Clinical Safety of Expanded Hemodialysis Compared with Hemodialysis Using High-Flux Dialyzer during a Three-Year Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Study Design
2.2. Allocation of the Dialysis Membranes
2.3. Samplings and Analyses
2.4. Clinical Outcomes
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Study Subjects
3.2. Clinical Events during the Three-Year Treatment Period
3.3. Serial Changes of Laboratory Findings during the Three-Year Treatment Period
3.4. Serial Changes of Medication Prescriptions during the Three-Year Treatment Period
3.5. Serial Changes of Inflammatory Cytokines during the Three-Year Treatment Period
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wolley, M.J.; Hutchison, C.A. Large uremic toxins: An unsolved problem in end-stage kidney disease. Nephrol. Dial. Transplant. 2018, 33, iii6–iii11. [Google Scholar] [CrossRef] [PubMed]
- Zickler, D.; Schindler, R.; Willy, K.; Martus, P.; Pawlak, M.; Storr, M.; Hulko, M.; Boehler, T.; Glomb, M.A.; Liehr, K.; et al. Medium Cut-Off (MCO) Membranes Reduce Inflammation in Chronic Dialysis Patients-A Randomized Controlled Clinical Trial. PLoS ONE 2017, 12, e0169024. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Kim, S.H.; Kim, T.Y.; Park, H.Y.; Jung, K.S.; Lee, M.H.; Jhee, J.H.; Lee, J.E.; Choi, H.Y.; Park, H.C. Removal of large middle molecules via haemodialysis with medium cut-off membranes at lower blood flow rates: An observational prospective study. BMC Nephrol. 2019, 21, 2. [Google Scholar] [CrossRef] [PubMed]
- Weiner, D.E.; Falzon, L.; Skoufos, L.; Bernardo, A.; Beck, W.; Xiao, M.; Tran, H. Efficacy and Safety of Expanded Hemodialysis with the Theranova 400 Dialyzer: A Randomized Controlled Trial. Clin. J. Am. Soc. Nephrol. 2020, 15, 1310–1319. [Google Scholar] [CrossRef] [PubMed]
- Sevinc, M.; Hasbal, N.B.; Yilmaz, V.; Basturk, T.; Ahbap, E.; Sakaci, T.; Ozcafer, P.N.; Unsal, A. Comparison of Circulating Levels of Uremic Toxins in Hemodialysis Patients Treated with Medium Cut-Off Membranes and High-Flux Membranes: Theranova in Sisli Hamidiye Etfal (THE SHE) Randomized Control Study. Blood Purif. 2020, 49, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.H.; Park, Y.; Yook, J.M.; Choi, S.Y.; Jung, H.Y.; Choi, J.Y.; Park, S.H.; Kim, C.D.; Kim, Y.L.; Cho, J.H. Randomized controlled trial of medium cut-off versus high-flux dialyzers on quality of life outcomes in maintenance hemodialysis patients. Sci. Rep. 2020, 10, 7780. [Google Scholar] [CrossRef]
- Belmouaz, M.; Bauwens, M.; Hauet, T.; Bossard, V.; Jamet, P.; Joly, F.; Chikhi, E.; Joffrion, S.; Gand, E.; Bridoux, F. Comparison of the removal of uraemic toxins with medium cut-off and high-flux dialysers: A randomized clinical trial. Nephrol. Dial. Transplant. 2020, 35, 328–335. [Google Scholar] [CrossRef]
