiving Intravitreal anti-VEGF treatment in real-world practice: Healthcare research data versus randomized controlled trials. BMC Ophthalmol. 2017, 17, 7. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishnan, M.S.; Yu, Y.; VanderBeek, B.L. Association of Visit Adherence and Visual Acuity in Patients with Neovascular Age-Related Macular Degeneration: Secondary Analysis of the Comparison of Age-Related Macular Degeneration Treatment Trial. JAMA Ophthalmol. 2020, 138, 237–242. [Google Scholar] [CrossRef]
- Oishi, A.; Mandai, M.; Nishida, A.; Hata, M.; Matsuki, T.; Kurimoto, Y. Remission and dropout rate of anti-VEGF therapy for age-related macular degeneration. Eur. J. Ophthalmol. 2011, 21, 777–782. [Google Scholar] [CrossRef]
- Angermann, R.; Rauchegger, T.; Nowosielski, Y.; Casazza, M.; Bilgeri, A.; Ulmer, H.; Zehetner, C. Treatment compliance and adherence among patients with diabetic retinopathy and age-related macular degeneration treated by anti-vascular endothelial growth factor under universal health coverage. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019, 257, 2119–2125. [Google Scholar] [CrossRef] [Green Version]
- Rahimzadeh, M.; Muniraju, R.; Izadi, S. Effect of COVID-19 Pandemic on Anti-VEGF Treatment of Medical Retinal Conditions. Physician 2021, 6, 1–9. [Google Scholar] [CrossRef]
- Song, W.; Singh, R.P.; Rachitskaya, A.V. The Effect of Delay in Care among Patients Requiring Intravitreal Injections. Ophthalmol. Retin. 2021, 5, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Naravane, A.V.; Mundae, R.; Zhou, Y.; Santilli, C.; van Kuijk, F.J.; Nazari, H.; Yamanuha, J.; Emerson, G.G.; Koozekanani, D.D.; Montezuma, S.R. Short term visual and structural outcomes of anti-vascular endothelial growth factor (anti-VEGF) treatment delay during the first COVID-19 wave: A pilot study. PLoS ONE 2021, 16, e0247161. [Google Scholar] [CrossRef] [PubMed]
- Stone, L.G.; Grinton, M.E.; Talks, J.S. Delayed follow-up of medical retina patients due to COVID-19: Impact on disease activity and visual acuity. Graefe’s Arch. Clin. Exp. Ophthalmol. 2021, 259, 1773–1780. [Google Scholar] [CrossRef] [PubMed]
- Rofagha, S.; Bhisitkul, R.B.; Boyer, D.S.; Sadda, S.R.; Zhang, K.; Seven-Up Study Group. Seven-year outcomes in ranibizumab-treated patients in ANCHOR, MARINA, and HORIZON: A multicenter cohort study (SEVEN-UP). Ophthalmology 2013, 120, 2292–2299. [Google Scholar] [CrossRef]
Intended f/u Status | Completed (n = 479) | Missed (Canceled + “No Show”) n = 522 | Total (n = 1001) | p Value |
---|---|---|---|---|
Diagnosis n (%) | 0.01 | |||
nvAMD | 296 (61.8) | 283 (54.2) | 579 (57.8) | |
BRVO | 50 (10.4) | 52 (10) | 102 (10.2) | |
CRVO | 54 (11.3) | 58 (11.1) | 112 (11.2) | |
DR | 79 (16.5) | 129 (24.7) | 208 (20.8) | |
Race n (%) | 0.038 | |||
White or Caucasian | 364 (76) | 364 (69.7) | 728 (72.7) | |
Asian | 15 (3.1) | 26 (5) | 41 (4.1) | |
Black or African American | 21 (4.4) | 41 (7.9) | 62 (6.2) | |
Other | 79 (16.5) | 91 (17.4) | 170 (17) | |
Gender n (%) | 0.62 | |||
Female | 278 (58) | 295 (56.5) | 573 (57.2) | |
Male | 201 (42) | 227 (43.5) | 428 (42.8) | |
Age in years n (%) | 0.017 | |||
