Laboratory Diagnosis of Antiphospholipid Syndrome: Insights and Hindrances
Abstract
:1. Historical Perspective into Antiphospholipid Antibodies
2. Classification and Diagnostic Criteria
3. Lupus Anticoagulant
3.1. Test Procedure
3.1.1. Choice of Assay
3.1.2. Analytical Procedure
3.1.3. Cut-Off Values
3.2. Interferences and Limitations
3.3. Alternative Assays for LAC Measurement
4. Anticardiolipin and Anti-β2-Glycoprotein I IgG/IgM Antibodies
4.1. Choice of Assay
4.2. Analytical Procedure
4.2.1. Routine Implementation
4.2.2. Calibration
4.2.3. Cut-Off Values
4.3. Interferences
5. Interpretation of Antiphospholipid Antibody Tests
5.1. Patient Selection
5.2. Antibody Profiles
5.3. Scoring Systems
6. Other Antiphospholipid Antibodies
6.1. IgA Anticardiolipin and Anti-β2-Glycoprotein Antibodies
6.2. Antiphosphatidylserine/Prothrombin Antibodies
6.3. Anti-Domain I β2-Glycoprotein I Antibodies
6.4. Other Non-Criteria Antibodies
7. Report of the Results and Information for Clinicians
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Margolius, A., Jr.; Jackson, D.P.; Ratnoff, O.D. Circulating anticoagulants: A study of 40 cases and a review of the literature. Medicine 1961, 40, 145–202. [Google Scholar] [CrossRef] [PubMed]
- Conley, C.; Hartmann, R. A Hemorrhagic Disorder Caused by Circulating Anticoagulant in Patients with Disseminated Lupus Erythematosus. J. Clin. Investig. 1952, 31, 621–622. [Google Scholar]
- Bonnin, J.A.; Cohen, A.K.; Hicks, N.D. Coagulation defects in a case of systemic lupus erythematosus with thrombocytopenia. Br. J. Haematol. 1956, 2, 168–179. [Google Scholar] [CrossRef]
- Lee, S.L.; Sanders, M. A disorder of blood coagulation in systemic lupus erythematosus. J. Clin. Investig. 1955, 34, 1814–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frick, P.G. Acquired circulating anticoagulants in systemic collagen disease; auto-immune thromboplastin deficiency. Blood 1955, 10, 691–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feinstein, D.I.; Rappaport, S.I. Acquired inhibitors of blood coagulation. In Progress in Hemostasis and Thrombosis 1; Spaet, T.H., Ed.; Grune & Stratton: New York, NY, USA, 1972; p. 75. [Google Scholar]
- Boxer, M.; Ellman, L.; Carvalho, A. The lupus anticoagulant. Arthritis Rheum. 1976, 19, 1244–1248. [Google Scholar] [CrossRef] [PubMed]
- Lechner, K. Acquired inhibitors in nonhemophilic patients. Haemostasis 1974, 3, 65–93. [Google Scholar] [CrossRef]
- Boey, M.L.; Colaco, C.B.; Gharavi, A.E.; Elkon, K.B.; Loizou, S.; Hughes, G.R. Thrombosis in systemic lupus erythematosus: Striking association with the presence of circulating lupus anticoagulant. Br. Med. J. (Clin. Res. Ed.) 1983, 287, 1021–1023. [Google Scholar] [CrossRef] [Green Version]
- Mueh, J.R.; Herbst, K.D.; Rapaport, S.I. Thrombosis in patients with the lupus anticoagulant. Ann. Intern. Med. 1980, 92, 156–159. [Google Scholar] [CrossRef]
- Rein, C.R.; Kostant, G.H. Lupus erythematosus; serologic and chemical aspects. Arch. Dermatol. Syphilol. 1950, 61, 898–903. [Google Scholar] [CrossRef]
- Haserick, J.R.; Long, R. Systemic lupus erythematosus preceded by false-positive serologic tests for syphilis: Presentation of five cases. Ann. Intern. Med. 1952, 37, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.E.; Mohr, C.F. Biologically false positive serologic tests for syphilis; type, incidence, and cause. J. Am. Med. Assoc. 1952, 150, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Wassermann, A.; Neisser, A.; Bruck, C. Eine serodiagnostische Reaktion bei Syphilis. Dtsch. Med. Wochenschr. 1906, 32, 745–746. [Google Scholar] [CrossRef] [Green Version]
- Pangborn, M.C. New Serologically Active Phospholipid from Beef Heart. Exp. Biol. Med. 1941, 48, 484–486. [Google Scholar] [CrossRef]
- Pangborn, M.C. Isolation and Purification of a Serologically Active Phospholipid from Beef Heart. J. Biol. Chem. 1942, 143, 247–256. [Google Scholar] [CrossRef]
- Laurell, A.B.; Nilsson, I.M. Hypergammaglobulinemia, circulating anticoagulant, and biologic false positive Wassermann reaction; a study in two cases. J. Lab. Clin. Med. 1957, 49, 694–707. [Google Scholar]
- Schleider, M.A.; Nachman, R.L.; Jaffe, E.A.; Coleman, M. A clinical study of the lupus anticoagulant. Blood 1976, 48, 499–509. [Google Scholar] [CrossRef] [Green Version]
- Hughes, G.R. Thrombosis, abortion, cerebral disease, and the lupus anticoagulant. Br. Med. J. (Clin. Res. Ed.) 1983, 287, 1088–1089. [Google Scholar] [CrossRef] [Green Version]
- Harris, E.N.; Gharavi, A.E.; Boey, M.L.; Patel, B.M.; Mackworth-Young, C.G.; Loizou, S.; Hughes, G.R. Anticardiolipin antibodies: Detection by radioimmunoassay and association with thrombosis in systemic lupus erythematosus. Lancet 1983, 2, 1211–1214. [Google Scholar] [CrossRef]
- Hughes, G.R. Hughes’ syndrome: The antiphospholipid syndrome. A historical view. Lupus 1998, 7 (Suppl. 2), S1–S4. [Google Scholar] [CrossRef]
- Exner, T.; Triplett, D.A.; Taberner, D.; Machin, S.J. Guidelines for testing and revised criteria for lupus anticoagulants. SSC Subcommittee for the Standardization of Lupus Anticoagulants. Thromb. Haemost. 1991, 65, 320–322. [Google Scholar] [PubMed]
- Brandt, J.T.; Triplett, D.A.; Alving, B.; Scharrer, I. Criteria for the diagnosis of lupus anticoagulants: An update. On behalf of the Subcommittee on Lupus Anticoagulant/Antiphospholipid Antibody of the Scientific and Standardisation Committee of the ISTH. Thromb. Haemost. 1995, 74, 1185–1190. [Google Scholar] [CrossRef] [PubMed]
- Pengo, V.; Tripodi, A.; Reber, G.; Rand, J.H.; Ortel, T.L.; Galli, M.; De Groot, P.G. Subcommittee on Lupus Anticoagulant/Antiphospholipid Antibody of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Update of the guidelines for lupus anticoagulant detection. Subcommittee on Lupus Anticoagulant/Antiphospholipid Antibody of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. J. Thromb. Haemost. 2009, 7, 1737–1740. [Google Scholar] [CrossRef] [PubMed]
- Devreese, K.M.J.; de Groot, P.G.; de Laat, B.; Erkan, D.; Favaloro, E.J.; Mackie, I.; Martinuzzo, M.; Ortel, T.L.; Pengo, V.; Rand, J.H.; et al. Guidance from the Scientific and Standardization Committee for lupus anticoagulant/antiphospholipid antibodies of the International Society on Thrombosis and Haemostasis: Update of the guidelines for lupus anticoagulant detection and interpretation. J. Thromb. Haemost. 2020, 18, 2828–2839. [Google Scholar] [CrossRef] [PubMed]
- Machin, S.J.; Giddings, J.C.; Greaves, M.; Hutton, R.A.; Mackie, I.; Malia, R.G.; Taberner, D. Guidelines on testing for the lupus anticoagulant. Lupus Anticoagulant Working Party on behalf of the BCSH Haemostasis and Thrombosis Task Force. J. Clin. Pathol. 1991, 44, 885–889. [Google Scholar] [CrossRef] [Green Version]
- Keeling, D.; Mackie, I.; Moore, G.W.; Greer, I.A.; Greaves, M.; British Committee for Standards in Haematology. Guidelines on the investigation and management of antiphospholipid syndrome. Br. J. Haematol. 2012, 157, 47–58. [Google Scholar] [CrossRef]
- Greaves, M.; Cohen, H.; MacHin, S.J.; Mackie, I. Guidelines on the investigation and management of the antiphospholipid syndrome. Br. J. Haematol. 2000, 109, 704–715. [Google Scholar] [CrossRef] [Green Version]
- Clinical Laboratory Standards Institute (CLSI). Laboratory Testing for the Lupus Anticoagulant: Approved Guideline CLSI Document H60-A; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014. [Google Scholar]
- McNeil, H.P.; Simpson, R.J.; Chesterman, C.N.; Krilis, S.A. Anti-phospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation: Beta 2-glycoprotein I (apolipoprotein H). Proc. Natl. Acad. Sci. USA 1990, 87, 4120–4124. [Google Scholar] [CrossRef] [Green Version]