- Krishnasamy, R.; Hawley, C.M.; Jardine, M.J.; Roberts, M.A.; Cho, Y.; Wong, M.; Heath, A.; Nelson, C.L.; Sen, S.; Mount, P.F.; et al. A tRial Evaluating Mid Cut-Off Value Membrane Clearance of Albumin and Light Chains in HemoDialysis Patients: A Safety Device Study. Blood Purif. 2020, 49, 468–478. [Google Scholar] [CrossRef]
- Cho, N.J.; Park, S.; Islam, M.I.; Song, H.Y.; Lee, E.Y.; Gil, H.W. Long-term effect of medium cut-off dialyzer on middle uremic toxins and cell-free hemoglobin. PLoS ONE 2019, 14, e0220448. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.J.; Sidor, N.A.; Tonial, N.C.; Che, A.; Urquhart, B.L. Uremic Toxins in the Progression of Chronic Kidney Disease and Cardiovascular Disease: Mechanisms and Therapeutic Targets. Toxins 2021, 13, 142. [Google Scholar] [CrossRef]
- Liu, Y.; Berthier-Schaad, Y.; Fallin, M.D.; Fink, N.E.; Tracy, R.P.; Klag, M.J.; Smith, M.W.; Coresh, J. IL-6 haplotypes, inflammation, and risk for cardiovascular disease in a multiethnic dialysis cohort. J. Am. Soc. Nephrol. 2006, 17, 863–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bologa, R.M.; Levine, D.M.; Parker, T.S.; Cheigh, J.S.; Serur, D.; Stenzel, K.H.; Rubin, A.L. Interleukin-6 predicts hypoalbuminemia, hypocholesterolemia, and mortality in hemodialysis patients. Am. J. Kidney Dis. 1998, 32, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Barreto, D.V.; Barreto, F.C.; Liabeuf, S.; Temmar, M.; Lemke, H.D.; Tribouilloy, C.; Choukroun, G.; Vanholder, R.; Massy, Z.A. Plasma interleukin-6 is independently associated with mortality in both hemodialysis and pre-dialysis patients with chronic kidney disease. Kidney Int. 2010, 77, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Kopple, J.D.; Humphreys, M.H.; Block, G. Comparing outcome predictability of markers of malnutrition-inflammation complex syndrome in haemodialysis patients. Nephrol. Dial. Transplant. 2004, 19, 1507–1519. [Google Scholar] [CrossRef] [Green Version]
- Kandi, M.; Brignardello-Petersen, R.; Couban, R.; Wu, C.; Nesrallah, G. Effects of Medium Cut-Off Versus High-Flux Hemodialysis Membranes on Biomarkers: A Systematic Review and Meta-Analysis. Can. J. Kidney Health Dis. 2022, 9, 20543581211067090. [Google Scholar] [CrossRef]
- Pizzarelli, F.; Cantaluppi, V.; Panichi, V.; Toccafondi, A.; Ferro, G.; Farruggio, S.; Grossini, E.; Dattolo, P.C.; Miniello, V.; Migliori, M.; et al. Citrate high volume on-line hemodiafiltration modulates serum Interleukin-6 and Klotho levels: The multicenter randomized controlled study “Hephaestus”. J. Nephrol. 2021, 34, 1701–1710. [Google Scholar] [CrossRef]
- Crisponi, L.; Buers, I.; Rutsch, F. CRLF1 and CLCF1 in Development, Health and Disease. Int. J. Mol. Sci. 2022, 23, 992. [Google Scholar] [CrossRef]
- Schumertl, T.; Lokau, J.; Rose-John, S.; Garbers, C. Function and proteolytic generation of the soluble interleukin-6 receptor in health and disease. Biochim. Biophys. Acta Mol. Cell Res. 2022, 1869, 119143. [Google Scholar] [CrossRef]
