Vertebral Fractures in Acromegaly: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Vertebral Fractures Prevalence and Incidence
3.2. Disease Activity
3.3. Hypogonadism
3.4. Bone Mineral Density
3.5. Trabecular Bone Score
3.6. Bone Turnover Markers
4. Study Limitations
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Locatelli, V.; Bianchi, V.E. Effect of GH/IGF-1 on Bone Metabolism and Osteoporsosis. Int. J. Endocrinol. 2014, 2014, 235060. [Google Scholar] [CrossRef] [Green Version]
- Bouillon, R.; Prodonova, A. Growth hormone deficiency and peak bone mass. J. Pediatr. Endocrinol. Metab. 2000, 13, 1327–1336. [Google Scholar] [CrossRef]
- Ohlsson, M.C.S.C.; Bengtsson, B.; Isaksson, O.G.P.; Andreassen, T.T. Growth hormone and bone. Endocr. Rev. 1998, 19, 55–79. [Google Scholar]
- Melmed, S. Acromegaly. In The Pituitary, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 1, pp. 423–466. [Google Scholar]
- Burton, T.; le Nestour, E.; Neary, M.; Ludlam, W.H. Incidence and prevalence of acromegaly in a large US health plan database. Pituitary 2016, 19, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Mazziotti, G.; Maffezzoni, F.; Frara, S.; Giustina, A. Acromegalic osteopathy. Pituitary 2017, 20, 63–69. [Google Scholar] [CrossRef]
- Mazziotti, G.; Biagioli, E.; Maffezzoni, F.; Spinello, M.; Serra, V.; Maroldi, R.; Floriani, I.; Giustina, A. Bone turnover, bone mineral density, and fracture risk in acromegaly: A meta-analysis. J. Clin. Endocrinol. Metab. 2015, 100, 384–394. [Google Scholar] [CrossRef] [Green Version]
- Claessen, K.M.J.A.; Mazziotti, G.; Biermasz, N.R.; Giustina, A. Bone and Joint Disorders in Acromegaly. Neuroendocrinology 2016, 103, 86–95. [Google Scholar] [CrossRef]
- Giustina, A.; Mazziotti, G.; Canalis, E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr. Rev. 2008, 29, 535–559. [Google Scholar] [CrossRef] [Green Version]
- Hong, A.R.; Kim, J.H.; Kim, S.W.; Kim, S.Y.; Shin, C.S. Trabecular bone score as a skeletal fragility index in acromegaly patients. Osteoporos. Int. 2016, 27, 1123–1129. [Google Scholar] [CrossRef]
- Sorohan, M.C.; Dusceac, R.; Sorohan, B.M.; Caragheorgheopol, A.; Poiana, C. Trabecular bone score and bone mineral density in acromegalic osteopathy assessment: A cross-sectional study. Arch. Osteoporos. 2021, 16, 134. [Google Scholar] [CrossRef]
- Becker, C. Pathophysiology and Clinical Manifestations of Osteoporosis. Clin. Cornerstone 2008, 9, 42–50. [Google Scholar] [CrossRef]
- Melton, L.J. Adverse Outcomes of Osteoporotic Fractures in the General Population. J. Bone Miner. Res. 2003, 18, 1139–1141. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, R.; Cooper, C.; Hanley, D.A.; Barton, I.; Broy, S.B.; Flowers, K. Risk of New Vertebral Fracture. J. Am. Med. Assoc. 2001, 285, 7–10. [Google Scholar] [CrossRef]
- Genant, H.K.; Jergas, M.; Palermo, L.; Nevitt, M.; Valentin, R.S.; Black, D.; Cummings, S.R. Comparison of semiquantitative visual and quantitative morphometric assessment of prevalent and incident vertebral fractures in osteoporosis. J. Bone Miner. Res. 1996, 11, 984–996. [Google Scholar] [CrossRef]
- Katznelson, L.; Laws, E.R.; Melmed, S.; Molitch, M.E.; Murad, M.H.; Utz, A.; Wass, J. Acromegaly: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2014, 99, 3933–3951. [Google Scholar] [CrossRef]
- Fleseriu, M.; Biller, B.; Freda, P.; Gadelha, M.; Giustina, A.; Katznelson, L.; Molitch, M.; Samson, S.; Strasburger, C.; AJ van der Lely Melmed, S. A Pituitary Society update to acromegaly management guidelines. Pituitary 2021, 24, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bonadonna, S.; Mazziotti, G.; Nuzzo, M.; Bianchi, A.; Fusco, A.; De Marinis, L.; Giustina, A. Increased prevalence of radiological spinal deformities in active acromegaly: A cross-sectional study in postmenopausal women. J. Bone Miner. Res. 2005, 20, 1837–1844. [Google Scholar] [CrossRef]