- Galli, M.; Comfurius, P.; Maassen, C.; Hemker, H.C.; de Baets, M.H.; van Breda-Vriesman, P.J.; Barbui, T.; Zwaal, R.F.; Bevers, E.M. Anticardiolipin antibodies (ACA) directed not to cardiolipin but to a plasma protein cofactor. Lancet 1990, 335, 1544–1547. [Google Scholar] [CrossRef]
- Bevers, E.M.; Galli, M. Beta 2-glycoprotein I for binding of anticardiolipin antibodies to cardiolipin. Lancet 1990, 336, 952–953. [Google Scholar] [CrossRef]
- Tsutsumi, A.; Matsuura, E.; Ichikawa, K.; Fujisaku, A.; Mukai, M.; Kobayashi, S.; Koike, T. Antibodies to beta 2-glycoprotein I and clinical manifestations in patients with systemic lupus erythematosus. Arthritis Rheum. 1996, 39, 1466–1474. [Google Scholar] [CrossRef] [PubMed]
- Arvieux, J.; Roussel, B.; Jacob, M.C.; Colomb, M.G. Measurement of anti-phospholipid antibodies by ELISA using beta 2-glycoprotein I as an antigen. J. Immunol. Methods 1991, 143, 223–229. [Google Scholar] [CrossRef]
- Wilson, W.A.; Gharavi, A.E.; Koike, T.; Lockshin, M.D.; Branch, D.W.; Piette, J.C.; Brey, R.; Derksen, R.; Harris, E.N.; Hughes, G.R.; et al. International consensus statement on preliminary classification criteria for definite antiphospholipid syndrome: Report of an international workshop. Arthritis Rheum. 1999, 42, 1309–1311. [Google Scholar] [CrossRef]
- Miyakis, S.; Lockshin, M.D.; Atsumi, T.; Branch, D.W.; Brey, R.L.; Cervera, R.; Derksen, R.H.; De Groot, P.G.; Koike, T.; Meroni, P.L.; et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J. Thromb. Haemost. 2006, 4, 295–306. [Google Scholar] [CrossRef]
- Devignes, J.; Smail-Tabbone, M.; Herve, A.; Cagninacci, G.; Devignes, M.D.; Lecompte, T.; Zuily, S.; Wahl, D. Extended persistence of antiphospholipid antibodies beyond the 12-week time interval: Association with baseline antiphospholipid antibodies titres. Int. J. Lab. Hematol. 2019, 41, 726–730. [Google Scholar] [CrossRef] [Green Version]
- Martirosyan, A.; Aminov, R.; Manukyan, G. Environmental Triggers of Autoreactive Responses: Induction of Antiphospholipid Antibody Formation. Front. Immunol. 2019, 10, 1609. [Google Scholar] [CrossRef]
- Garcia, D.; Erkan, D. Diagnosis and Management of the Antiphospholipid Syndrome. N. Engl. J. Med. 2018, 378, 2010–2021. [Google Scholar] [CrossRef]
- Abreu, M.M.; Danowski, A.; Wahl, D.G.; Amigo, M.C.; Tektonidou, M.; Pacheco, M.S.; Fleming, N.; Domingues, V.; Sciascia, S.; Lyra, J.O.; et al. The relevance of “non-criteria” clinical manifestations of antiphospholipid syndrome: 14th International Congress on Antiphospholipid Antibodies Technical Task Force Report on Antiphospholipid Syndrome Clinical Features. Autoimmun. Rev. 2015, 14, 401–414. [Google Scholar] [CrossRef] [Green Version]
- Bernardoff, I.; Picq, A.; Loiseau, P.; Foret, T.; Dufrost, V.; Moulinet, T.; Unlu, O.; Erkan, D.; Wahl, D.; Zuily, S. Antiphospholipid antibodies and the risk of autoimmune hemolytic anemia in patients with systemic lupus erythematosus: A systematic review and meta-analysis. Autoimmun. Rev. 2022, 21, 102913. [Google Scholar] [CrossRef]
- Chock, Y.P.; Moulinet, T.; Dufrost, V.; Erkan, D.; Wahl, D.; Zuily, S. Antiphospholipid antibodies and the risk of thrombocytopenia in patients with systemic lupus erythematosus: A systematic review and meta-analysis. Autoimmun. Rev. 2019, 18, 102395. [Google Scholar] [CrossRef]
- Zuily, S.; Regnault, V.; Selton-Suty, C.; Eschwege, V.; Bruntz, J.F.; Bode-Dotto, E.; De Maistre, E.; Dotto, P.; Perret-Guillaume, C.; Lecompte, T.; et al. Increased risk for heart valve disease associated with antiphospholipid antibodies in patients with systemic lupus erythematosus: Meta-analysis of echocardiographic studies. Circulation 2011, 124, 215–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devreese, K.M.J.; Ortel, T.L.; Pengo, V.; de Laat, B.; Subcommittee on Lupus Anticoagulant/Antiphospholipid Antibodies. Laboratory criteria for antiphospholipid syndrome: Communication from the SSC of the ISTH. J. Thromb. Haemost. 2018, 16, 809–813. [Google Scholar] [CrossRef] [Green Version]
- Conti, F.; Andreoli, L.; Crisafulli, F.; Mancuso, S.; Truglia, S.; Tektonidou, M.G. Does seronegative obstetric APS exist? “pro” and “cons”. Autoimmun. Rev. 2019, 18, 102407. [Google Scholar] [CrossRef]
- Barbhaiya, M.; Zuily, S.; Ahmadzadeh, Y.; Amigo, M.C.; Avcin, T.; Bertolaccini, M.L.; Branch, D.W.; de Jesus, G.; Devreese, K.M.J.; Frances, C.; et al. Development of a New International Antiphospholipid Syndrome Classification Criteria Phase I/II Report: Generation and Reduction of Candidate Criteria. Arthritis Care Res. 2021, 73, 1490–1501. [Google Scholar] [CrossRef] [PubMed]
- Simmons, D.P.; Herskovits, A.Z.; Battinelli, E.M.; Schur, P.H.; Lemire, S.J.; Dorfman, D.M. Lupus anticoagulant testing using two parallel methods detects additional cases and predicts persistent positivity. Clin. Chem. Lab. Med. 2018, 56, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- Thiagarajan, P.; Pengo, V.; Shapiro, S.S. The use of the dilute Russell viper venom time for the diagnosis of lupus anticoagulants. Blood 1986, 68, 869–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Favaloro, E.J.; Kershaw, G.; Mohammed, S.; Lippi, G. How to Optimize Activated Partial Thromboplastin Time (APTT) Testing: Solutions to Establishing and Verifying Normal Reference Intervals and Assessing APTT Reagents for Sensitivity to Heparin, Lupus Anticoagulant, and Clotting Factors. Semin. Thromb. Hemost. 2019, 45, 22–35. [Google Scholar] [CrossRef]
- Kumano, O.; Ieko, M.; Naito, S.; Yoshida, M.; Takahashi, N. APTT reagent with ellagic acid as activator shows adequate lupus anticoagulant sensitivity in comparison to silica-based reagent. J. Thromb. Haemost. 2012, 10, 2338–2343. [Google Scholar] [CrossRef] [PubMed]
- Averina, M.; Johannesen, S.; Brox, J. Diagnostic accuracy of silica clotting time method for lupus anticoagulant in a clinical population with various symptoms of antiphospholipid syndrome. Lupus 2016, 25, 418–422. [Google Scholar] [CrossRef]
- Moore, G.W. Alternative assays to dRVVT and aPTT for lupus anticoagulant detection. Am. J. Hematol. 2020, 95, 992–998. [Google Scholar] [CrossRef]
- Grypiotis, P.; Ruffatti, A.; Pengo, V.; Tonello, M.; Biasiolo, A.; Zamboni, D.; Cavazzana, A.; Todesco, S. Use of a new silica clotting time for diagnosing lupus anticoagulant in patients who meet the clinical criteria for antiphospholipid syndrome. J. Clin. Lab. Anal. 2006, 20, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Devreese, K.M. Evaluation of a new silica clotting time in the diagnosis of lupus anticoagulants. Thromb. Res. 2007, 120, 427–438. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.W.; Peyrafitte, M.; Dunois, C.; Amiral, J. Newly developed dilute Russell’s viper venom reagents for lupus anticoagulant detection with improved specificity. Lupus 2018, 27, 95–104. [Google Scholar] [CrossRef] [PubMed]
- McGlasson, D.L.; Fritsma, G.A. Comparison of six dilute russell viper venom time lupus anticoagulant screen/confirm assay kits. Semin. Thromb. Hemost. 2013, 39, 315–319. [Google Scholar] [CrossRef] [Green Version]
- Depreter, B.; Devreese, K.M. Dilute Russell’s viper venom time reagents in lupus anticoagulant testing: A well-considered choice. Clin. Chem. Lab. Med. 2017, 55, 91–101. [Google Scholar] [CrossRef]
- Chantarangkul, V.; Biguzzi, E.; Asti, D.; Palmucci, C.; Tripodi, A. Laboratory diagnostic outcome applying detection criteria recommended by the Scientific and Standardization Committee of the ISTH on Lupus Anticoagulant. Thromb. Haemost. 2013, 110, 46–52. [Google Scholar] [CrossRef]
- Devreese, K.M. Evaluation of a new commercial dilute prothrombin time in the diagnosis of lupus anticoagulants. Thromb. Res. 2008, 123, 404–411. [Google Scholar] [CrossRef]
