E-Cadherin Signaling in Salivary Gland Development and Autoimmunity
Abstract
:1. Introduction to Cadherins
2. E-Cadherin Discovery
3. E-Cadherin Structure
4. Development of Submandibular Gland
5. The Pivotal Role for E-Cadherin in Salivary Gland Morphogenesis
6. E-Cadherin Localization in Adult Normal Salivary Glands
7. The Epithelial-to-Mesenchymal Transition (EMT) Process
8. E-Cadherin and EMT
9. The Role of E-Cadherin in Salivary Gland Pathogenesis: Lesson from Sjögren’s Syndrome
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Patel, S.D.; Chen, C.P.; Bahna, F.; Honig, B.; Shapiro, L. Cadherin-mediated cell-cell adhesion: Sticking together as a family. Curr. Opin. Struct. Biol. 2003, 13, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Jaiganesh, A.; Narui, Y.; Araya-Secchi, R.; Sotomayor, M. Beyond Cell-Cell Adhesion: Sensational Cadherins for Hearing and Balance. Cold Spring Harb. Perspect. Biol. 2018, 10, 029280. [Google Scholar] [CrossRef] [PubMed]
- Pal, M.; Bhattacharya, S.; Kalyan, G.; Hazra, S. Cadherin profiling for therapeutic interventions in Epithelial Mesenchymal Transition (EMT) and tumorigenesis. Exp. Cell Res. 2018, 368, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Takeichi, M. Functional correlation between cell adhesive properties and some cell surface proteins. J. Cell Biol. 1977, 75, 464–474. [Google Scholar] [CrossRef] [Green Version]
- Peyriéras, N.; Hyafil, F.; Louvard, D.; Ploegh, H.L.; Jacob, F. Uvomorulin: A nonin-tegral membrane protein of early mouse embryo. Proc. Natl. Acad. Sci. USA 1983, 80, 6274–6277. [Google Scholar] [CrossRef] [Green Version]
- Boller, K.; Vestweber, D.; Kemler, R. Cell-adhesion molecule uvomorulin is localized in the intermediate junctions of adult intestinal epithelial cells. J. Cell Biol. 1985, 100, 327–332. [Google Scholar] [CrossRef]
- Wheelock, M.J.; Buck, C.A.; Bechtol, K.B.; Damsky, C.H. Soluble 80-kd fragment of cell-CAM 120/80 disrupts cell-cell adhesion. J. Cell Biochem. 1987, 34, 187–202. [Google Scholar] [CrossRef]
- Kjeldsen, T.B.; Laursen, I.; Lykkesfeldt, A.; Briand, P.; Zeuthen, J. Monoclonal anti-bodies reactive with components in serum-free conditioned medium from a hu-man breast cancer cell line (MCF-7). Tumor Biol. 1989, 10, 190–201. [Google Scholar] [CrossRef]
- Begemann, M.; Tan, S.S.; A Cunningham, B.; Edelman, G.M. Expression of chicken liver cell adhesion molecule fusion genes in transgenic mice. Proc. Natl. Acad. Sci. USA 1990, 87, 9042–9046. [Google Scholar] [CrossRef] [Green Version]
- Yoshida-Noro, C.; Suzuki, N.; Takeichi, M. Molecular nature of the calcium-dependent cell-cell adhesion system in mouse teratocarcinoma and embryonic cells studied with a monoclonal antibody. Dev. Biol. 1984, 101, 19–27. [Google Scholar] [CrossRef]
- Takeichi, M. The cadherins: Cell-cell adhesion molecules controlling animal morphogenesis. Development 1988, 102, 639–655. [Google Scholar] [CrossRef] [PubMed]
- Mohan, R.; Lee, B.; Panjwani, N. Molecular cloning of the E-cadherin cDNAs from rabbit corneal epithelium. Curr. Eye Res. 1995, 14, 1136–1145. [Google Scholar] [CrossRef] [PubMed]
- Parisini, E.; Higgins, J.; Liu, J.-H.; Brenner, M.B.; Wang, J.-H. The Crystal Structure of Human E-cadherin Domains 1 and 2, and Comparison with other Cadherins in the Context of Adhesion Mechanism. J. Mol. Biol. 2007, 373, 401–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtis, M.W.; Johnson, K.R.; Wheelock, M.J. E-Cadherin/Catenin Complexes Are Formed Cotranslationally in the Endoplasmic Reticulum/Golgi Compartments. Cell Commun. Adhes. 2008, 15, 365–378. [Google Scholar] [CrossRef] [Green Version]