- Battista, C.; Chiodini, I.; Muscarella, S.; Guglielmi, G.; Mascia, M.L.; Carnevale, V.; Scillitani, A. Spinal volumetric trabecular bone mass in acromegalic patients: A longitudinal study. Clin. Endocrinol. 2009, 70, 378–382. [Google Scholar] [CrossRef]
- Pelsma ICMBiermasz, N.R.; Pereira, A.M.; Van Furth, W.R.; Appelman-Dijkstra, N.M.; Kloppenburg, M.; Kroon, H.M.; Claessen, K.J.M.A. Progression of vertebral fractures in long-term controlled acromegaly: A 9-year follow-up study. Eur. J. Endocrinol. 2020, 183, 427–437. [Google Scholar] [CrossRef]
- Maffezzoni, F.; Maddalo, M.; Frara, S.; Monica Mezzone, M.; Zorza, I.; Baruffaldi, F.; Doglietto, F.; Mazziotti, G.; Maroldi, R.; Giustina, A. High-resolution-cone beam tomography analysis of bone microarchitecture in patients with acromegaly and radiological vertebral fractures. Endocrine 2016, 54, 532–542. [Google Scholar] [CrossRef]
- Mormando, M.; Nasto, L.A.; Bianchi, A.; Mazziotti, G.; Giampietro, A.; Pola, E.; Pontecorvi, A.; Giustina, A.; De Marinis, L. GH receptor isoforms and skeletal fragility in acromegaly. Eur. J. Endocrinol. 2014, 171, 237–245. [Google Scholar] [CrossRef]
- Mazziotti, G.; Bianchi, T.A.; Porcelli, M.; Mormando, F.; Maffezzoni, A.; Cristiano, A.; Giampietro, L.; De Marinis, A. Giustina Vertebral fractures in patients with acromegaly: A 3-year prospective study. J. Clin. Endocrinol. Metab. 2013, 98, 3402–3410. [Google Scholar] [CrossRef] [Green Version]
- Padova, G.; Borzì, G.; Incorvaia, L.; Siciliano, G.; Migliorino, V.; Vetri, M.; Tita, P. Prevalence of osteoporosis and vertebral fractures in acromegalic patients. Clin. Cases Miner. Bone Metab. 2011, 8, 37–43. [Google Scholar]
- Mazziotti, G.; Gola, M.; Bianchi, A.; Porcelli, T.; Giampietro, A.; Cimino, V.; Doga, M.; Gazzaruso, C.; De Marinis, L.; Giustina, A. Influence of diabetes mellitus on vertebral fractures in men with acromegaly. Endocrine 2011, 40, 102–108. [Google Scholar] [CrossRef]
- Wassenaar, M.J.E.; Biermasz, N.R.; Hamdy, N.A.T.; Zillikens, M.C.; van Meurs, J.B.J.; Rivadeneira, F.; Hofman, A.; Uitterlinden, A.G.; Stokkel, M.P.M.; Roelfsema, F.; et al. High prevalence of vertebral fractures despite normal bone mineral density in patients with long-term controlled acromegaly. Eur. J. Endocrinol. 2011, 164, 475–483. [Google Scholar] [CrossRef] [Green Version]
- Carbonare, L.D.; Micheletti, V.; Cosaro, E.; Valenti, M.T.; Francia, G.; DavìBone, M.V. histomorphometry in acromegaly patients with fragility vertebral fractures. Pituitary 2018, 21, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Calatayud, M.; Pérez-Olivares Martín, L.; Librizzi, M.S.; Pablos, D.L.; González Méndez, V.; Aramendi Ramos, M.; Martínez Diaz-Guerra, G.; Hawkins, F. Trabecular bone score and bone mineral density in patients with long-term controlled acromegaly. Clin. Endocrinol. 2021, 95, 58–64. [Google Scholar] [CrossRef]
- Uygur, M.M.; Yazıcı, D.D.; Buğdaycı, O.; Yavuz, D.G. Prevalence of vertebral fractures and serum sclerostin levels in acromegaly. Endocrine 2021, 73, 667–673. [Google Scholar] [CrossRef]
- Cellini, M.; Biamonte, E.; Mazza, M.; Trenti, N.; Ragucci, P.; Milani, D.; Ferrante, E.; Rossini, Z.; Lavezzi, E.; Sala, E.; et al. Vertebral Fractures Associated with Spinal Sagittal Imbalance and Quality of Life in Acromegaly: A Radiographic Study with EOS 2D/3D Technology. Neuroendocrinology 2021, 111, 775–785. [Google Scholar] [CrossRef]
- Silva, B.; Pereira, R.; Takayama, L.; Borba, C.; Duarte, F.; Trarbach, E.; Matsunaga Martin, R.; Bronstein, M.; Tritos, N.; Jallad, R. Impaired Bone Microarchitecture in Premenopausal Women With Acromegaly: The Possible Role of Wnt Signaling. J. Clin. Endocrinol. Metab. 2021, 106, 2690–2706. [Google Scholar] [CrossRef]
- Kužma, M.; Vaňuga, P.; Ságová, I.; Pávai, D.; Jackuliak, P.; Killinger, Z.; Binkley, N.; Winzenrieth, R.; Payer, J. Vertebral Fractures Occur Despite Control of Acromegaly and Are Predicted by Cortical Volumetric Bone Mineral Density. J. Clin. Endocrinol. Metab. 2021, 106, 5088–5096. [Google Scholar] [CrossRef]