- Liestol, S.; Jacobsen, E.M.; Wisloff, F. Dilute prothrombin time-based lupus ratio test. Integrated LA testing with recombinant tissue thromboplastin. Thromb. Res. 2002, 105, 177–182. [Google Scholar] [CrossRef]
- Exner, T.; Rickard, K.A.; Kronenberg, H. A sensitive test demonstrating lupus anticoagulant and its behavioural patterns. Br. J. Haematol. 1978, 40, 143–151. [Google Scholar] [CrossRef]
- Derksen, R.H.; de Groot, P.G. Tests for lupus anticoagulant revisited. Thromb. Res. 2004, 114, 521–526. [Google Scholar] [CrossRef]
- Dragoni, F.; Minotti, C.; Palumbo, G.; Faillace, F.; Redi, R.; Bongarzoni, V.; Avvisati, G. As compared to kaolin clotting time, silica clotting time is a specific and sensitive automated method for detecting lupus anticoagulant. Thromb. Res. 2001, 101, 45–51. [Google Scholar] [CrossRef]
- Moore, G.W.; Culhane, A.P.; Maloney, J.C.; Archer, R.A.; Breen, K.A.; Hunt, B.J. Taipan snake venom time coupled with ecarin time enhances lupus anticoagulant detection in nonanticoagulated patients. Blood Coagul. Fibrinolysis 2016, 27, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.W.; Jones, P.O.; Platton, S.; Hussain, N.; White, D.; Thomas, W.; Rigano, J.; Pouplard, C.; Gray, E.; Devreese, K.M.J. International multicenter, multiplatform study to validate Taipan snake venom time as a lupus anticoagulant screening test with ecarin time as the confirmatory test: Communication from the ISTH SSC Subcommittee on Lupus Anticoagulant/Antiphospholipid Antibodies. J. Thromb. Haemost. 2021, 19, 3177–3192. [Google Scholar] [CrossRef]
- Rooney, A.M.; McNally, T.; Mackie, I.J.; Machin, S.J. The Taipan snake venom time: A new test for lupus anticoagulant. J. Clin. Pathol. 1994, 47, 497–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triplett, D.A.; Stocker, K.F.; Unger, G.A.; Barna, L.K. The Textarin/Ecarin ratio: A confirmatory test for lupus anticoagulants. Thromb. Haemost. 1993, 70, 925–931. [Google Scholar] [CrossRef]
- Tripodi, A.; Cohen, H.; Devreese, K.M.J. Lupus anticoagulant detection in anticoagulated patients. Guidance from the Scientific and Standardization Committee for lupus anticoagulant/antiphospholipid antibodies of the International Society on Thrombosis and Haemostasis. J. Thromb. Haemost. 2020, 18, 1569–1575. [Google Scholar] [CrossRef] [PubMed]
- Expert Committee on Biological Standardization; World Health Organization. Collaborative Study on the 1st International Reference Panel (Plasma) for Lupus Anticoagulant; World Health Organization: Geneva, Switzerland, 2014; Available online: https://cdn.who.int/media/docs/default-source/biologicals/bs-documents-(ecbs)/2014-documents/bs_2244_lupus_20140702.pdf (accessed on 31 January 2022).
- Tripodi, A.; Chantarangkul, V.; Cini, M.; Devreese, K.; Dlott, J.S.; Giacomello, R.; Gray, E.; Legnani, C.; Martinuzzo, M.E.; Pradella, P.; et al. Variability of cut-off values for the detection of lupus anticoagulants: Results of an international multicenter multiplatform study. J. Thromb. Haemost. 2017, 15, 1180–1190. [Google Scholar] [CrossRef] [PubMed]
- Pradella, P.; Azzarini, G.; Santarossa, L.; Caberlotto, L.; Bardin, C.; Poz, A.; D’Aurizio, F.; Giacomello, R. Cooperation experience in a multicentre study to define the upper limits in a normal population for the diagnostic assessment of the functional lupus anticoagulant assays. Clin. Chem. Lab. Med. 2013, 51, 379–385. [Google Scholar] [CrossRef]
- Cohen, H.; Mackie, I.J.; Devreese, K.M.J.; Scientific and Standardization Committee for Lupus Anticoagulant/Antiphospholipid Antibodies of the International Society on Thrombosis and Haemostasis Scientific. Clinical and laboratory practice for lupus anticoagulant testing: An International Society of Thrombosis and Haemostasis Scientific and Standardization Committee survey. J. Thromb. Haemost. 2019, 17, 1715–1732. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory. CLSI Document EP28-A3c, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2010. [Google Scholar]
- Moore, G.W.; Kumano, O. Lupus anticoagulant assay cut-offs vary between reagents even when derived from a common set of normal donor plasmas. J. Thromb. Haemost. 2020, 18, 439–444. [Google Scholar] [CrossRef]
- Schouwers, S.M.; Delanghe, J.R.; Devreese, K.M. Lupus Anticoagulant (LAC) testing in patients with inflammatory status: Does C-reactive protein interfere with LAC test results? Thromb. Res. 2010, 125, 102–104. [Google Scholar] [CrossRef] [PubMed]
- Devreese, K.M.; Verfaillie, C.J.; De Bisschop, F.; Delanghe, J.R. Interference of C-reactive protein with clotting times. Clin. Chem. Lab. Med. 2015, 53, e141–e145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ten Boekel, E.; Bartels, P. Abnormally short activated partial thromboplastin times are related to elevated plasma levels of TAT, F1+2, D-dimer and FVIII:C. Pathophysiol. Haemost. Thromb. 2002, 32, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Kamphuisen, P.W.; Eikenboom, J.C.; Bertina, R.M. Elevated factor VIII levels and the risk of thrombosis. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 731–738. [Google Scholar] [CrossRef] [Green Version]
- Devreese, K.M.J.; Linskens, E.A.; Benoit, D.; Peperstraete, H. Antiphospholipid antibodies in patients with COVID-19: A relevant observation? J. Thromb. Haemost. 2020, 18, 2191–2201. [Google Scholar] [CrossRef]
- Foret, T.; Dufrost, V.; Salomon Du Mont, L.; Costa, P.; Lefevre, B.; Lacolley, P.; Regnault, V.; Zuily, S.; Wahl, D. Systematic Review of Antiphospholipid Antibodies in COVID-19 Patients: Culprits or Bystanders? Curr. Rheumatol. Rep. 2021, 23, 65. [Google Scholar] [CrossRef] [PubMed]
- Gendron, N.; Dragon-Durey, M.A.; Chocron, R.; Darnige, L.; Jourdi, G.; Philippe, A.; Chenevier-Gobeaux, C.; Hadjadj, J.; Duchemin, J.; Khider, L.; et al. Lupus Anticoagulant Single Positivity During the Acute Phase of COVID-19 Is Not Associated With Venous Thromboembolism or In-Hospital Mortality. Arthritis Rheumatol. 2021, 73, 1976–1985. [Google Scholar] [CrossRef] [PubMed]
- Zuily, S.; Cohen, H.; Isenberg, D.; Woller, S.C.; Crowther, M.; Dufrost, V.; Wahl, D.; Dore, C.J.; Cuker, A.; Carrier, M.; et al. Use of direct oral anticoagulants in patients with thrombotic antiphospholipid syndrome: Guidance from the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. J. Thromb. Haemost. 2020, 18, 2126–2137. [Google Scholar] [CrossRef]
- Whitlon, D.S.; Sadowski, J.A.; Suttie, J.W. Mechanism of coumarin action: Significance of vitamin K epoxide reductase inhibition. Biochemistry 1978, 17, 1371–1377. [Google Scholar] [CrossRef]
- Isert, M.; Miesbach, W.; Stoever, G.; Lindhoff-Last, E.; Linnemann, B. Screening for lupus anticoagulants in patients treated with vitamin K antagonists. Int. J. Lab. Hematol. 2015, 37, 758–765. [Google Scholar] [CrossRef]
- Moore, G.W.; Savidge, G.F. The dilution effect of equal volume mixing studies compromises confirmation of inhibition by lupus anticoagulants even when mixture specific reference ranges are applied. Thromb. Res. 2006, 118, 523–528. [Google Scholar] [CrossRef]
- Pennings, M.T.; De Groot, P.G.; Meijers, J.C.; Huisman, A.; Derksen, R.H.; Urbanus, R.T. Optimisation of lupus anticoagulant tests: Should test samples always be mixed with normal plasma? Thromb. Haemost. 2014, 112, 736–742. [Google Scholar] [CrossRef]
- De Kesel, P.M.M.; Devreese, K.M.J. The effect of unfractionated heparin, enoxaparin, and danaparoid on lupus anticoagulant testing: Can activated carbon eliminate false-positive results? Res. Pract. Thromb. Haemost. 2020, 4, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Hemker, H.C. A century of heparin: Past, present and future. J. Thromb. Haemost. 2016, 14, 2329–2338. [Google Scholar] [CrossRef]