Less than 67 | 111 (23.2) | 146 (28) | 257 (25.7) | |
67–76 | 145 (30.3) | 138 (26.4) | 283 (28.3) | |
77–87 | 167 (34.9) | 152 (29.1) | 319 (31.9) | |
Greater than 87 | 56 (11.7) | 86 (16.5) | 142 (14.2) | |
Mean age (±SD) | 74.1 (11.9) | 74.1 (12.5) | 74.1 (12.4) | 0.9 |
Location n (%) | <0.0001 | |||
Main Campus | 216 (45.1) | 248 (47.5) | 464 (46.4) | |
Stoneham | 234 (48.9) | 205 (39.3) | 439 (43.9) | |
Longwood | 29 (6) | 69 (13.2) | 98 (9.8) | |
Baseline BCVA [LogMAR; mean (±SD)] | 0.45 (0.46) | 0.5 (0.5) | 0.49 (0.51) | 0.09 |
BCVA at actual f/u [LogMAR; mean (±SD)] | 0.44 (0.45) | 0.53 (0.55) | 0.54 (0.55) | 0.01 |
BCVA at last f/u [LogMAR; mean (±SD)] | 0.45 (0.46) | 0.6 (0.61) | 0.53 (0.55) | <0.0001 |
nvAMD | nvAMD (n = 579) | Completed Intended f/u (n = 296) | Missed Intended f/u (n = 283) | p Value |
---|---|---|---|---|
Age in years n (%) | 0.023 | |||
Less than 67 | 43 (7.4) | 20 (6.8) | 23 (8.1) | |
67–76 | 147 (25.4) | 83 (28) | 64 (22.6) | |
77–87 | 255 (44.0) | 139 (47) | 116 (41) | |
Greater than 87 | 134 (23.1) | 54 (18.2) | 80 (28.3) | |
Mean age (±SD) | 80.1 (8.9) | 79.5 (8.5) | 80.8 (9.3) | 0.08 |
Gender n (%) | 0.7 | |||
Female | 374 (64.6) | 189 (63.9) | 185 (65.4) | |
Male | 205 (35.4) | 107 (36.1) | 98 (34.6) | |
Race n (%) | 0.11 | |||
White or Caucasian | 476 (82.2) | 249 (84.1) | 227 (80.2) | |
Asian | 26 (4.5) | 8 (2.7) | 18 (6.4) | |
Black or African American | 7 (1.2) | 2 (0.7) | 5 (1.8) | |
Hispanic or Latino | 0 (0) | 0 (0) | 0 (0) | |
Other | 70 | 37 (12.5) | 33 (11.6) | |
Location n (%) | ||||
Main Campus | 255 (44.0) | 126 (42.6) | 129 (45.6) | 0.0016 |
Stoneham | 283 (48.9) | 159 (53.7) | 124 (43.8) | |
Longwood | 41 (7.1) | 11 (3.7) | 30 (10.6) | |
Intended f/u Time [Days, mean (SD)] | 51.88 (±22.00) | 51.89 (±21.1) | 51.86 (±22.9) | 0.99 |
Actual f/u Time [Days, mean (SD)] | 77.65 (±47.53) | 51.89 (±21.1) | 104.5 (±52.6) | <0.001 |
Delays in care [Days, mean (SD)] | 52.62 (±30.1) | 0 | 52.62 (±30.1) | NA |
Visual acuity baseline and VA changes from baseline overtime [LogMAR; mean (±SD)] | ||||
Baseline BCVA (up to 12 weeks before MA lockdown)—injected eyes | 0.44 (±0.41) | 0.54 (±0.53) | 0.005 | |
Baseline BCVA (up to 12 weeks before MA lockdown)—fellow eyes | 0.54 (±0.67) | 0.69 (±0.79) | <0.001 | |
Actual f/u VA change | 0.006 (±0.16) | 0.06 (±0.27) | 0.004 | |
3 months VA change | 0.01 (±0.21) | 0.03 (±0.23) | 0.32 | |
6 months VA change | 0.02 (±0.25) | 0.05 (±0.30) | 0.12 | |
Last f/u VA change | 0.02 (±0.24) | 0.08 (±0.36) | 0.023 | |
Last BCVA | 0.46 (±0.45) | 0.62 (±0.59) | <0.001 | |
Last f/u Time [Days, mean (SD)] | 263.4 (±48) | 270.8 (±50.7) | 0.07 |
DR | DR (n = 208) | Completed Intended f/u (n = 79) | Missed Intended f/u (n = 129) | p Value |
---|---|---|---|---|
Age in years n (%) | ||||
Less than 67 | 135 (64.9) | 51 (64.5) | 84 (65.1) | 0.247 |
67–76 | 57 (27.4) | 19 (24.1) | 38 (29.5) | |
77–87 | 16 (7.7) | 9 (11.4) | 7 (5.4) | |
Greater than 87 | 0 (0.0) | 0 (0) | 0 (0) | |
Mean age (±SD) | 61.7 (11.5) | 61.6 (12.1) | 61.7 (10.9) | 0.48 |
Gender n (%) | 0.867 | |||
Female | 88 (42.3) | 34 (43) | 54 (41.9) | |
Male | 120 (57.7) | 45 (57) | 75 (58.1) | |
Race n (%) | ||||