- Sala, E.; Malchiodi, E.; Verrua, E.; Ferrante, E.; Filopanti, M.; Ulivieri, F.; Spada, A.; Arosio, M.; Chiodini, I.; Mantovani, G. Spine Bone Texture Assessed by Trabecular Bone Score in Active and Controlled Acromegaly: A Prospective Study. J. Endocr. Soc. 2021, 5, 1–10. [Google Scholar] [CrossRef]
- Plard, C.; Hochman, C.; Hadjadj, S.; Le Goff, B.; Maugars, Y.; Cariou, B.; Drui, D.; Guillot, P. Acromegaly is associated with vertebral deformations but not vertebral fractures: Results of a cross-sectional monocentric study. Jt. Bone Spine 2020, 87, 618–624. [Google Scholar] [CrossRef]
- de Azevedo Oliveira, B.; Araujo, B.; dos Santos, T.M.; Ongaratti, B.R.; Garcia Soares Leães Rech, C.; Pires Ferreira, N.; Semmelmann Pereira-Lima, J.F.; da Costa Oliveira, M. The acromegalic spine: Fractures, deformities and spinopelvic balance. Pituitary 2019, 22, 601–606. [Google Scholar] [CrossRef]
- Kužma, M.; Vaňuga, P.; Ságová, I.; Pávai, D.; Jackuliak, P.; Killinger, Z.; Binkley, N.; Winzenrieth, R.; Genant, H.; Payer, J. Non-invasive DXA-derived bone structure assessment of acromegaly patients: A cross-sectional study. Eur. J. Endocrinol. 2019, 180, 201–211. [Google Scholar] [CrossRef] [Green Version]
- Mazziotti, G.; Battista, C.; Maffezzoni, F.; Chiloiro, S.; Ferrante, E.; Prencipe, N.; Grasso, L.; Gatto, F.; Olivetti, R.; Arosio, M.; et al. Treatment of acromegalic osteopathy in real-life clinical practice: The BAAC (Bone Active drugs in ACromegaly) Study. J. Clin. Endocrinol. Metab. 2020, 105, 3285–3292. [Google Scholar] [CrossRef]
- Chiloiro, S.; Giampietro, A.; Stefano, F.; Bima, C.; Federico, D.; Fleseriu, C.M.; Pontecorvi, A.; Giustina, A.; Fleseriu, M. Effects of Pegvisomant and Pasireotide LAR on vertebral fractures in acromegaly resistant to First-Generation SRLs. J. Clin. Endocrinol. Metab. 2020, 105, 100–107. [Google Scholar] [CrossRef]
- Chiloiro, S.; Mazziotti, G.; Giampietro, A.; Bianchi, A.; Frara, S.; Mormando, M.; Pontecorvi, A.; Giustina, A.; De Marinis, L. Effects of pegvisomant and somatostatin receptor ligands on incidence of vertebral fractures in patients with acromegaly. Pituitary 2018, 21, 302–308. [Google Scholar] [CrossRef]
- Pontes, J.; Madeira, M.; Lima, C.H.A.; Ogino, L.L.; de Paula Paranhos Neto, F.; de Mendonça, L.M.C.; Farias, M.L.F.; Kasuki, L.; Gadelha, M.R. Exon 3-deleted growth hormone receptor isoform is not related to worse bone mineral density or microarchitecture or to increased fracture risk in acromegaly. J. Endocrinol. Investig. 2020, 43, 163–171. [Google Scholar] [CrossRef]
- Madeira, M.; Vieira Neto, L.; de Paula Paranhos Neto, F.; Barbosa Lima, I.C.; Carvalho de Mendonça, L.M.; Roberto Gadelha, M.; Fleiuss de Farias, M.L. Acromegaly has a negative influence on trabecular bone, but not on cortical bone, as assessed by high-resolution peripheral quantitative computed tomography. J. Clin. Endocrinol. Metab. 2013, 98, 1734–1741. [Google Scholar] [CrossRef] [Green Version]
- Melmed, S. Acromegaly. N. Engl. J. Med. 2006, 355, 2558–2573. [Google Scholar] [CrossRef] [PubMed]
- Mamelak, A.N.; Carmichael, J.; Bonert, V.H.; Cooper, O.; Melmed, S. Single-surgeon fully endoscopic endonasal transsphenoidal surgery: Outcomes in three-hundred consecutive cases. Pituitary 2013, 16, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Starke, R.M.; Raper, D.M.S.; Payne, S.C.; Vance, M.L.; Oldfield, E.H.; Jane, J.A. Endoscopic vs microsurgical transsphenoidal surgery for acromegaly: Outcomes in a concurrent series of patients using modern criteria for remission. J. Clin. Endocrinol. Metab. 2013, 98, 3190–3198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimon, L.; Cohen, Z.R.; Ram, Z.; Hadani, M. Transsphenoidal surgery for acromegaly: Endocrinological follow-up of 98 patients. Neurosurgery 2001, 48, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, M.; Xu, Y.; Wen, R.; Liu, X.; Gao, Y.; Shi, Y.; Pan, W.; Deng, H.; Wang, W. Comparing primary gamma knife radiosurgery and postoperative gamma knife radiosurgery for acromegaly: A monocenter retrospective study. Clin. Neurol. Neurosurg. 2021, 200, 106385. [Google Scholar] [CrossRef] [PubMed]