- Rahnama, F.; Thompson, B.; Steiner, M.; Shafiei, F.; Lobie, P.E.; Mitchell, M.D. Epigenetic regulation of E-cadherin controls endometrial receptivity. Endocrinology 2009, 150, 1466–1472. [Google Scholar] [CrossRef] [Green Version]
- Georgopoulos, N.T.; Kirkwood, L.A.; Walker, D.C.; Southgate, J. Differential regulation of growth-promoting signalling pathways by E-cadherin. PLoS ONE 2010, 5, e13621. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.; Laurence, J.S.; Kuczera, K.; Verkhivker, G.; Middaugh, C.R.; Siahaan, T.J. Characterization of Multiple Stable Conformers of the EC5 Domain of E-cadherin and the Interaction of EC5 with E-cadherin Peptides. Chem. Biol. Drug Des. 2009, 73, 584–598. [Google Scholar] [CrossRef]
- Hirano, S.; Nose, A.; Hatta, K.; Kawakami, A.; Takeichi, M. Calcium-dependent cell-cell adhesion molecules (cadherins): Subclass specificities and possible in-volvement of actin bundles. J. Cell Biol. 1987, 105, 2501–2510. [Google Scholar] [CrossRef] [Green Version]
- Grunwald, G.B. The structural and functional analysis of cadherin calcium-dependent cell adhesion molecules. Curr. Opin. Cell Biol. 1993, 5, 797–805. [Google Scholar] [CrossRef]
- Marrs, J.A.; Nelson, W.J. Cadherin Cell Adhesion Molecules in Differentiation and Embryogenesis. Int. Rev. Cytol. 1996, 165, 159–205. [Google Scholar] [CrossRef]
- Wheelock, M.J.; Johnson, K.R. Cadherins as Modulators of Cellular Phenotype. Annu. Rev. Cell Dev. Biol. 2003, 19, 207–235. [Google Scholar] [CrossRef] [PubMed]
- Halbleib, J.M.; Nelson, W.J. Cadherins in development: Cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 2006, 20, 3199–3214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huber, A.H.; Stewart, D.B.; Laurents, D.V.; Nelson, W.J.; Weis, W.I. The cadherin cytoplasmic domain is unstructured in the absence of β-catenin: A possible mecha-nism for regulating cadherin turnover. J. Biol. Chem. 2001, 276, 12301–12309. [Google Scholar] [CrossRef] [Green Version]
- Mège, R.M.; Ishiyama, N. Integration of Cadherin Adhesion and Cytoskeleton at Adherens Junctions. Cold Spring Harb. Perspect. Biol. 2017, 9, a028738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernfield, M.; Danerjee, S.D.; Koda, J.E.; Rapraeger, A.C. Remodelling of the base-ment membrane: Morphogenesis and maturation. Ciba Found Symp. 1984, 108, 179–196. [Google Scholar] [PubMed]
- Hieda, Y.; Iwai, K.; Morita, T.; Nakanishi, Y. Mouse embryonic submandibular gland epithelium loses its tissue integrity during early branching morphogenesis. Dev. Dyn. 1996, 207, 395–403. [Google Scholar] [CrossRef]
- Fernandes, R.P.; Cotanche, D.A.; Lennon-Hopkins, K.; Erkan, F.; Menko, A.S.; Kukuruzinska, M.A. Differential expression of proliferative, cytoskeletal, and adhesive proteins during postnatal development of the hamster submandibular gland. Histochem. Cell Biol. 1999, 111, 153–162. [Google Scholar] [CrossRef]
- Jaskoll, T.; Melnick, M. Submindibular gland morphogenesis: Stage-specific expres-sion of TGF-a/EGF, IGF, TGF-b, TNF, and IL-6 signal transduction in normal em-bryonic mice and the phenotypic effects of TGF-b2, TGF-b-3, and EGF-R null mutations. Anat. Rec. 1999, 256, 252–268. [Google Scholar] [CrossRef]
- Patel, V.N.; Rebustini, I.T.; Hoffman, M.P. Salivary gland branching morphogene-sis. Differentiation 2006, 74, 349–364. [Google Scholar] [CrossRef]
- Kashimata, M.; Sayeed, S.; Ka, A.; Onetti-Muda, A.; Sakagami, H.; Faraggiana, T.; Gresik, E.W. The ERK-1/2 signaling pathway is involved in the stimulation of branching morphogenesis of fetal mouse submandibular glands by EGF. Dev. Biol. 2000, 220, 183–196. [Google Scholar] [CrossRef]