White or Caucasian | 110 (52.9) | 46 (58.2) | 64 (49.6) | 0.63 |
Asian | 6 (2.9) | 2 (2.6) | 4 (3.1) | |
Black or African American | 36 (17.3) | 11 (13.9)) | 25 (19.4) | |
Other | 56 (26.9) | 20 (25.3) | 36 (27.9) | |
Location n (%) | 0.84 | |||
Main Campus | 104 (50.0) | 39 (49.4) | 65 (50.4) | |
Stoneham | 72 (34.6) | 29 (36.7) | 43 (33.3) | |
Longwood | 32 (15.4) | 11 (13.9) | 21 (16.3) | |
Intended f/u Time [Days, mean (SD)] | 48.33 (±21.26) | 47.9 (±19.6) | 48.6 (±22.2) | 0.84 |
Actual f/u Time [Days, mean (SD)] | 93.12 (±61.15) | 47.9 (±19.6) | 118.2 (±61.4) | <0.001 |
Delays in care [Days, mean (SD)] | 69.6 (±39.4) | 0 | 69.6 (±39.4) | NA |
Visual acuity baseline and VA changes from baseline overtime [LogMAR; mean (±SD)] | ||||
Baseline BCVA (up to 12 weeks before MA lockdown)—injected eyes | 0.44 (±0.49) | 0.45 (±0.46) | 0.95 | |
Baseline BCVA (up to 12 weeks before MA lockdown)—fellow eyes | 0.58 (±0.76) | 0.63 (±0.82) | <0.001 | |
Actual f/u VA change | 0.04 (±0.28) | 0.18 (±0.44) | 0.02 | |
3 months VA change | 0.00 (±0.30) | 0.01 (±0.35) | 0.82 | |
6 months VA change | −0.06 (±0.36) | 0.03 (±0.34) | 0.06 | |
Last f/u VA change | −0.04 (±0.34) | 0.04 (±0.44) | 0.19 | |
Last BCVA | 0.40 (±0.32) | 0.49 (±0.56) | 0.2 | |
Last f/u Time [Days, mean (SD)] | 243.6 (±72.2) | 258.6 (±54.6) | 0.09 |
CRVO | CRVO (n = 112) | Completed Intended f/u (n = 54) | Missed Intended f/u (n = 58) | p Value |
---|---|---|---|---|
Age in years n (%) | 0.41 | |||
Less than 67 | 47 (42.0) | 22 (40.7) | 25 (43.1) | |
67–76 | 38 (33.9) | 21 (38.9) | 17 (29.3) | |
77–87 | 26 (23.2) | 10 (18.5) | 16 (27.6) | |
Greater than 87 | 1 (0.9) | 1 (1.9) | 0 (0) | |
Mean age (±SD) | 68.3 (11.1) | 68 (11.7) | 69 (10.8) | 0.32 |
Gender n (%) | 0.98 | |||
Female | 58 (51.8) | 28 (51.9) | 30 (51.7) | |
Male | 54 (48.2) | 26 (48.1) | 28 (48.3) | |
Race n (%) | 0.62 | |||
White or Caucasian | 78 (69.7) | 39 (72.2) | 39 (67.3) | |
Asian | 2 (1.8) | 2 (3.7) | 0 (0) | |
Black or African American | 7 (6.2) | 2 (3.7) | 5 (8.6) | |
Other | 25 (22.3) | 11 (20.4) | 14 (24.1) | |
Location n (%) | 0.4 | |||
Main Campus | 58 (51.8) | 28 (51.8) | 30 (51.7) | |
Stoneham | 39 (34.8) | 21 (38.9) | 18 (31) | |
Longwood | 15 (13.4) | 5 (9.3) | 10 (17.3) | |
Intended f/u Time [Days, mean (SD)] | 50.76 (±19.58) | 49.1 (±17.4) | 52.4 (±21.4) | 0.37 |
Actual f/u Time [Days, mean (SD)] | 81.13 (±52.92) | 49.1 (±17.4) | 111 (±57.3) | <0.001 |
Delays in care [Days, mean (SD)] | 58.4 (±32.2) | 0 | 58.4 (±32.2) | NA |
Visual acuity baseline and VA changes from baseline overtime ([LogMAR; mean (±SD)] | ||||
Baseline BCVA (up to 12 weeks before MA lockdown)—injected eyes | 0.71 (±0.65) | 0.78 (±0.72) | 0.61 | |
Baseline BCVA (up to 12 weeks before MA lockdown)—fellow eyes | 0.20 (±0.52) | 0.32 (±0.78) | <0.001 | |
Actual f/u VA change | −0.06 (±0.27) | 0.11 (±0.35) | <0.001 | |
3 months VA change | −0.06 (±0.27) | 0.03 (±0.39) | 0.21 | |
6 months VA change | −0.02 (±0.34) | 0.17 (±0.55) | 0.038 | |
Last f/u VA change | −0.02 (±0.33) | 0.13 (±0.57) | 0.1 | |
Last BCVA | 0.69 (±0.66) | 0.91 (±0.88) | 0.14 | |
Last f/u Time [Days, mean (SD)] | 277.1 (±32.7) | 255.4 (±53.8) | 0.01 |