- Balossier, A.; Tuleasca, C.; Cortet-Rudelli, C.; Soto-Ares, G.; Levivier, M.; Assaker, R.; Reyns, N. Gamma Knife radiosurgery for acromegaly: Evaluating the role of the biological effective dose associated with endocrine remission in a series of 42 consecutive cases. Clin. Endocrinol. 2021, 94, 424–433. [Google Scholar] [CrossRef]
- Freda, P.U. Clinical review 150 Somatostatin Analogs in Acromegaly. J. Clin. Endocrinol. Metab. 2002, 87, 3013–3018. [Google Scholar] [CrossRef]
- Colao, A.; Bronstein, M.D.; Freda, P.; Gu, F.; Shen, C.-C.; Gadelha, M.; Fleseriu, M.; van der Lely, A.J.; Farrall, A.J.; Reséndiz, K.H.; et al. Pasireotide versus octreotide in acromegaly: A head-to-head superiority study. J. Clin. Endocrinol. Metab. 2014, 99, 791–799. [Google Scholar] [CrossRef] [Green Version]
- Luger, A.; Feldt-Rasmussen, U.; Abs, R.; Buchfelder, M.; Trainer, P.; Brue, T. Lessons learned from 15 years of KIMS and 5 years of ACROSTUDY. Horm. Res. Paediatr. 2011, 76, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Rainer, P.; Drake, W.; Katznelson, L.; Freda, P.; Herman -Bonert, V.; Van Der Lely, A.J.; Dimaraki, E.; Stewart, P.; Friend, K.; Lee Vance, M.; et al. Treatment of acromegaly with the growth hormone–receptor antagonist pegvisomant. N. Engl. J. Med. 2000, 342, 1171–1177. [Google Scholar] [CrossRef]
- van der Lely, A.J.; Hutson, R.K.; Trainer, P.J.; Besser, G.M.; Barkan, A.L.; Katznelson, L.; Klibanski, A.; Herman-Bonert, V.; Melmed, S.; Lee Vance, M.; et al. Long-term treatment of acromegaly with pegvisomant, a growth hormone receptor antagonist. Lancet 2001, 358, 1754–1759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coopmans, E.C.; Muhammad, A.; van der Lely, A.J.; Janssen, J.A.M.J.L.; Neggers, S.J.C.M.M. How to position pasireotide LAR treatment in acromegaly. J. Clin. Endocrinol. Metab. 2019, 104, 1978–1988. [Google Scholar] [CrossRef] [PubMed]
- Sundeep, K.; Oursler, M.J.; David, M. Estrogen and the Skeleton. Trends Endocrinol. Metab. 2012, 23, 576–581. [Google Scholar] [CrossRef]
- Nakamura, T.; Imai, Y.; Matsumoto, T.; Sato, S.; Takeuchi, K.; Igarashi, K.; Harada, Y.; Azuma, Y.; Krust, A.; Yamamoto, Y.; et al. Estrogen Prevents Bone Loss via Estrogen Receptor α and Induction of Fas Ligand in Osteoclasts. Cell 2007, 130, 811–823. [Google Scholar] [CrossRef] [PubMed]
- Oursler, M.J.; Osdoby, P.; Pyfferoen, J.; Riggs, B.L.; Spelsberg, T.C. Avian osteoclasts as estrogen target cells. Proc. Natl. Acad. Sci. USA 1991, 88, 6613–6617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, S.; Toraldo, G.; Weitzmann, M.N.; Cenci, S.; Ross, F.P.; Pacifici, R. Estrogen Decreases Osteoclast Formation by Down-regulating Receptor Activator of NF-κB Ligand (RANKL)-induced JNK Activation. J. Biol. Chem. 2001, 276, 8836–8840. [Google Scholar] [CrossRef] [Green Version]
- Shevde, N.K.; Bendixen, A.C.; Dienger, K.M.; Pike, J.W. Estrogens suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-Jun repression. Proc. Natl. Acad. Sci. USA 2000, 97, 7829–7834. [Google Scholar] [CrossRef] [Green Version]
- Martin-Millan, M.; Almeida, M.; Ambrogini, E.; Han, L.; Zhao, H.; Weinstein, R.S.; Jilka, R.L.; O’Brien, C.A.; Manolagas, S.C. The estrogen receptor-α in osteoclasts mediates the protective effects of estrogens on cancellous but not cortical bone. Mol. Endocrinol. 2010, 24, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Bonewald, L.F. The amazing osteocyte. J. Bone Miner. Res. 2011, 26, 229–238. [Google Scholar] [CrossRef]
- Tomkinson, A.; Reeve, J.; Shaw, R.W.; Noble, B.S. The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J. Clin. Endocrinol. Metab. 1997, 82, 3128–3135. [Google Scholar] [CrossRef] [PubMed]
- Tomkinson, A.; Gevers, E.F.; Wit, J.M.; Reeve, J.; Noble, B.S. The role of estrogen in the control of rat osteocyte apoptosis. J. Bone Miner. Res. 1998, 13, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