- Chan, N.; Sobieraj-Teague, M.; Eikelboom, J.W. Direct oral anticoagulants: Evidence and unresolved issues. Lancet 2020, 396, 1767–1776. [Google Scholar] [CrossRef]
- Antovic, A.; Norberg, E.M.; Berndtsson, M.; Rasmuson, A.; Malmstrom, R.E.; Skeppholm, M.; Antovic, J. Effects of direct oral anticoagulants on lupus anticoagulant assays in a real-life setting. Thromb. Haemost. 2017, 117, 1700–1704. [Google Scholar] [CrossRef] [PubMed]
- Gay, J.; Duchemin, J.; Imarazene, M.; Fontenay, M.; Jourdi, G. Lupus anticoagulant diagnosis in patients receiving direct oral FXa inhibitors at trough levels: A real-life study. Int. J. Lab. Hematol. 2019, 41, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Martinuzzo, M.E.; Forastiero, R.; Duboscq, C.; Barrera, L.H.; Lopez, M.S.; Ceresetto, J.; Penchasky, D.; Oyhamburu, J. False-positive lupus anticoagulant results by DRVVT in the presence of rivaroxaban even at low plasma concentrations. Int. J. Lab. Hematol. 2018, 40, e99–e101. [Google Scholar] [CrossRef]
- Hillarp, A.; Strandberg, K.; Gustafsson, K.M.; Lindahl, T.L. Unveiling the complex effects of direct oral anticoagulants on dilute Russell’s viper venom time assays. J. Thromb. Haemost. 2020, 18, 1866–1873. [Google Scholar] [CrossRef]
- Reda, S.; Brugelmann, A.; Muller, J.; Oldenburg, J.; Potzsch, B.; Ruhl, H. Functional lupus anticoagulant testing in a large retrospective cohort of thrombosis patients with direct oral anticoagulants. Sci. Rep. 2020, 10, 12221. [Google Scholar] [CrossRef]
- Favaloro, E.J.; Mohammed, S.; Curnow, J.; Pasalic, L. Laboratory testing for lupus anticoagulant (LA) in patients taking direct oral anticoagulants (DOACs): Potential for false positives and false negatives. Pathology 2019, 51, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Villalba, J.A.; Van Cott, E.M. High frequency of false-positive results of aPTT-based lupus anticoagulant tests in patients receiving argatroban. Am. J. Hematol. 2019, 94, E166–E169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frans, G.; Meeus, P.; Bailleul, E. Resolving DOAC interference on aPTT, PT, and lupus anticoagulant testing by the use of activated carbon. J. Thromb. Haemost. JTH 2019, 17, 1354–1362. [Google Scholar] [CrossRef]
- Exner, T.; Ahuja, M.; Ellwood, L. Effect of an activated charcoal product (DOAC Stop) intended for extracting DOACs on various other APTT-prolonging anticoagulants. Clin. Chem. Lab. Med. 2019, 57, 690–696. [Google Scholar] [CrossRef]
- Exner, T.; Rigano, J.; Favaloro, E.J. The effect of DOACs on laboratory tests and their removal by activated carbon to limit interference in functional assays. Int. J. Lab. Hematol. 2020, 42 (Suppl. 1), 41–48. [Google Scholar] [CrossRef]
- Baker, S.A.; Jin, J.; Pfaffroth, C.; Vu, T.; Zehnder, J.L. DOAC-Stop in lupus anticoagulant testing: Direct oral anticoagulant interference removed in most samples. Res. Pract. Thromb. Haemost. 2021, 5, 314–325. [Google Scholar] [CrossRef]
- De Kesel, P.M.; Devreese, K.M.J. Direct oral anticoagulant adsorption: Impact on lupus anticoagulant testing-Review of the literature and evaluation on spiked and patient samples. J. Thromb. Haemost. 2020, 18, 2003–2017. [Google Scholar] [CrossRef]
- Tripodi, A.; Scalambrino, E.; Chantarangkul, V.; Paoletti, O.; Clerici, M.; Novembrino, C.; Boscolo-Anzoletti, M.; Peyvandi, F.; Testa, S. Impact of a commercially available DOAC absorbent on two integrated procedures for lupus anticoagulant detection. Thromb. Res. 2021, 204, 32–39. [Google Scholar] [CrossRef]
- Zabczyk, M.; Kopytek, M.; Natorska, J.; Undas, A. The effect of DOAC-Stop on lupus anticoagulant testing in plasma samples of venous thromboembolism patients receiving direct oral anticoagulants. Clin. Chem. Lab. Med. 2019, 57, 1374–1381. [Google Scholar] [CrossRef]
- Farkh, C.; Ellouze, S.; Gounelle, L.; Sad Houari, M.; Duchemin, J.; Proulle, V.; Fontenay, M.; Delavenne, X.; Jourdi, G. A Diagnostic Solution for Lupus Anticoagulant Testing in Patients Taking Direct Oral FXa Inhibitors Using DOAC Filter. Front. Med. 2021, 8, 683357. [Google Scholar] [CrossRef]
- Sevenet, P.O.; Cucini, V.; Herve, T.; Depasse, F.; Carlo, A.; Contant, G.; Mathieu, O. Evaluation of DOAC Filter, a new device to remove direct oral anticoagulants from plasma samples. Int. J. Lab. Hematol. 2020, 42, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Linskens, E.A.; de Kesel, P.M.; Devreese, K.M.J. DOAC removal by a DOAC filter: Impact on Lupus Anticoagulant Testing—Evaluation on Spiked and Patient Samples. Res. Pract. Thromb. Haemost. 2022, 6, e12633. [Google Scholar] [CrossRef] [PubMed]
- White, D.; Moore, G.W.; Besser, M.; MacDonald, S.; Thomas, W. Direct oral anticoagulants-Remove versus Taipan snake venom time for detection of a lupus anticoagulant in patients taking oral direct factor Xa inhibitors. Res. Pract. Thromb. Haemost. 2022, 6, e12648. [Google Scholar] [CrossRef] [PubMed]
- Depasse, F.; Binder, N.B.; Mueller, J.; Wissel, T.; Schwers, S.; Germer, M.; Hermes, B.; Turecek, P.L. Thrombin generation assays are versatile tools in blood coagulation analysis: A review of technical features, and applications from research to laboratory routine. J. Thromb. Haemost. 2021, 19, 2907–2917. [Google Scholar] [CrossRef] [PubMed]
- Binder, N.B.; Depasse, F.; Mueller, J.; Wissel, T.; Schwers, S.; Germer, M.; Hermes, B.; Turecek, P.L. Clinical use of thrombin generation assays. J. Thromb. Haemost. 2021, 19, 2918–2929. [Google Scholar] [CrossRef] [PubMed]
- Ninivaggi, M.; de Laat-Kremers, R.; Tripodi, A.; Wahl, D.; Zuily, S.; Dargaud, Y.; Ten Cate, H.; Ignjatovic, V.; Devreese, K.M.J.; de Laat, B. Recommendations for the measurement of thrombin generation: Communication from the ISTH SSC Subcommittee on Lupus Anticoagulant/Antiphospholipid Antibodies. J. Thromb. Haemost. 2021, 19, 1372–1378. [Google Scholar] [CrossRef]
- Devreese, K.; Peerlinck, K.; Arnout, J.; Hoylaerts, M.F. Laboratory detection of the antiphospholipid syndrome via calibrated automated thrombography. Thromb. Haemost. 2009, 101, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Devreese, K.; Peerlinck, K.; Hoylaerts, M.F. Thrombotic risk assessment in the antiphospholipid syndrome requires more than the quantification of lupus anticoagulants. Blood 2010, 115, 870–878. [Google Scholar] [CrossRef] [Green Version]
- de Laat-Kremers, R.M.W.; Wahl, D.; Zuily, S.; Ninivaggi, M.; Chayoua, W.; Regnault, V.; Musial, J.; de Groot, P.G.; Devreese, K.M.J.; de Laat, B. Deciphered coagulation profile to diagnose the antiphospholipid syndrome using artificial intelligence. Thromb. Res. 2021, 203, 142–151. [Google Scholar] [CrossRef]
- Devreese, K.M.J. Testing for antiphospholipid antibodies: Advances and best practices. Int. J. Lab. Hematol. 2020, 42 (Suppl. 1), 49–58. [Google Scholar] [CrossRef]
- Van Hoecke, F.; Persijn, L.; Decavele, A.S.; Devreese, K. Performance of two new, automated chemiluminescence assay panels for anticardiolipin and anti-beta2-glycoprotein I antibodies in the laboratory diagnosis of the antiphospholipid syndrome. Int. J. Lab. Hematol. 2012, 34, 630–640. [Google Scholar] [CrossRef]
- Devreese, K.M.; Poncet, A.; Lindhoff-Last, E.; Musial, J.; de Moerloose, P.; Fontana, P. A multicenter study to assess the reproducibility of antiphospholipid antibody results produced by an automated system. J. Thromb. Haemost. 2017, 15, 91–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montaruli, B.; De Luna, E.; Erroi, L.; Marchese, C.; Mengozzi, G.; Napoli, P.; Nicolo, C.; Romito, A.; Bertero, M.T.; Sivera, P.; et al. Analytical and clinical comparison of different immunoassay systems for the detection of antiphospholipid antibodies. Int. J. Lab. Hematol. 2016, 38, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Devreese, K.M.; Pierangeli, S.S.; de Laat, B.; Tripodi, A.; Atsumi, T.; Ortel, T.L.; Subcommittee on Lupus Anticoagulant/Phospholipid/Dependent Antibodies. Testing for antiphospholipid antibodies with solid phase assays: Guidance from the SSC of the ISTH. J. Thromb. Haemost. JTH 2014, 12, 792–795. [Google Scholar] [CrossRef] [PubMed]