- Sakai, T.; Larsen, M.; Yamada, K.M. Fibronectin requirement in branching mor-phogenesis. Nature 2003, 423, 876–881. [Google Scholar] [CrossRef] [PubMed]
- Melnick, M.; Jaskoll, T. Mouse sub-mandibular gland morphogenesis: A paradigm for embryonic signal processing. Crit. Rev. Oral Biol. Med. 2000, 11, 199–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, N.; Sharpe, P.T.; Miletich, I. Coordination of epithelial branching and salivary gland lumen formation by Wnt and FGF signals. Develop. Biol. 2011, 358, 156–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knox, S.M.; Lombaert, I.M.; Haddox, C.L.; Abrams, S.R.; Cotrim, A.; Wilson, A.J.; Hoffman, M.P. Parasympathetic stimulation improves epithelial organ regeneration. Nat. Commun. 2013, 4, 1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teshima, T.H.N.; Wells, K.L.; Lourenço, S.V.; Tucker, A.S. Apoptosis in Early Sali-vary Gland Duct Morphogenesis and Lumen Formation. J. Dental Res. 2016, 95, 277–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, J.L.; Menko, A.S.; Khalil, S.; Rebustini, I.; Hoffman, M.P.; Kreidberg, J.A.; Kukuruzinska, M.A. Diverse roles of E-cadherin in the morphogenesis of the sub-mandibular gland: Insights into the formation of acinar and ductal structures. Dev. Dyn. 2008, 237, 3128–3141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, C.; Larsen, M.; Hoffman, M.P.; Yamada, K.M. Self-Organization and Branching Morphogenesis of Primary Salivary Epithelial Cells. Tissue Eng. 2007, 13, 721–735. [Google Scholar] [CrossRef]
- Larsen, M.; Wei, C.; Yamada, K.M. Cell and fibronectin dynamics during branching morphogenesis. J. Cell Sci. 2006, 119, 3376–3384. [Google Scholar] [CrossRef] [Green Version]
- Heida, Y.; Nakanishi, Y. Epithelial morphogenesis in mouse embryonic sub-mandibular gland: Its relationships to the tissue organization of epithelium and mesenchyme. Dev. Growth Differ. 1997, 39, 1–8. [Google Scholar] [CrossRef]
- Mailleux, A.A.; Overholtzer, M.; Schmelzle, T.; Bouillet, P.; Strasser, A.; Brugge, J.S. BIM Regulates Apoptosis during Mammary Ductal Morphogenesis, and Its Absence Reveals Alternative Cell Death Mechanisms. Dev. Cell 2007, 12, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.; Jordan, R.; Mori, M.; Speight, P.M. The relationship between E-cadherin expression, clinical stage and tumour differentiation in oral squamous cell carcinoma. Oral Dis. 1997, 3, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Andreadis, D.; Epivatianos, A.; Mireas, G.; Nomikos, A.; Poulopoulos, A.; Yiotakis, J.; Barbatis, C. Immunohistochemical detection of E-cadherin in certain types of salivary gland tumours. J. Laryngol. Otol. 2006, 120, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009, 119, 1420–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieto, M.A.; Huang, R.Y.; Jackson, R.A.; Thiery, J.P. EMT: 2016. Cell 2016, 166, 21–45. [Google Scholar] [CrossRef] [Green Version]
- Thiery, J.P.; Acloque, H.; Huang, R.Y.J.; Nieto, M.A. Epithelial-Mesenchymal Transitions in Development and Disease. Cell 2009, 139, 871–890. [Google Scholar] [CrossRef]
- Dongre, A.; Weinberg, R.A. New insights into the mechanisms of epitheli-al-mesenchymal transition and implications for cancer. Nat. Rev. Mol. Cell Biol. 2019, 20, 69–84. [Google Scholar] [CrossRef]
- Leggett, S.E.; Hruska, A.M.; Guo, M.; Wong, I.Y. The epithelial-mesenchymal tran-sition and the cytoskeleton in bioengineered systems. Cell Commun. Signal. 2021, 19, 32. [Google Scholar] [CrossRef]