- Emerton, K.B.; Hu, B.; Woo, A.; Sinofsky, A.; Hernandez, C.; Majeska, R.; Jepsen, K.; Schaffler, M. Osteocyte apoptosis and control of bone resorption following ovariectomy in mice. Bone 2010, 46, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, T.; Hayashi, M.; Fukunaga, T.; Kurata, K.; Oh-hora, M.; QFeng, J.; Bonewald, L.F.; Kodama, T.; Wutz, A.; Wagner, E.F.; et al. Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 2011, 17, 1231–1234. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Onal, M.; Jilka, R.L.; Weinstein, R.S.; Manolagas, S.C.; O’Brien, C.A. Matrix-embedded cells control osteoclast formation. Nat. Med. 2011, 17, 1235–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kousteni, S.; Bellido, T.; Plotkin, L.I.; O’Brien, C.A.; Bodenner, D.L.; Han, L.; Han, K.; DiGregorio, G.B.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S.; et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: Dissociation from transcriptional activity. Cell 2001, 104, 719–730. [Google Scholar] [CrossRef]
- Falahati-Nini, A.; Riggs, B.L.; Atkinson, E.J.; O’Fallon, W.M.; Eastell, R.; Khosla, S. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J. Clin. Investig. 2000, 106, 1553–1560. [Google Scholar] [CrossRef] [Green Version]
- Kleerekoper, M. Detecting osteoporosis: Beyond the history and physical examination. Postgrad. Med. 1998, 103, 45–68. [Google Scholar] [CrossRef]
- World Health Organization. WHO Scientific Group on the Assessment of Osteoporosis At Primary Health; World Health Summary Meeting Report; World Health Organization: Brussels, Belgium, 2004; pp. 1–13. Available online: http://www.who.int/chp/topics/Osteoporosis.pdf (accessed on 15 March 2022).
- ISCD. Official Positions Adult ISCD 2019. Psychology Applied to Work: An Introduction to Industrial and Organizational Psychology, Tenth Edition Paul. 2019, pp. 1–34. Available online: https://iscd.app.box.com/s/5r713cfzvf4gr28q7zdccg2i7169fv86 (accessed on 15 March 2022).
- Pothuaud, L.; Carceller, P.; Hans, D. Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: Applications in the study of human trabecular bone microarchitecture. Bone 2008, 42, 775–787. [Google Scholar] [CrossRef]
- Silva, B.C.; Leslie, W.D. Trabecular Bone Score: A New DXA–Derived Measurement for Fracture Risk Assessment. Endocrinol. Metab. Clin. N. Am. 2017, 46, 153–180. [Google Scholar] [CrossRef] [PubMed]
- Leslie, W.D.; Aubry-Rozier, B.; Lamy, O.; Hans, D. TBS (trabecular bone score) and diabetes-related fracture risk. J. Clin. Endocrinol. Metab. 2013, 98, 602–609. [Google Scholar] [CrossRef] [Green Version]
- Bréban, S.; Briot, K.; Kolta, S.; Paternotte, S.; Ghazi, M.; Fechtenbaum, J.; Roux, C. Identification of Rheumatoid Arthritis Patients With Vertebral Fractures Using Bone Mineral Density and Trabecular Bone Score. J. Clin. Densitom. 2012, 15, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Naylor, K.L.; Lix, L.M.; Hans, D.; Garg, A.X.; Rush, D.N.; Hodsman, A.B.; Leslie, W.D. Trabecular bone score in kidney transplant recipients. Osteoporos. Int. 2016, 27, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Eller-Vainicher, C.; Filopanti, M.; Palmieri, S.; Ulivieri, F.M.; Morelli, V.; Zhukouskaya, V.V.; Cairoli, E.; Pino, R.; Naccarato, A.; Verga, U.; et al. Bone quality, as measured by trabecular bone score, in patients with primary hyperparathyroidism. Eur. J. Endocrinol. 2013, 169, 155–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belaya, Z.E.; Hans, D.; Rozhinskaya, L.Y.; Dragunova, N.V.; Sasonova, N.I.; Solodovnikov, A.G.; Tsoriev, T.T.; Dzeranova, L.K.; Melnichenko, G.A.; Dedov, I.I. The risk factors for fractures and trabecular bone-score value in patients with endogenous Cushing’s syndrome. Arch. Osteoporos. 2015, 10, 1–9. [Google Scholar] [CrossRef]