- Devreese, K.M.J.; Ortel, T.L.; Pengo, V.; de Laat, B. Laboratory criteria for antiphospholipid syndrome: Reply. J. Thromb. Haemost. 2018, 16, 2117–2119. [Google Scholar] [CrossRef] [Green Version]
- Levy, R.A.; de Meis, E.; Pierangeli, S. An adapted ELISA method for differentiating pathogenic from nonpathogenic aPL by a beta 2 glycoprotein I dependency anticardiolipin assay. Thromb. Res. 2004, 114, 573–577. [Google Scholar] [CrossRef]
- Decavele, A.S.; Schouwers, S.; Devreese, K.M. Evaluation of three commercial ELISA kits for anticardiolipin and anti-beta2-glycoprotein I antibodies in the laboratory diagnosis of the antiphospholipid syndrome. Int. J. Lab. Hematol. 2011, 33, 97–108. [Google Scholar] [CrossRef]
- Chayoua, W.; Kelchtermans, H.; Moore, G.W.; Gris, J.C.; Musial, J.; Wahl, D.; Zuily, S.; Gianniello, F.; Fontana, P.; Remijn, J.; et al. Detection of Anti-Cardiolipin and Anti-beta2glycoprotein I Antibodies Differs between Platforms without Influence on Association with Clinical Symptoms. Thromb. Haemost. 2019, 119, 797–806. [Google Scholar] [CrossRef]
- Grossi, V.; Infantino, M.; Benucci, M.; Li Gobbi, F.; Bandinelli, F.; Damiani, A.; Bodio, C.; Borghi, M.O.; Mahler, M.; Aure, M.A.; et al. Two Novel Technologies for the Detection of Anti-cardiolipin and Anti beta2-Glycoprotein Antibodies in the Real Life: Chemiluminescent in Comparison to the Addressable Laser Bead Immunoassays. Immunol. Investig. 2020, 49, 58–68. [Google Scholar] [CrossRef]
- Vandevelde, A.; Chayoua, W.; de Laat, B.; Gris, J.C.; Moore, G.W.; Musial, J.; Zuily, S.; Wahl, D.; Devreese, K.M.J. Semiquantitative interpretation of anticardiolipin and antibeta2glycoprotein I antibodies measured with various analytical platforms: Communication from the ISTH SSC Subcommittee on Lupus Anticoagulant/Antiphospholipid Antibodies. J. Thromb. Haemost. 2022, 20, 508–524. [Google Scholar] [CrossRef]
- Favaloro, E.J.; Wheatland, L.; Jovanovich, S.; Roberts-Thomson, P.; Wong, R.C. Internal quality control and external quality assurance in testing for antiphospholipid antibodies: Part I—Anticardiolipin and anti-beta2-glycoprotein I antibodies. Semin. Thromb. Hemost. 2012, 38, 390–403. [Google Scholar] [CrossRef] [PubMed]
- Chayoua, W.; Kelchtermans, H.; Gris, J.C.; Moore, G.W.; Musial, J.; Wahl, D.; de Groot, P.G.; de Laat, B.; Devreese, K.M.J. The (non-)sense of detecting anti-cardiolipin and anti-beta2glycoprotein I IgM antibodies in the antiphospholipid syndrome. J. Thromb. Haemost. 2020, 18, 169–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelchtermans, H.; Pelkmans, L.; de Laat, B.; Devreese, K.M. IgG/IgM antiphospholipid antibodies present in the classification criteria for the antiphospholipid syndrome: A critical review of their association with thrombosis. J. Thromb. Haemost. 2016, 14, 1530–1548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanoverschelde, L.; Kelchtermans, H.; Musial, J.; de Laat, B.; Devreese, K.M.J. Influence of anticardiolipin and anti-beta2 glycoprotein I antibody cutoff values on antiphospholipid syndrome classification. Res. Pract. Thromb. Haemost. 2019, 3, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.N.; Gharavi, A.E.; Patel, S.P.; Hughes, G.R. Evaluation of the anti-cardiolipin antibody test: Report of an international workshop held 4 April 1986. Clin. Exp. Immunol. 1987, 68, 215–222. [Google Scholar] [PubMed]
- Willis, R.; Lakos, G.; Harris, E.N. Standardization of antiphospholipid antibody testing--historical perspectives and ongoing initiatives. Semin. Thromb. Hemost. 2014, 40, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Devreese, K.M. Antiphospholipid antibody testing and standardization. Int. J. Lab. Hematol. 2014, 36, 352–363. [Google Scholar] [CrossRef]
- Ichikawa, K.; Tsutsumi, A.; Atsumi, T.; Matsuura, E.; Kobayashi, S.; Hughes, G.R.; Khamashta, M.A.; Koike, T. A chimeric antibody with the human gamma1 constant region as a putative standard for assays to detect IgG beta2-glycoprotein I-dependent anticardiolipin and anti-beta2-glycoprotein I antibodies. Arthritis Rheum. 1999, 42, 2461–2470. [Google Scholar] [CrossRef]
- Pierangeli, S.S.; Favaloro, E.J.; Lakos, G.; Meroni, P.L.; Tincani, A.; Wong, R.C.; Harris, E.N. Standards and reference materials for the anticardiolipin and anti-beta2glycoprotein I assays: A report of recommendations from the APL Task Force at the 13th International Congress on Antiphospholipid Antibodies. Clin. Chim. Acta 2012, 413, 358–360. [Google Scholar] [CrossRef]
- Monogioudi, E.; Martos, G.; Sheldon, J.; Meroni, P.L.; Trapmann, S.; Zegers, I. Development of a certified reference material for anti-beta2-glycoprotein I IgG—Commutability studies. Clin. Chem. Lab. Med. 2020, 59, 325–332. [Google Scholar] [CrossRef]
- Finazzi, G. The Italian Registry of Antiphospholipid Antibodies. Haematologica 1997, 82, 101–105. [Google Scholar] [PubMed]
- Levine, S.R.; Salowich-Palm, L.; Sawaya, K.L.; Perry, M.; Spencer, H.J.; Winkler, H.J.; Alam, Z.; Carey, J.L. IgG anticardiolipin antibody titer > 40 GPL and the risk of subsequent thrombo-occlusive events and death. A prospective cohort study. Stroke 1997, 28, 1660–1665. [Google Scholar] [CrossRef] [PubMed]
- Devreese, K.M.; Van Hoecke, F. Anticardiolipin and anti-beta2glycoprotein-I antibody cut-off values in the diagnosis of antiphospholipid syndrome: More than calculating the in-house 99th percentiles, even for new automated assays. Thromb. Res. 2011, 128, 598–600. [Google Scholar] [CrossRef] [PubMed]
- Bor, M.V.; Jacobsen, I.S.; Gram, J.B.; Sidelmann, J.J. Revisiting the Phadia/EliA cut-off values for anticardiolipin and anti-beta2-glycoprotein I antibodies: A systematic evaluation according to the guidelines. Lupus 2018, 27, 1446–1454. [Google Scholar] [CrossRef] [PubMed]
- Escalante, A.; Brey, R.L.; Mitchell, B.D., Jr.; Dreiner, U. Accuracy of anticardiolipin antibodies in identifying a history of thrombosis among patients with systemic lupus erythematosus. Am. J. Med. 1995, 98, 559–565. [Google Scholar] [CrossRef]
- Neville, C.; Rauch, J.; Kassis, J.; Chang, E.R.; Joseph, L.; Le Comte, M.; Fortin, P.R. Thromboembolic risk in patients with high titre anticardiolipin and multiple antiphospholipid antibodies. Thromb. Haemost. 2003, 90, 108–115. [Google Scholar] [CrossRef]
- Tincani, A.; Filippini, M.; Scarsi, M.; Galli, M.; Meroni, P.L. European attempts for the standardisation of the antiphospholipid antibodies. Lupus 2009, 18, 913–919. [Google Scholar] [CrossRef]
- Harris, E.N.; Pierangeli, S.S. Revisiting the anticardiolipin test and its standardization. Lupus 2002, 11, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Devreese, K.M.J. How to Interpret Antiphospholipid Laboratory Tests. Curr. Rheumatol. Rep. 2020, 22, 38. [Google Scholar] [CrossRef]
- Lakos, G. Interference in antiphospholipid antibody assays. Semin. Thromb. Hemost. 2012, 38, 353–359. [Google Scholar] [CrossRef]
- Lakos, G.; Teodorescu, M. IgM, but not IgA rheumatoid factor interferes with anti-cardiolipin and antibeta2 glycoprotein I measurements: A quantitative analysis. Lupus 2011, 20, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, N.; Lopez-Olivo, M.A.; Pinto-Patarroyo, G.P.; Suarez-Almazor, M.E. Systematic review of case reports of antiphospholipid syndrome following infection. Lupus 2016, 25, 1520–1531. [Google Scholar] [CrossRef]