- Williams, E.D.; Gao, D.; Redfern, A.; Thompson, E.W. Controversies around epithelial-mesenchymal plasticity in cancer metastasis. Nat. Rev. Cancer. 2019, 19, 716–732. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Antin, P.; Berx, G.; Blanpain, C.; Brabletz, T.; Bronner, M.; Campbell, K.; Cano, A.; Casanova, J.; Christofori, G.; et al. Guidelines and definitions for research on epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2020, 21, 341–352, Erratum in Nat. Rev. Mol. Cell Biol. 2021, 22, 834. [Google Scholar] [CrossRef] [Green Version]
- Zavadil, J.; Böttinger, E.P. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 2005, 24, 5764–5774. [Google Scholar] [CrossRef] [Green Version]
- Thiery, J.P.; Sleeman, J.P. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 2006, 7, 131–142. [Google Scholar] [CrossRef] [PubMed]
- Lamouille, S.; Xu, J.; Derynck, R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2014, 15, 178–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aban, C.E.; Lombardi, A.; Neiman, G.; Biani, M.C.; La Greca, A.; Waisman, A.; Moro, L.N.; Sevlever, G.; Miriuka, S.; Luzzani, C. Downregulation of E-cadherin in pluripotent stem cells triggers partial EMT. Sci. Rep. 2021, 11, 2048. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Boulan, E.; Macara, I.G. Organization and execution of the epithelial polarity programme. Nat. Rev. Mol. Cell Biol. 2014, 15, 225–242. [Google Scholar] [CrossRef] [PubMed]
- Loh, C.Y.; Chai, J.Y.; Tang, T.F.; Wong, W.F.; Sethi, G.; Shanmugam, M.K.; Chong, P.P.; Looi, C.Y. The E-Cadherin and N-Cadherin Switch in Epitheli-al-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells 2019, 8, 1118. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Yang, L.; Li, T.; Zhang, Y. Cadherin Signaling in Cancer: Its Functions and Role as a Therapeutic Target. Front. Oncol. 2019, 9, 989. [Google Scholar] [CrossRef]
- Kang, Y.; Massagué, J. Epithelial-mesenchymal transitions: Twist in development and metastasis. Cell 2004, 118, 277–279. [Google Scholar] [CrossRef] [Green Version]
- Thiery, J.P. Epithelial-mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2002, 2, 442–454. [Google Scholar] [CrossRef]
- Liu, X.; Chu, K.-M. E-Cadherin and Gastric Cancer: Cause, Consequence, and Applications. BioMed Res. Int. 2014, 2014, 637308. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.M.; Xu, S.F.; Zheng, Y.; Wang, P.; Zhang, L.; Shi, S.S.; Wu, T.; Li, Y.; Zhao, J.; Tian, Q.; et al. Long non-coding RNA H19 is responsible for the progression of lung adenocarcinoma by mediating methylation-dependent repression of CDH1 promoter. J. Cell Mol. Med. 2019, 23, 6411–6428. [Google Scholar] [CrossRef] [Green Version]
- Tedaldi, G.; Molinari, C.; Celina, S.; Barbosa-Matos, R.; André, A.; Danesi, R.; Arcangeli, V.; Ravegnani, M.; Saragoni, L.; Morgagni, P.; et al. Genetic and Epige-netic Alterations of CDH1 Regulatory Regions in Hereditary and Sporadic Gastric Cancer. Pharmaceuticals 2021, 14, 457. [Google Scholar] [CrossRef] [PubMed]
- Traube, F.R.; Carell, T. The chemistries and consequences of DNA and RNA meth-ylation and demethylation. RNA Biol. 2017, 14, 1099–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, B.; Guo, M.; Herman, J.G.; Clark, D.P. Aberrant promoter methylation pro-files of tumor suppressor genes in hepatocellular carcinoma. Am. J. Pathol. 2003, 163, 1101–1107. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Lee, H.J.; Kim, J.H.; Lee, H.S.; Jang, J.J.; Kang, G.H. Aberrant CpG island hypermethylation along multistep hepatocarcinogenesis. Am. J. Pathol. 2003, 163, 1371–1378. [Google Scholar] [CrossRef] [Green Version]