- Leib, E.S.; Winzenrieth, R. Bone status in glucocorticoid-treated men and women. Osteoporos. Int. 2016, 27, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Paggiosi, M.A.; Peel, N.F.A.; Eastell, R. The impact of glucocorticoid therapy on trabecular bone score in older women. Osteoporos. Int. 2015, 26, 1773–1780. [Google Scholar] [CrossRef] [PubMed]
- Baldini, M.; Ulivieri, F.M.; Forti, S.; Serafino, S.; Seghezzi, S.; Marcon, A.; Giarda, F.; Messina, C.; Cassinerio, E.; Aubry-Rozier, B.; et al. Spine Bone Texture Assessed by Trabecular Bone Score (TBS) to Evaluate Bone Health in Thalassemia Major. Calcif. Tissue Int. 2014, 95, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Hlaing, T.T.; Compston, J.E. Biochemical markers of bone turnover—Uses and limitations. Ann. Clin. Biochem. 2014, 51, 189–202. [Google Scholar] [CrossRef]
- Szulc, P. Bone turnover: Biology and assessment tools. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 725–738. [Google Scholar] [CrossRef]
- Civitelli, R.; Armamento-Villareal, R.; Napoli, N. Bone turnover markers: Understanding their value in clinical trials and clinical practice. Osteoporos. Int. 2009, 20, 843–851. [Google Scholar] [CrossRef]
- Mizokami, A.; Kawakubo-Yasukochi, T.; Hirata, M. Osteocalcin and its endocrine functions. Biochem. Pharmacol. 2017, 132, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.S.; Mazur, C.M.; Wein, M.N. Sclerostin and Osteocalcin: Candidate Bone-Produced Hormones. Front. Endocrinol. 2021, 12, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Camacho, P. Use of bone turnover markers in the management of osteoporosis. Curr. Opin. Endocrinol. Diabetes. Obes. 2018, 25, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Calle, J.; Sato, A.Y.; Bellido, T. Role and mechanism of action of sclerostin in bone. Bone 2017, 96, 29–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eastell, R. Modern spectrum of bone turnover markers—Are they clinically useful? Endocr. Abstr. 2017, 49, 1–32. [Google Scholar] [CrossRef]
Authors, Year, Country | Study Design | Sample (n) | Disease Activity | Follow-Up | Main Results | |||||
---|---|---|---|---|---|---|---|---|---|---|
VFs | +VFs and BMD | +VFs and TBS | +VFs and BTM | +VFs and Hypogonadism | Others | |||||
Kužma et al., 2021 [1] | Prospective | 70 ACM | Active: 37.14% | 24 months | Prevalence: 10% ** Incidence: 8.57% ** | Yes ◊ (change at follow-up at trabecular, cortical and surface FN and TH BMD) | Yes (chance at follow-up) | Yes (change in CTX at follow-up) | No | |
Silva et al., 2021 [2] | Cross-sectional | 30 ACM 53 controls | Active: 40% | N/A | Prevalence: 26.66% ** | Yes ↑ LS Z score ↑ 1/3 R Z score | N/A | No | N/A | HR-pQCT parameters did not differ according to VF presence |
Sala et al., 2021 [3] | Cross-sectional & prospective | 18 ACM 36 controls | Newly diagnosed/Active | Baseline & 12 months after cure/control | Prevalence: 11% * Incidence: 5.6% | N/A | N/A | N/A | N/A | |
Calatayud et al., 2021 [4] | Cross-sectional | 26 ACM 117 controls | Controlled | N/A | Prevalence:11.53% ** | N/A | Yes ↓TBS | N/A | N/A | |
Uygur et al., 2021 [5] | Cross-sectional | 70 ACM 70 controls | Active: 77.1% | N/A | Prevalence:72.9% ** | No | N/A | No | Yes | Active vs. controlled disease had no differences in VF prevalence |
Pelsma et al., 2020 [6] | Prospective | 31 ACM | Controlled | Baseline & 9.1 years | Prevalence: 87.1% ** Incidence: 35.5% ** | N/A | N/A | No | No (progression of VF) | Prevalence of VF associated with active disease duration Progression of VF not associated with active disease duration |
Cellini et al., 2020 [7] | Cross-sectional | 38 ACM 38 controls | Active: 29.8% | N/A | All: 34.21% ** Moderate/severe: 23.68% Multiple: 61.53% ** | N/A | N/A | N/A | N/A | VF associated with higher spinal imbalance, ↓ AcroQoL and SF36 general health scores and ↑ WOMAC pain and WOMAC global scores |
Mazziotti et al., 2020 [8] | Retrospective, Multicentric | 248 ACM at baseline; 52 received bone active drugs | Active:44.75% | Baseline & 48 months | Prevalence:31.45% ** Incidence: 26.21% ** | N/A | N/A | N/A | N/A | Incident VF associated with prevalent VF, active acromegaly, duration of active acromegaly and treated hypoadrenalism |