BRVO | BRVO (n = 102) | Completed Intended f/u (n = 50) | Missed Intended f/u (n = 52) | p Value |
---|---|---|---|---|
Age in years n (%) | 0.17 | |||
Less than 67 | 32 (31.4) | 18 (36) | 14 (26.9) | |
67–76 | 41 (40.2) | 22 (44) | 19 (36.5) | |
77–87 | 22 (21.6) | 9 (18) | 13 (25) | |
Greater than 87 | 7 (6.9) | 1 (2) | 6 (11.6) | |
Mean age (±SD) | 71.2 (10.4) | 68.9 (9.3) | 73.4 (11.1) | 0.02 |
Gender n (%) | 0.68 | |||
Female | 53 (52.0) | 27 (54) | 26 (50) | |
Male | 49 (48.0) | 23 (46) | 26 (50) | |
Race n (%) | 0.84 | |||
White or Caucasian | 64 (62.7) | 30 (60) | 34 (65.4) | |
Asian | 7 (6.9) | 3 (6) | 4 (7.7) | |
Black or African American | 12 (11.8) | 6 (12) | 6 (11.5) | |
Other | 19 (18.6) | 11 (22) | 8 (15.4) | |
Location n (%) | 0.126 | |||
Main Campus | 47 (46.1) | 23 (46) | 24 (46.1) | |
Stoneham | 45 (44.1) | 25 (50) | 20 (38.5) | |
Longwood | 10 (9.8) | 2 (4) | 8 (15.4) | |
Intended f/u Time [Days, mean (SD)] | 51.46 (±19.72) | 52.4 (±19.4) | 50.6 (±20.1) | 0.64 |
Actual f/u Time [Days, mean (SD)] | 83.21 (±53.28) | 52.4 (±19.4) | 110.1 (±58.6) | <0.001 |
Delays in care [Days, mean (SD)] | 59.5 (±32.3) | 0 | 59.5 (±32.3) | NA |
Visual acuity baseline and VA changes from baseline overtime [LogMAR; mean (±SD)] | ||||
Baseline BCVA (up to 12 weeks before MA lockdown)—injected eyes | 0.26 (±0.25) | 0.49 (±0.53) | 0.005 | |
Baseline BCVA (up to 12 weeks before MA lockdown)—fellow eyes | 0.26 (±0.59) | 0.23 (±0.43) | <0.001 | |
Actual f/u VA change | −0.02 (±0.10) | 0.03 (±0.14) | 0.02 | |
3 months VA change | −0.01 (±0.11) | 0.04 (±0.20) | 0.19 | |
6 months VA change | 0.02 (±0.24) | −0.01 (±0.37) | 0.59 | |
Last f/u VA change | 0.03 (±0.25) | −0.02 (±0.42) | 0.41 | |
Last BCVA | 0.29 (±0.35) | 0.46 (±0.44) | 0.014 | |
Last f/u Time [Days, mean (SD)] | 268.3 (±60.6) | 248.8 (±63.9) | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Douglas, V.P.; Douglas, K.A.A.; Vavvas, D.G.; Miller, J.W.; Miller, J.B. Short- and Long-Term Visual Outcomes in Patients Receiving Intravitreal Injections: The Impact of the Coronavirus 2019 Disease (COVID-19)—Related Lockdown. J. Clin. Med. 2022, 11, 2097. https://doi.org/10.3390/jcm11082097
Douglas VP, Douglas KAA, Vavvas DG, Miller JW, Miller JB. Short- and Long-Term Visual Outcomes in Patients Receiving Intravitreal Injections: The Impact of the Coronavirus 2019 Disease (COVID-19)—Related Lockdown. Journal of Clinical Medicine. 2022; 11(8):2097. https://doi.org/10.3390/jcm11082097
Chicago/Turabian StyleDouglas, Vivian Paraskevi, Konstantinos A. A. Douglas, Demetrios G. Vavvas, Joan W. Miller, and John B. Miller. 2022. "Short- and Long-Term Visual Outcomes in Patients Receiving Intravitreal Injections: The Impact of the Coronavirus 2019 Disease (COVID-19)—Related Lockdown" Journal of Clinical Medicine 11, no. 8: 2097. https://doi.org/10.3390/jcm11082097
APA StyleDouglas, V. P., Douglas, K. A. A., Vavvas, D. G., Miller, J. W., & Miller, J. B. (2022). Short- and Long-Term Visual Outcomes in Patients Receiving Intravitreal Injections: The Impact of the Coronavirus 2019 Disease (COVID-19)—Related Lockdown. Journal of Clinical Medicine, 11(8), 2097. https://doi.org/10.3390/jcm11082097