- Duarte-Garcia, A.; Pham, M.M.; Crowson, C.S.; Amin, S.; Moder, K.G.; Pruthi, R.K.; Warrington, K.J.; Matteson, E.L. The Epidemiology of Antiphospholipid Syndrome: A Population-Based Study. Arthritis Rheumatol. 2019, 71, 1545–1552. [Google Scholar] [CrossRef] [PubMed]
- Manukyan, D.; Rossmann, H.; Schulz, A.; Zeller, T.; Pfeiffer, N.; Binder, H.; Munzel, T.; Beutel, M.E.; Muller-Calleja, N.; Wild, P.S.; et al. Distribution of antiphospholipid antibodies in a large population-based German cohort. Clin. Chem. Lab. Med. 2016, 54, 1663–1670. [Google Scholar] [CrossRef]
- Sayar, Z.; Moll, R.; Isenberg, D.; Cohen, H. Thrombotic antiphospholipid syndrome: A practical guide to diagnosis and management. Thromb. Res. 2021, 198, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, K.; Sciascia, S.; de Groot, P.G.; Devreese, K.; Jacobsen, S.; Ruiz-Irastorza, G.; Salmon, J.E.; Shoenfeld, Y.; Shovman, O.; Hunt, B.J. Antiphospholipid syndrome. Nat. Rev. Dis. Prim. 2018, 4, 17103. [Google Scholar] [CrossRef] [PubMed]
- Tektonidou, M.G.; Andreoli, L.; Limper, M.; Amoura, Z.; Cervera, R.; Costedoat-Chalumeau, N.; Cuadrado, M.J.; Dorner, T.; Ferrer-Oliveras, R.; Hambly, K.; et al. EULAR recommendations for the management of antiphospholipid syndrome in adults. Ann. Rheum. Dis. 2019, 78, 1296–1304. [Google Scholar] [CrossRef]
- Aringer, M.; Costenbader, K.; Daikh, D.; Brinks, R.; Mosca, M.; Ramsey-Goldman, R.; Smolen, J.S.; Wofsy, D.; Boumpas, D.T.; Kamen, D.L.; et al. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus. Arthritis Rheumatol. 2019, 71, 1400–1412. [Google Scholar] [CrossRef] [Green Version]
- Pengo, V.; Biasiolo, A.; Pegoraro, C.; Cucchini, U.; Noventa, F.; Iliceto, S. Antibody profiles for the diagnosis of antiphospholipid syndrome. Thromb. Haemost. 2005, 93, 1147–1152. [Google Scholar] [CrossRef]
- Mustonen, P.; Lehtonen, K.V.; Javela, K.; Puurunen, M. Persistent antiphospholipid antibody (aPL) in asymptomatic carriers as a risk factor for future thrombotic events: A nationwide prospective study. Lupus 2014, 23, 1468–1476. [Google Scholar] [CrossRef]
- Pengo, V.; Ruffatti, A.; Legnani, C.; Gresele, P.; Barcellona, D.; Erba, N.; Testa, S.; Marongiu, F.; Bison, E.; Denas, G.; et al. Clinical course of high-risk patients diagnosed with antiphospholipid syndrome. J. Thromb. Haemost. 2010, 8, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Sciascia, S.; Murru, V.; Sanna, G.; Roccatello, D.; Khamashta, M.A.; Bertolaccini, M.L. Clinical accuracy for diagnosis of antiphospholipid syndrome in systemic lupus erythematosus: Evaluation of 23 possible combinations of antiphospholipid antibody specificities. J. Thromb. Haemost. 2012, 10, 2512–2518. [Google Scholar] [CrossRef] [PubMed]
- Yelnik, C.M.; Urbanski, G.; Drumez, E.; Sobanski, V.; Maillard, H.; Lanteri, A.; Morell-Dubois, S.; Caron, C.; Dubucquoi, S.; Launay, D.; et al. Persistent triple antiphospholipid antibody positivity as a strong risk factor of first thrombosis, in a long-term follow-up study of patients without history of thrombosis or obstetrical morbidity. Lupus 2017, 26, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Bertin, D.; Camoin-Jau, L.; Veit, V.; Resseguier, N.; Lambert, M.; Buffet Delmas, P.; Heim, X.; Mege, J.L.; Morange, P.E.; Bardin, N. Single or triple positivity for antiphospholipid antibodies in “carriers” or symptomatic patients: Untangling the knot. J. Thromb. Haemost. 2021, 19, 3018–3030. [Google Scholar] [CrossRef] [PubMed]
- Walter, I.J.; Klein Haneveld, M.J.; Lely, A.T.; Bloemenkamp, K.W.M.; Limper, M.; Kooiman, J. Pregnancy outcome predictors in antiphospholipid syndrome: A systematic review and meta-analysis. Autoimmun. Rev. 2021, 20, 102901. [Google Scholar] [CrossRef]
- Pengo, V.; Ruffatti, A.; Del Ross, T.; Tonello, M.; Cuffaro, S.; Hoxha, A.; Banzato, A.; Bison, E.; Denas, G.; Bracco, A.; et al. Confirmation of initial antiphospholipid antibody positivity depends on the antiphospholipid antibody profile. J. Thromb. Haemost. 2013, 11, 1527–1531. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Lim, W.; Crowther, M.; Garcia, D. A systematic review of the association between anti-beta-2 glycoprotein I antibodies and APS manifestations. Blood Adv. 2021, 5, 3931–3936. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; de Groot, P.G.; Ninivaggi, M.; Devreese, K.M.J.; de Laat, B. Clinical Relevance of Isolated Lupus Anticoagulant Positivity in Patients with Thrombotic Antiphospholipid Syndrome. Thromb. Haemost. 2021, 121, 1220–1227. [Google Scholar] [CrossRef]
- Tonello, M.; Bison, E.; Cattini, M.G.; Pontara, E.; Iaccarino, L.; Denas, G.; Cheng, C.; Pengo, V. Anti-phosphatidyl-serine/prothrombin antibodies (aPS/PT) in isolated lupus anticoagulant (LA): Is their presence linked to dual test positivity? Clin. Chem. Lab. Med. 2021, 59, 1950–1953. [Google Scholar] [CrossRef]
- Chayoua, W.; Kelchtermans, H.; Moore, G.W.; Musial, J.; Wahl, D.; de Laat, B.; Devreese, K.M.J. Identification of high thrombotic risk triple-positive antiphospholipid syndrome patients is dependent on anti-cardiolipin and anti-beta2glycoprotein I antibody detection assays. J. Thromb. Haemost. 2018, 16, 2016–2023. [Google Scholar] [CrossRef] [Green Version]
- Lockshin, M.D.; Kim, M.; Laskin, C.A.; Guerra, M.; Branch, D.W.; Merrill, J.; Petri, M.; Porter, T.F.; Sammaritano, L.; Stephenson, M.D.; et al. Prediction of adverse pregnancy outcome by the presence of lupus anticoagulant, but not anticardiolipin antibody, in patients with antiphospholipid antibodies. Arthritis Rheum. 2012, 64, 2311–2318. [Google Scholar] [CrossRef] [PubMed]
- Mattia, E.; Tonello, M.; Del Ross, T.; Zerbinati, P.; Campello, E.; Simioni, P.; Ruffatti, A. Clinical and laboratory characteristics of isolated lupus anticoagulants. Thromb. Res. 2018, 165, 51–53. [Google Scholar] [CrossRef] [PubMed]
- Urbanus, R.T.; Siegerink, B.; Roest, M.; Rosendaal, F.R.; de Groot, P.G.; Algra, A. Antiphospholipid antibodies and risk of myocardial infarction and ischaemic stroke in young women in the RATIO study: A case-control study. Lancet Neurol. 2009, 8, 998–1005. [Google Scholar] [CrossRef]
- Otomo, K.; Atsumi, T.; Amengual, O.; Fujieda, Y.; Kato, M.; Oku, K.; Horita, T.; Yasuda, S.; Koike, T. Efficacy of the antiphospholipid score for the diagnosis of antiphospholipid syndrome and its predictive value for thrombotic events. Arthritis Rheum. 2012, 64, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Sciascia, S.; Bertolaccini, M.L.; Roccatello, D.; Khamashta, M.A. Independent validation of the antiphospholipid score for the diagnosis of antiphospholipid syndrome. Ann. Rheum. Dis. 2013, 72, 142–143. [Google Scholar] [CrossRef] [Green Version]
- Oku, K.; Amengual, O.; Atsumi, T. Antiphospholipid scoring: Significance in diagnosis and prognosis. Lupus 2014, 23, 1269–1272. [Google Scholar] [CrossRef]
- Sciascia, S.; Sanna, G.; Murru, V.; Roccatello, D.; Khamashta, M.A.; Bertolaccini, M.L. GAPSS: The Global Anti-Phospholipid Syndrome Score. Rheumatology 2013, 52, 1397–1403. [Google Scholar] [CrossRef] [Green Version]
- Sciascia, S.; Radin, M.; Sanna, G.; Cecchi, I.; Roccatello, D.; Bertolaccini, M.L. Clinical utility of the global anti-phospholipid syndrome score for risk stratification: A pooled analysis. Rheumatology 2018, 57, 661–665. [Google Scholar] [CrossRef] [Green Version]
- Bertolaccini, M.L.; Amengual, O.; Atsumi, T.; Binder, W.L.; de Laat, B.; Forastiero, R.; Kutteh, W.H.; Lambert, M.; Matsubayashi, H.; Murthy, V.; et al. ‘Non-criteria’ aPL tests: Report of a task force and preconference workshop at the 13th International Congress on Antiphospholipid Antibodies, Galveston, TX, USA, April 2010. Lupus 2011, 20, 191–205. [Google Scholar] [CrossRef]