Plard et al., 2020 [9] | Cross-sectional, monocentric | 50 ACM | N/A | N/A | Prevalence: 6% * | Yes ↓ LS T score | N/A | N/A | N/A | |
Chiloiro, 2020 [10] | Retrospective, multicentric | 55 ACM | Active | 36 months | Prevalence: 41.8% ** Incidence: 29.1% ** | No (incident VFs) | N/A | N/A | No (incident VFs) | Pasireotide vs. Pegvisomant had ↓ incident VFs; Incident VFs associated with prevalent VFs, persistence of active acromegaly and higher IGF-1 at study end |
Oliveira et al., 2019 [11] | Prospectively recruited, monocentric | 58 ACM | Active: 30.4% | N/A | Prevalence: 13.8% * | N/A | N/A | N/A | No | |
Pontes et al., 2019 [12] | Prospectively recruited, monocentric | 89 ACM | Active: 63% | N/A | Prevalence: 14% | N/A | N/A | N/A | N/A | No difference in VF frequency between patients with fl-GHR and those with d3-GHR |
Kužma et al., 2019 [13] | Cross-sectional, monocentric | 106 ACM 104 controls | Active: 33% | N/A | Prevalence: 12% ** Multiple: 46.15% | Yes ◊ ↓ FN aBMD ↓ TH cortical sBMD ↓ TH cortical vBMD | Yes ↓TBS | Yes ↓ P1NP | N/A | |
Chiloiro et al., 2019 [14] | Retrospective, longitudinal, multicentric | 83 ACM | Active | 82 months | Prevalence: 28.9% ** Incidence: 34.9% ** | No (incident VFs) | N/A | N/A | No (incident VFs) | Incident VFs associated with prevalent VFs, duration of active acromegaly and IGF-I during follow-up |
Carbonare et al., 2018 [15] | Cross-sectional, monocentric | 47 ACM | Active: 36.17% | N/A | Prevalence: 63.8% ** | Yes ↑ LS BMD and Z | N/A | No | No | ACM vs. controls: ↓ bone volume/tissue volume, ↓ trabecular thickness and ↑ trabecular separation. |
Maffezzoni et al., 2016 [16] | Cross-sectional, monocentric | 40 ACM 21 Controls | Active: 50% | N/A | Prevalence: 37.5% ** Multiple: 66.66% | No | N/A | N/A | Yes *** | HR-CBCT evaluation: Fractured ACM had lower BV/ TV, greater Sp.mean, higher cortical porosity |
Mormando et al., 2014 [17] | Cross-sectional, monocentric | 109 ACM | Active:33% | 36 months | Prevalence: 43.1% ** Incidence: 37.1% ** | No | N/A | No | N/A | -VF prevalence ↑ in d3-GHR carriers than fl-GHR patients -d3-GHR carriers were 3 times more likely to suffer a VF. |
Mazziotti et al., 2013 [18] | Prospective, multicentric | 88 ACM 106 Controls | Active:45.5% | 36 months | Prevalence: 38.6% ** Incidence: 42% ** | Yes ↓ FN BMD (incident VFs in controlled patients) | N/A | N/A | Yes (incident VFs in controlled patients) | |
Madeira et al., 2012 [19] | Cross-sectional, monocentric | 75 ACM | Active: 72% | N/A | Prevalence: 10.6% | No | N/A | N/A | N/A | |
Padova et al., 2011 [20] | Retrospective | 20 ACM | Active: 60% | N/A | Prevalence: 39% ** Multiple: 71% | No | N/A | N/A | No | |
Mazziotti et al., 2011 [21] | Cross-sectional | 57 ACM 57 Controls | Active: 36.8% | N/A | Prevalence: 50.9% ** | No | N/A | N/A | No | Diabetic patients had ↑ prevalence of VFs |
Wassenaar et al., 2011 [22] | Cross-sectional, monocentric | 89 ACM 3469 Controls | Controlled | N/A | Prevalence: 59% ** | No | N/A | No | N/A | Hypogonadal men had a higher prevalence of VFs Men had a higher risk of developing VFs |
Battista et al., 2008 [23] | Longitudinal, retrospective | 46 ACM | Active:47.82% | 48 months | Prevalence:6.5% ** Incidence: 28.26% ** | Yes (incident VFs) | N/A | N/A | Yes (incident VFs) | VFs incidence was associated with hypogonadism and M Z-QCT (L1-L4) |
Bonadonna et al., 2005 [24] | Cross-sectional | 36 ACM 36 Controls | Active:41.66% | N/A | Prevalence: 52.8% ** ^ Multiple: 68.4% | Yes ↓ LS BMD | N/A | Yes ↑ BSALP | N/A | VFs prevalence was associated with active disease |
Study | No. of Patients | VF Prevalence | p | Active Acromegaly | p | ||
---|---|---|---|---|---|---|---|
Active Disease | Controlled Disease | With VFs | No VFs | ||||
Silva et al., 2021 [2] | 30 | 62.5% | 31.6% | 0.206 | |||