- Scheller, J.; Rose-John, S. Interleukin-6 and its receptor: From bench to bedside. Med. Microbiol. Immunol. 2006, 195, 173–183. [Google Scholar] [CrossRef]
- Ronco, C.; Marchionna, N.; Brendolan, A.; Neri, M.; Lorenzin, A.; Martínez Rueda, A.J. Expanded haemodialysis: From operational mechanism to clinical results. Nephrol. Dial. Transplant. 2018, 33, iii41–iii47. [Google Scholar] [CrossRef] [Green Version]
- Kokubo, K.; Kurihara, Y.; Kobayashi, K.; Tsukao, H.; Kobayashi, H. Evaluation of the Biocompatibility of Dialysis Membranes. Blood Purif. 2015, 40, 293–297. [Google Scholar] [CrossRef]
- Serrano Salazar, M.L.; Portolés, J.; de Valdenebro Recio, M.; Rosado Garcia, S.; Llópez Carratalá, M.D.R.; Bernabeu-Andreu, F.A.; Sánchez-López, A.J.; López-Sánchez, P. Effect of Expanded Hemodialysis with Theranova® in Patients with COVID-19. Blood Purif. 2022, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kandi, M.; Brignardello-Petersen, R.; Couban, R.; Wu, C.; Nesrallah, G. Clinical Outcomes With Medium Cut-Off Versus High-Flux Hemodialysis Membranes: A Systematic Review and Meta-Analysis. Can. J. Kidney Health Dis. 2022, 9, 20543581211067087. [Google Scholar] [CrossRef]
- Allawati, H.; Dallas, L.; Nair, S.; Palmer, J.; Thaikandy, S.; Hutchison, C. A Pharmacokinetic Study Comparing the Clearance of Vancomycin during Haemodialysis Using Medium Cut-Off Membrane (Theranova) and High-Flux Membranes (Revaclear). Toxins 2020, 12, 317. [Google Scholar] [CrossRef] [PubMed]
- Voigt, M.; Gebert, M.; Haug, U.; Hulko, M.; Storr, M.; Boschetti-de-Fierro, A.; Beck, W.; Krause, B. Retention of beneficial molecules and coagulation factors during haemodialysis and haemodiafiltration. Sci. Rep. 2019, 9, 6370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santoro, A. Confounding factors in the assessment of delivered hemodialysis dose. Kidney Int. Suppl. 2000, 76, S19–S27. [Google Scholar] [CrossRef] [Green Version]
- Hoenich, N.A.; Stamp, S. Clinical performance of a new high-flux synthetic membrane. Am. J. Kidney Dis. 2000, 36, 345–352. [Google Scholar] [CrossRef]
Prospective Cohort (n = 42) | Retrospective Cohort (n = 114) | |||||
---|---|---|---|---|---|---|
HF Group (n = 15) | MCO Group (n = 27) | p-Value | HF Group (n = 38) | MCO Group (n = 76) | p-Value | |
Age, years | 56.7 ± 11.7 | 51.7 ± 10.3 | 0.160 | 54.7 ± 11.7 | 54.8 ± 13.1 | 0.967 |
Gender, n (%) | 0.405 | 0.070 | ||||
Male | 10 (66.7) | 13 (48.1) | 27 (71.1) | 39 (51.3) | ||
Female | 5 (33.3) | 14 (51.9) | 11 (28.9) | 37 (48.7) | ||
Height, cm | 165.5 ± 6.7 | 162.2 ± 9.0 | 0.228 | 165.0 ± 7.7 | 162.1 ± 9.7 | 0.120 |
Dry weight, kg | 58.2 ± 11.8 | 58.1 ± 12.5 | 0.984 | 59.9 ± 12.5 | 60.1 ± 14.1 | 0.953 |
ESRD cause, n (%) | 0.083 | 0.087 | ||||
Diabetic nephropathy | 5 (33.3) | 6 (22.2) | 11 (28.9) | 25 (32.9) | ||
Hypertensive | 5 (33.3) | 7 (25.9) | 11 (28.9) | 14 (18.4) | ||
Glomerulonephritis | 3 (20.0) | 14 (51.9) | 10 (26.3) | 33 (43.4) | ||