- Cabrera-Marante, O.; Rodriguez de Frias, E.; Serrano, M.; Lozano Morillo, F.; Naranjo, L.; Gil-Etayo, F.J.; Paz-Artal, E.; Pleguezuelo, D.E.; Serrano, A. The Weight of IgA Anti-beta2glycoprotein I in the Antiphospholipid Syndrome Pathogenesis: Closing the Gap of Seronegative Antiphospholipid Syndrome. Int. J. Mol. Sci. 2020, 21, 8972. [Google Scholar] [CrossRef]
- Meijide, H.; Sciascia, S.; Sanna, G.; Khamashta, M.A.; Bertolaccini, M.L. The clinical relevance of IgA anticardiolipin and IgA anti-beta2 glycoprotein I antiphospholipid antibodies: A systematic review. Autoimmun. Rev. 2013, 12, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Chayoua, W.; Yin, D.M.; Kelchtermans, H.; Moore, G.W.; Gris, J.C.; Musial, J.; Zuily, S.; Ten Cate, H.; de Laat, B.; Devreese, K.M.J. Is There an Additional Value in Detecting Anticardiolipin and Anti-beta2 glycoprotein I IgA Antibodies in the Antiphospholipid Syndrome? Thromb. Haemost. 2020, 120, 1557–1568. [Google Scholar] [CrossRef]
- Liu, T.; Gu, J.; Wan, L.; Hu, Q.; Teng, J.; Liu, H.; Cheng, X.; Ye, J.; Su, Y.; Sun, Y.; et al. “Non-criteria” antiphospholipid antibodies add value to antiphospholipid syndrome diagnoses in a large Chinese cohort. Arthritis Res. Ther. 2020, 22, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattia, E.; Ruffatti, A.; Tonello, M.; Meneghel, L.; Robecchi, B.; Pittoni, M.; Gallo, N.; Salvan, E.; Teghil, V.; Punzi, L.; et al. IgA anticardiolipin and IgA anti-beta2 glycoprotein I antibody positivity determined by fluorescence enzyme immunoassay in primary antiphospholipid syndrome. Clin. Chem. Lab. Med. 2014, 52, 1329–1333. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.M.; Lee, R.; Frenkel, E.; Sarode, R. IgA antiphospholipid antibodies are an independent risk factor for thromboses. Lupus 2008, 17, 996–1003. [Google Scholar] [CrossRef] [PubMed]
- Perez, D.; Martinez-Flores, J.A.; Serrano, M.; Lora, D.; Paz-Artal, E.; Morales, J.M.; Serrano, A. Evaluation of three fully automated immunoassay systems for detection of IgA anti-beta 2-glycoprotein I antibodies. Int. J. Lab. Hematol. 2016, 38, 560–568. [Google Scholar] [CrossRef]
- Tebo, A.E.; Willis, R.; Jaskowski, T.D.; Guerra, M.; Pierangeli, S.S.; Salmon, J.; Petri, M.; Branch, D.W. Clinical significance and correlations between anti-beta2 glycoprotein I IgA assays in antiphospholipid syndrome and/or systemic lupus erythematosus. Clin. Chim. Acta 2016, 460, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Flores, J.A.; Serrano, M.; Alfaro, J.; Mora, S.; Paz-Artal, E.; Morales, J.M.; Serrano, A. Heterogeneity between diagnostic tests for IgA anti-beta2 glycoprotein I: Explaining the controversy in studies of association with vascular pathology. Anal. Chem. 2013, 85, 12093–12098. [Google Scholar] [CrossRef]
- Radin, M.; Foddai, S.G.; Cecchi, I.; Rubini, E.; Schreiber, K.; Roccatello, D.; Bertolaccini, M.L.; Sciascia, S. Antiphosphatidylserine/Prothrombin Antibodies: An Update on Their Association with Clinical Manifestations of Antiphospholipid Syndrome. Thromb. Haemost. 2020, 120, 592–598. [Google Scholar] [CrossRef]
- Sciascia, S.; Sanna, G.; Murru, V.; Roccatello, D.; Khamashta, M.A.; Bertolaccini, M.L. Anti-prothrombin (aPT) and anti-phosphatidylserine/prothrombin (aPS/PT) antibodies and the risk of thrombosis in the antiphospholipid syndrome. A systematic review. Thromb. Haemost. 2014, 111, 354–364. [Google Scholar] [CrossRef]
- Ganapati, A.; Goel, R.; Kabeerdoss, J.; Gowri, M.; Mathew, J.; Danda, D. Study of clinical utility of antibodies to phosphatidylserine/prothrombin complex in Asian-Indian patients with suspected APS. Clin. Rheumatol. 2019, 38, 545–553. [Google Scholar] [CrossRef]
- Litvinova, E.; Darnige, L.; Kirilovsky, A.; Burnel, Y.; de Luna, G.; Dragon-Durey, M.A. Prevalence and Significance of Non-conventional Antiphospholipid Antibodies in Patients With Clinical APS Criteria. Front. Immunol. 2018, 9, 2971. [Google Scholar] [CrossRef]
- Zigon, P.; Podovsovnik, A.; Ambrozic, A.; Tomsic, M.; Hocevar, A.; Gaspersic, N.; Rotar, Z.; Praprotnik, S.; Semrl, S.S.; Cucnik, S. Added value of non-criteria antiphospholipid antibodies for antiphospholipid syndrome: Lessons learned from year-long routine measurements. Clin. Rheumatol. 2019, 38, 371–378. [Google Scholar] [CrossRef]
- Pengo, V.; Del Ross, T.; Ruffatti, A.; Bison, E.; Cattini, M.G.; Pontara, E.; Testa, S.; Legnani, C.; Pozzi, N.; Peterle, D.; et al. Lupus anticoagulant identifies two distinct groups of patients with different antibody patterns. Thromb. Res. 2018, 172, 172–178. [Google Scholar] [CrossRef]
- Pengo, V. Additional laboratory tests to improve on the diagnosis of antiphospholipid syndrome. J. Thromb. Haemost. 2020, 18, 1846–1848. [Google Scholar] [CrossRef]
- Egri, N.; Bentow, C.; Rubio, L.; Norman, G.L.; Lopez-Sanudo, S.; Mahler, M.; Perez-Isidro, A.; Cervera, R.; Vinas, O.; Espinosa, G.; et al. Anti-Phosphatidylserine/Prothrombin Antibodies at Two Points: Correlation With Lupus Anticoagulant and Thrombotic Risk. Front. Immunol. 2021, 12, 754469. [Google Scholar] [CrossRef]
- Cattini, M.G.; Bison, E.; Pontara, E.; Cheng, C.; Denas, G.; Pengo, V. Tetra positive thrombotic antiphospholipid syndrome: Major contribution of anti-phosphatidyl-serine/prothrombin antibodies to lupus anticoagulant activity. J. Thromb. Haemost. 2020, 18, 1124–1132. [Google Scholar] [CrossRef]
- Devreese, K.M.J.; Zuily, S.; Meroni, P.L. Role of antiphospholipid antibodies in the diagnosis of antiphospholipid syndrome. J. Transl. Autoimmun. 2021, 4, 100134. [Google Scholar] [CrossRef]
- de Laat, B.; Derksen, R.H.; Urbanus, R.T.; de Groot, P.G. IgG antibodies that recognize epitope Gly40-Arg43 in domain I of beta 2-glycoprotein I cause LAC, and their presence correlates strongly with thrombosis. Blood 2005, 105, 1540–1545. [Google Scholar] [CrossRef] [Green Version]
- Yin, D.; de Laat, B.; Devreese, K.M.J.; Kelchtermans, H. The clinical value of assays detecting antibodies against domain I of beta2-glycoprotein I in the antiphospholipid syndrome. Autoimmun. Rev. 2018, 17, 1210–1218. [Google Scholar] [CrossRef]
- De Craemer, A.S.; Musial, J.; Devreese, K.M. Role of anti-domain 1-beta2 glycoprotein I antibodies in the diagnosis and risk stratification of antiphospholipid syndrome. J. Thromb. Haemost. 2016, 14, 1779–1787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pengo, V.; Ruffatti, A.; Tonello, M.; Cuffaro, S.; Banzato, A.; Bison, E.; Denas, G.; Padayattil Jose, S. Antiphospholipid syndrome: Antibodies to Domain 1 of beta2-glycoprotein 1 correctly classify patients at risk. J. Thromb. Haemost. 2015, 13, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.; Chayoua, W.; Kelchtermans, H.; de Groot, P.G.; Moore, G.W.; Gris, J.C.; Zuily, S.; Musial, J.; de Laat, B.; Devreese, K.M.J. Detection of anti-domain I antibodies by chemiluminescence enables the identification of high-risk antiphospholipid syndrome patients: A multicenter multiplatform study. J. Thromb. Haemost. 2020, 18, 463–478. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, I.S.; Radin, M.; Gandara, A.P.R.; Sciascia, S.; de Andrade, D.C.O. Global antiphospholipid syndrome score and anti-ss2-glycoprotein I domain I for thrombotic risk stratification in antiphospholipid syndrome: A four-year prospective study. Lupus 2020, 29, 676–685. [Google Scholar] [CrossRef]
- Radin, M.; Cecchi, I.; Roccatello, D.; Meroni, P.L.; Sciascia, S. Prevalence and Thrombotic Risk Assessment of Anti-beta2 Glycoprotein I Domain I Antibodies: A Systematic Review. Semin. Thromb. Hemost. 2018, 44, 466–474. [Google Scholar] [CrossRef] [Green Version]