Cellini et al., 2020 [7] | 38 | 23.1% | 32% | 0.71 | |||
Mazziotti et al., 2020 [8] | 248 | 61.54% # 23.08% @ | 38.8% # 13.11% @ | 0.002 0.058 | |||
Chiloiro, 2020 [10] | 55 | 52.9% @ | 47.1% @ | 0.009 | |||
Kužma et al., 2019 [13] | 106 | 11.42% | 12.67% | N/S | |||
Chiloiro et al., 2019 [14] | 83 | OR 4.01 (0.29–56.12) ! | 0.30 | ||||
Carbonare et al., 2018 [15] | 47 | 76% | 57% | 0.31 | |||
Mazziotti et al., 2013 [18] | 88 | 67.6% # 32.4% @ | 29.4%# 3.9%@ | <0.001 <0.001 | |||
Mazziotti et al., 2011 [21] | 57 | 53.3% | 18.5% | 0.007 | |||
Battista et al., 2008 [23] | 46 | 27.27% | 29.16% | 0.61 | |||
Bonadonna et al., 2005 [24] | 36 | 80% | 33.3% | 0.008 |
Study | No. of Patients | VFs Prevalence | p | Hypogonadism & Incident VFs | p | Hypogonadism & Prevalent VFs | p | |||
---|---|---|---|---|---|---|---|---|---|---|
Eugonadism | Hypogonadism | Yes | No | Yes | No | |||||
Uygur et al., 2021 [5] | 70 | 87.1% | 61.5% | 0.017 | 52.94% | 7.84% | 0.01 | |||
Mazziotti et al., 2020 [8] | 248 | 69.23% | 60.66% | 0.21 | ||||||
Kužma et al., 2019 [13] | 106 | 92.3% | 7.69% | N/S | ||||||
Chiloiro et al., 2019 [14] | 83 | 1.44 (0.44–4.73) ^ | 0.55 | |||||||
Maffezzoni et al., 2016 [16] | 40 | 73.3% | 32% | 0.01 | ||||||
Mormando et al., 2014 [17] | 109 | 48.93% | 51.06% | N/P | ||||||
Mazziotti et al., 2013 [18] | 88 | 35.2% | 23.5% | 0.23 | ||||||
Mazziotti et al., 2011 [21] | 57 | 30% | 14.8% | 0.17 | 30% | 14.8% | 0.17 | |||
Battista et al., 2008 [23] | 46 | 17.39% € | 39.13% € | 0.02 |
Study | No. of Patients | BMD | p | BMD | p | ||
---|---|---|---|---|---|---|---|
With Prevalent VFs | No Prevalent VFs | With Incident VFs | No Incident VFs | ||||
Kužma et al., 2021 [1] | 70 | –1.71 β | 1.79 β | <0.05 | |||
Silva et al., 2021 [2] | 30 | 1.228 ± 0.056 α | 1.159 ± 0.161 α | 0.116 | |||
Uygur et al., 2021 [5] | 70 | 1.218 ± 0.220 | 1.199 ± 0.187 | 0.76 | |||
Chiloiro, 2020 [10] | 55 | 0.1 (1.7) $ | −1.05 (2.4) $ | 0.9 | |||
Kužma et al., 2019 [13] | 106 | 0.74 ± 0.14 £ | 0.82 ± 0.12 £ | ≤0.05 | |||
Chiloiro et al., 2019 [14] | 83 | −0.12 (−2.80−+3.51) $ | −0.69 (−2.90−+ 1.60) $ | 0.12 | |||
Carbonare et al., 2018 [15] | 47 | 1.07 (0.84–1.47) | 0.96 (0.82–1.34) | 0.021 | |||
Maffezzoni et al., 2016 [16] | 40 | +0.35 (−2.8–+4.4) $ | +0.01 (−3.2–+4.9) $ | 0.45 | |||
Mormando et al., 2014 [17] | 109 | 1.112 (±0.165) | 1.158 (±0.167) | 0.210 | |||
Mazziotti et al., 2013 [18] | 88 | +2.5 (−8.8–+15.3) & | +0.1 (−18.9–+11.5) & | 0.07 | |||
Madeira et al., 2012 [19] | 75 | 0.887 ± 1.026 | 1.181 ± 0.213 | 0.93 | |||
Padova et al., 2011 [20] | 20 | 0.97 ± 0.12 | 0.94 ± 0.17 | N/P | |||
Mazziotti et al., 2011 [21] | 57 | +0.1 (−2.6–+2.8) $ | −1.0 (−2.9–+2.6) $ | 0.47 | |||
Wassenaar et al., 2011 [22] | 89 | 1.00 (0.03) | 1.06 (0.04) | 0.29 | |||
Battista et al., 2008 [23] | 46 | N/P | N/P | 0.035 ** | |||
Bonadonna et al., 2005 [24] | 36 | −1.7 (−3.4–+1.3) * | −0.8 (−4.1–+1.3) * | 0.05 |
Study | Number of Patients | TBS | p | |
---|---|---|---|---|
With Prevalent VFs | No Prevalent VFs | |||
Kužma et al., 2021 [1] | 70 | –1.4 ^ | +1.3 ^ | <0.05 |
Calatayud et al., 2021 [4] | 26 | 1.13 ± 0.07 | 1.29 ± 0.13 | 0.03 |
Kužma et al., 2019 [13] | 106 | 1.118 ± 0.12 | 1.202 ± 0.13 | ≤0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorohan, M.C.; Poiana, C. Vertebral Fractures in Acromegaly: A Systematic Review. J. Clin. Med. 2023, 12, 164. https://doi.org/10.3390/jcm12010164
Sorohan MC, Poiana C. Vertebral Fractures in Acromegaly: A Systematic Review. Journal of Clinical Medicine. 2023; 12(1):164. https://doi.org/10.3390/jcm12010164
Chicago/Turabian StyleSorohan, Madalina Cristina, and Catalina Poiana. 2023. "Vertebral Fractures in Acromegaly: A Systematic Review" Journal of Clinical Medicine 12, no. 1: 164. https://doi.org/10.3390/jcm12010164
APA StyleSorohan, M. C., & Poiana, C. (2023). Vertebral Fractures in Acromegaly: A Systematic Review. Journal of Clinical Medicine, 12(1), 164. https://doi.org/10.3390/jcm12010164