- Belulescu, I.C.; Mărgăritescu, C.; Dumitrescu, C.I.; Munteanu, M.C.; Mărgăritescu, O.C. Immuno phenotypical alterations with impact on the epithelial-mesenchymal transition (EMT) process in salivary gland adenoid cystic carcinomas. Rom. J. Morphol. Embryol. 2020, 61, 175–187. [Google Scholar] [CrossRef]
- Hermann, A.; Goyal, R.; Jeltsch, A. The Dnmt1 DNA-(cytosine-C5)-methyltransferase Methylates DNA Processively with High Preference for Hemimethylated Target Sites. J. Biol. Chem. 2004, 279, 48350–48359. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Li, J.; Xie, C.; Dong, H. Circular RNA hsa_circ_0011946 promotes the malignant process of salivary adenoid cystic carcinoma by downregulating miR-1205 expression. Exp. Ther. Med. 2022, 23, 295. [Google Scholar] [CrossRef]
- Mitselou, A.; Galani, V.; Skoufi, U.; Arvanitis, D.L.; Lampri, E.; Ioachim, E. Syndecan-1, Epithelial-Mesenchymal Transition Markers (E-cadherin/β-catenin) and Neoangiogenesis-related Proteins (PCAM-1 and Endoglin) in Colorectal Cancer. Anticancer Res. 2016, 36, 2271–2280. [Google Scholar]
- Mitselou, A.; Batistatou, A.; Nakanishi, Y.; Hirohashi, S.; Vougiouklakis, T.; Char-alabopoulos, K. Comparison of the dysadherin and E-cadherin expression in primary lung cancer and metastatic sites. Histol. Histopathol. 2010, 25, 1257–1267. [Google Scholar]
- Furuse, C.; Cury, P.R.; Altemani, A.; dos Santos Pinto, D., Jr.; de Araújo, N.S.; de Araújo, V.C. Beta-catenin and E-cadherin expression in salivary gland tumors. Int. J. Surg. Pathol. 2006, 14, 212–217. [Google Scholar] [CrossRef]
- Nollet, F.; Berx, G.; van Roy, F. The role of the E-cadherin/catenin adhesion com-plex in the development and progression of cancer. Mol. Cell Biol. Res. Commun. 1999, 2, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Hollestelle, A.; Peeters, J.K.; Smid, M.; Timmermans, M.; Verhoog, L.C.; Westenend, P.; Heine, A.A.J.; Chan, A.; Sieuwerts, A.M.; Wiemer, E.; et al. Loss of E-cadherin is not a necessity for epithelial to mesenchymal transition in human breast cancer. Breast Cancer Res. Treat. 2013, 138, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, G.; Akhtar, N.; Kannius-Janson, M.; Baeckström, D. Loss of E-cadherin ex-pression is not a prerequisite for c-erbB2-induced epithelial-mesenchymal transition. Int. J. Oncol. 2014, 45, 82–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, A.; Beetham, H.; Black, M.A.; Priya, R.; Telford, B.J.; Guest, J.; Wiggins, G.A.; Godwin, T.D.; Guilford, P.J. E-cadherin loss alters cytoskeletal organization and adhesion in non-malignant breast cells but is insufficient to induce an epitheli-al-mesenchymal transition. BMC Cancer 2014, 14, 552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putzke, A.P.; Ventura, A.P.; Bailey, A.M.; Akture, C.; Opoku-Ansah, J.; Çeliktaş, M.; Hwang, M.S.; Darling, D.S.; Coleman, I.M.; Nelson, P.S.; et al. Metastatic Progression of Prostate Cancer and E-Cadherin: Regulation by Zeb1 and Src Family Kinases. Am. J. Pathol. 2011, 179, 400–410. [Google Scholar] [CrossRef]
- Reddy, P.; Liu, L.; Ren, C.; Lindgren, P.; Boman, K.; Shen, Y.; Lundin, E.; Ottander, U.; Rytinki, M.; Liu, K. Formation of E-cadherin-mediated cell-cell adhesion activates AKT and mitogen activated protein kinase via phosphatidylinositol 3 kinase and ligand-independent activation of epidermal growth factor receptor in ovarian cancer cells. Mol. Endocrinol. 2005, 19, 2564–2578. [Google Scholar] [CrossRef] [Green Version]