- Zuily, S.; de Laat, B.; Guillemin, F.; Kelchtermans, H.; Magy-Bertrand, N.; Desmurs-Clavel, H.; Lambert, M.; Poindron, V.; de Maistre, E.; Dufrost, V.; et al. Anti-Domain I beta2-Glycoprotein I Antibodies and Activated Protein C Resistance Predict Thrombosis in Antiphospholipid Syndrome: TAC(I)T Study. J. Appl. Lab. Med. 2020, 5, 1242–1252. [Google Scholar] [CrossRef]
- Chighizola, C.B.; Pregnolato, F.; Andreoli, L.; Bodio, C.; Cesana, L.; Comerio, C.; Gerosa, M.; Grossi, C.; Kumar, R.; Lazzaroni, M.G.; et al. Beyond thrombosis: Anti-beta2GPI domain 1 antibodies identify late pregnancy morbidity in anti-phospholipid syndrome. J. Autoimmun. 2018, 90, 76–83. [Google Scholar] [CrossRef]
- Iwaniec, T.; Kaczor, M.P.; Celinska-Lowenhoff, M.; Polanski, S.; Musial, J. Clinical significance of anti-domain 1 beta2-glycoprotein I antibodies in antiphospholipid syndrome. Thromb. Res. 2017, 153, 90–94. [Google Scholar] [CrossRef]
- Pignatelli, P.; Ettorre, E.; Menichelli, D.; Pani, A.; Violi, F.; Pastori, D. Seronegative antiphospholipid syndrome: Refining the value of “non-criteria” antibodies for diagnosis and clinical management. Haematologica 2020, 105, 562–572. [Google Scholar] [CrossRef] [Green Version]
- Truglia, S.; Mancuso, S.; Capozzi, A.; Recalchi, S.; Riitano, G.; Longo, A.; De Carolis, S.; Spinelli, F.R.; Alessandri, C.; Ceccarelli, F.; et al. “Non-criteria antiphospholipid antibodies”: Bridging the gap between seropositive and seronegative Antiphospholipid Syndrome. Rheumatology 2021, 61, 826–833. [Google Scholar] [CrossRef]
- Bradacova, P.; Slavik, L.; Ulehlova, J.; Skoumalova, A.; Ullrychova, J.; Prochazkova, J.; Hlusi, A.; Manukyan, G.; Kriegova, E. Current Promising Biomarkers and Methods in the Diagnostics of Antiphospholipid Syndrome: A Review. Biomedicines 2021, 9, 166. [Google Scholar] [CrossRef] [PubMed]
Clinical Criteria | Laboratory Criteria |
---|---|
1. Vascular thrombosis - Venous, arterial or microvascular; - Confirmed by objective validated criteria; - No evidence of inflammation in vessel wall. | 1. Lupus anticoagulant present in plasma on ≥2 occasions, at least 12 weeks apart. |
and/or | and/or |
2. Pregnancy morbidity - ≥1 unexplained fetal death ≥10th week of gestation or; - ≥1 premature birth <34th week of gestation because of: ° Eclampsia or severe pre-eclampsia ° Features of placental insufficiency; - ≥3 unexplained consecutive abortions <10th week of gestation. | 2. Anticardiolipin antibody IgG and/or IgM in serum or plasma, present in medium or high titer (>40 GPL or MPL, or >99th percentile), measured by a standardized ELISA on ≥2 occasions, at least 12 weeks apart. |
and/or | |
3. Anti-β2-glycoprotein I antibody IgG and/or IgM in serum or plasma, present in titer >99th percentile, measured by a standardized ELISA on ≥2 occasions, at least 12 weeks apart. |
Relevance in APS diagnosis | Functional, phospholipid-dependent coagulation assay, part of APS classification criteria. LAC theoretically detects all aPL independent of the phospholipid associated cofactor. LAC presence is a significant risk factor for thrombosis and obstetric morbidity. |
Analytical considerations | |
Choice of assay | dRVVT assay AND LAC-sensitive aPTT assay (or SCT):
|
Analytical procedure | Traditional assays: (1) Screening step (2) Mixing step and confirmation step if screening positive OR Paired assays: (1) Screening step and confirmation step (2) Mixing step if screening positive OR Integrated assays: Includes screen, mix, and confirm in one assay Verify that mixing step is included in the procedure |
Expression of results | Analyze PNP in each run for every assay Calculate normalized ratio ([patient clotting time]/[PNP]) for each result or derived calculation |
Cut-off values | In house calculation: ≥120 healthy individuals Outlier rejection with Reed method Non-parametric approach, 99th percentile No data distribution assumption Transfer of values: Cut-off values suggested by manufacturer: information on sufficient sample size and correct statistical methodology warranted; Verification with 20 or 40 healthy individuals |
Interferences | Consequences |
Acute phase | |
High FVIII | False-negative aPTT, consider retest after acute phase or pregnancy. |
High CRP | False-positive LAC test possible, retest after >12 weeks. |
Infection/inflammation | Transient positive LAC test possible, retest after >12 weeks. |
Medication (non-anticoagulant) | Transient positive LAC test possible, retest after cessation of medication or after >12 weeks in case of vaccine. |
Anticoagulant | Avoid LAC testing if patient is anticoagulated. Information on anticoagulation status is mandatory. |
VKA | False positive/negative LAC test possible. Interrupt VKA therapy if possible or bridge with LMWH for testing. |
Heparins | No interference at therapeutic concentrations. |
DOAC | Both false negatives and false positives are possible. Interrupt temporarily or use DOAC adsorption procedure. |
Relevance in APS diagnosis | Solid-phase immunoassays, part of the APS classification criteria. Important for risk stratification purposes: Double positivity and triple positivity are associated with high risk for clinical APS events; Higher IgG titers are associated with higher risk for clinical APS events than lower IgG titers. Titer of IgM is less well correlated with clinical events; IgG aCL/aβ2GPI demonstrate stronger association with thrombosis and obstetric morbidity compared to IgM; IgM aCL/aβ2GPI is independently associated with obstetric morbidity, but not with thrombotic events, although thrombotic risk is increased when positive in combination with LAC and IgG aCL/aβ2GPI; Research on value of isolated aCL or aβ2GPI IgG/IgM positivity shows conflicting results. |
Analytical considerations | |
Matrix | Serum or platelet-poor plasma (check assay specifications) |
Antigen in assay | aCL: Cardiolipin + β2-glycoprotein I; aβ2GPI: β2-glycoprotein I (preferably human origin) |
Imprecision | Manual ELISA: <20%, preferably <15%; Automated systems: <10% |
Cut-off values | In house calculation: ≥120 healthy individuals; Outlier rejection with Reed method; Non-parametric approach, 99th percentile. Transfer of values: Cut-off values suggested by manufacturer: information on sufficient sample size and correct statistical methodology warranted. Verification with 20 or 40 healthy individuals. |
Units | aCL: GPL/MPL if calibrators are matched with original Harris standards, otherwise arbitrary units; aβ2GPI: Arbitrary units |
Expression of results | Numeric value based on calibration curve. Value should be reported alongside cut-off value. Results cannot be compared across laboratories or assays. |
Interferences | Consequence |
Infection/inflammation | Transient positive test possible, retest after >12 weeks. |
Rheumatoid factor IgM | False-positive aCL/aβ2GPI IgM. |
Hemolysis/icterus/lipemia | Assay dependent. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vandevelde, A.; Devreese, K.M.J. Laboratory Diagnosis of Antiphospholipid Syndrome: Insights and Hindrances. J. Clin. Med. 2022, 11, 2164. https://doi.org/10.3390/jcm11082164
Vandevelde A, Devreese KMJ. Laboratory Diagnosis of Antiphospholipid Syndrome: Insights and Hindrances. Journal of Clinical Medicine. 2022; 11(8):2164. https://doi.org/10.3390/jcm11082164
Chicago/Turabian StyleVandevelde, Arne, and Katrien M. J. Devreese. 2022. "Laboratory Diagnosis of Antiphospholipid Syndrome: Insights and Hindrances" Journal of Clinical Medicine 11, no. 8: 2164. https://doi.org/10.3390/jcm11082164
APA StyleVandevelde, A., & Devreese, K. M. J. (2022). Laboratory Diagnosis of Antiphospholipid Syndrome: Insights and Hindrances. Journal of Clinical Medicine, 11(8), 2164. https://doi.org/10.3390/jcm11082164