Others | 2 (13.3) | 0 (0.0) | 6 (15.8) | 4 (5.3) | ||
Dialysis vintage, months | 131 (35, 214) | 56 (45, 119) | 0.376 | 99 (29, 203) | 68 (46, 126) | 0.643 |
Hypertension, present | 15 (100.0) | 25 (92.6) | 0.530 | 36 (94.7) | 71 (93.4) | 1.000 |
Diabetes, present | 5 (33.3) | 10 (37.0) | 1.000 | 11 (28.9) | 30 (39.5) | 0.370 |
Heart disease, present | 3 (20.0) | 2 (7.4) | 0.329 | 5 (13.2) | 10 (13.2) | 1.000 |
Vascular access, n (%) | 1.000 | 0.917 | ||||
Native AV fistula | 13 (86.7) | 24 (88.9) | 33 (86.8) | 68 (89.5) | ||
PTFE graft | 2 (13.3) | 3 (11.1) | 5 (13.2) | 8 (10.5) | ||
Hemoglobin, g/dL | 10.5 ± 1.5 | 10.1 ± 1.6 | 0.473 | 10.3 ± 1.5 | 10.4 ± 1.4 | 0.761 |
Albumin, g/dL | 4.11 ± 0.24 | 3.99 ± 0.34 | 0.237 | 4.05 ± 0.32 | 3.94 ± 0.35 | 0.093 |
Urea nitrogen, mg/dL | 65.6 ± 16.3 | 62.7 ± 20.3 | 0.633 | 64.0 ± 19.4 | 58.1 ± 16.8 | 0.101 |
Creatinine, mg/dL | 9.72 ± 3.50 | 9.64 ± 2.90 | 0.940 | 9.63 ± 3.04 | 9.59 ± 2.72 | 0.947 |
Triglycerides, mg/dL | 92 (69, 122) | 90 (57, 137) | 0.793 | 96 (64, 149) | 95 (59, 133) | 0.477 |
Total cholesterol, mg/dL | 134.1 ± 32.4 | 146.0 ± 29.9 | 0.238 | 135.8 ± 31.0 | 141.0 ± 30.7 | 0.397 |
Phosphorus, mg/dL | 4.95 ± 1.70 | 4.81 ± 1.65 | 0.787 | 4.69 ± 1.48 | 4.53 ± 1.67 | 0.614 |
Calcium, mg/dL | 9.07 ± 0.56 | 9.44 ± 0.67 | 0.082 | 9.28 ± 0.69 | 9.33 ± 0.74 | 0.757 |
Ferritin, ng/mL | 268 (129, 363) | 290 (227, 437) | 0.323 | 269 (153, 385) | 252 (139, 419) | 0.995 |
Intact PTH, pg/mL | 164 (99, 309) | 205 (96, 298) | 0.795 | 152 (78, 281) | 185 (106, 286) | 0.260 |
Kt/V per session | 1.90 ± 0.37 | 1.89 ± 0.37 | 0.917 | 1.82 ± 0.33 | 1.87 ± 0.38 | 0.475 |
URR, % | 0.78 ± 0.06 | 0.77 ± 0.07 | 0.801 | 0.77 ± 0.06 | 0.77 ± 0.07 | 0.827 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, N.-J.; Jeong, S.-H.; Lee, K.Y.; Yu, J.Y.; Park, S.; Lee, E.Y.; Gil, H.-W. Clinical Safety of Expanded Hemodialysis Compared with Hemodialysis Using High-Flux Dialyzer during a Three-Year Cohort. J. Clin. Med. 2022, 11, 2261. https://doi.org/10.3390/jcm11082261
Cho N-J, Jeong S-H, Lee KY, Yu JY, Park S, Lee EY, Gil H-W. Clinical Safety of Expanded Hemodialysis Compared with Hemodialysis Using High-Flux Dialyzer during a Three-Year Cohort. Journal of Clinical Medicine. 2022; 11(8):2261. https://doi.org/10.3390/jcm11082261
Chicago/Turabian StyleCho, Nam-Jun, Seung-Hyun Jeong, Ka Young Lee, Jin Young Yu, Samel Park, Eun Young Lee, and Hyo-Wook Gil. 2022. "Clinical Safety of Expanded Hemodialysis Compared with Hemodialysis Using High-Flux Dialyzer during a Three-Year Cohort" Journal of Clinical Medicine 11, no. 8: 2261. https://doi.org/10.3390/jcm11082261
APA StyleCho, N. -J., Jeong, S. -H., Lee, K. Y., Yu, J. Y., Park, S., Lee, E. Y., & Gil, H. -W. (2022). Clinical Safety of Expanded Hemodialysis Compared with Hemodialysis Using High-Flux Dialyzer during a Three-Year Cohort. Journal of Clinical Medicine, 11(8), 2261. https://doi.org/10.3390/jcm11082261