- Lewis-Tuffin, L.J.; Rodriguez, F.; Giannini, C.; Scheithauer, B.; Necela, B.M.; Sarkaria, J.N.; Anastasiadis, P.Z. Misregulated E-Cadherin Expression Associated with an Aggressive Brain Tumor Phenotype. PLoS ONE 2010, 5, e13665. [Google Scholar] [CrossRef]
- Hu, Q.-P.; Kuang, J.-Y.; Yang, Q.-K.; Bian, X.-W.; Yu, S.-C. Beyond a tumor suppressor: Soluble E-cadherin promotes the progression of cancer. Int. J. Cancer 2015, 138, 2804–2812. [Google Scholar] [CrossRef] [Green Version]
- Grabowska, M.M.; Day, M.L. Soluble E-cadherin: More than a symptom of disease. Front. Biosci. 2012, 17, 1948. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.K.S.; Yue, P.Y.K.; Ip, P.P.; Huang, R.-L.; Lai, H.-C.; Cheung, A.N.Y.; Tse, K.Y.; Ngan, H.Y.S.; Wong, A.S.T. Soluble E-cadherin promotes tumor angiogenesis and localizes to exosome surface. Nat. Commun. 2018, 9, 2270. [Google Scholar] [CrossRef]
- Mitsias, D.I.; Kapsogeorgou, E.K.; Moutsopoulos, H.M. Sjögren’s syndrome: Why autoimmune epithelitis? Oral Dis. 2006, 12, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Parisis, D.; Chivasso, C.; Perret, J.; Soyfoo, M.S.; Delporte, C. Current State of Knowledge on Primary Sjögren’s Syndrome, an Autoimmune Exocrinopathy. J. Clin. Med. 2020, 9, 2299. [Google Scholar] [CrossRef] [PubMed]
- Stemmler, M.P. Cadherins in development and cancer. Mol. Biosyst. 2008, 4, 835–850. [Google Scholar] [CrossRef] [PubMed]
- Sisto, M.; Ribatti, D.; Lisi, S. ADAM 17 and Epithelial-to-Mesenchymal Transition: The Evolving Story and Its Link to Fibrosis and Cancer. J. Clin. Med. 2021, 10, 3373. [Google Scholar] [CrossRef] [PubMed]
- Sisto, M.; Ribatti, D.; Lisi, S. Organ Fibrosis and Autoimmunity: The Role of In-flammation in TGFβ-Dependent EMT. Biomolecules 2021, 11, 310. [Google Scholar] [CrossRef] [PubMed]
- Sisto, M.; Ribatti, D.; Lisi, S. SMADS-Mediate Molecular Mechanisms in Sjögren’s Syndrome. Int. J. Mol. Sci. 2021, 22, 3203. [Google Scholar] [CrossRef]
- Barrera, M.J.; Bahamondes, V.; Sepúlveda, D.; Quest, A.F.; Castro, I.; Cortés, J.; Aguilera, S.; Urzúa, U.; Molina, C.; Pérez, P.; et al. Sjögren’s syndrome and the epithelial target: A comprehensive review. J. Autoimmun. 2013, 42, 7–18. [Google Scholar] [CrossRef]
- Mavragani, C.P.; Moutsopoulos, H.M. The geoepidemiology of Sjögren’s syndrome. Autoimmun. Rev. 2010, 9, A305–A310. [Google Scholar] [CrossRef]
- Mellas, R.E.; Leigh, N.J.; Nelson, J.W.; McCall, A.D.; Baker, O.J. Zonula occludens-1, occludin and E-cadherin expression and organization in salivary glands with Sjögren’s syndrome. J. Histochem. Cytochem. 2015, 63, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, M.V.; Salomonsson, S.; Øijordsbakken, G.; Skarstein, K. Elevated Serum Levels of Soluble E-Cadherin in Patients with Primary Sjogren′s Syndrome. Scand. J. Immunol. 2005, 62, 552–559. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sisto, M.; Ribatti, D.; Lisi, S. E-Cadherin Signaling in Salivary Gland Development and Autoimmunity. J. Clin. Med. 2022, 11, 2241. https://doi.org/10.3390/jcm11082241
Sisto M, Ribatti D, Lisi S. E-Cadherin Signaling in Salivary Gland Development and Autoimmunity. Journal of Clinical Medicine. 2022; 11(8):2241. https://doi.org/10.3390/jcm11082241
Chicago/Turabian StyleSisto, Margherita, Domenico Ribatti, and Sabrina Lisi. 2022. "E-Cadherin Signaling in Salivary Gland Development and Autoimmunity" Journal of Clinical Medicine 11, no. 8: 2241. https://doi.org/10.3390/jcm11082241
APA StyleSisto, M., Ribatti, D., & Lisi, S. (2022). E-Cadherin Signaling in Salivary Gland Development and Autoimmunity. Journal of Clinical Medicine, 11(8), 2241. https://doi.org/10.3390/jcm11082241