Markedly Elevated Aspartate Aminotransferase from Non-Hepatic Causes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Definitions and Classifications
2.3.1. Skeletal Muscle Damage
2.3.2. Cardiac Muscle Damage
2.3.3. Hematologic Disorder
2.4. Statistical Analysis
2.5. Ethics Statement
3. Results
3.1. Patient Characteristics
3.2. Clinical Outcomes
3.3. Non-Hepatic Etiologies of Elevated AST
3.3.1. Skeletal Muscle Damage Group
3.3.2. Cardiac Muscle Damage Group
3.3.3. Hematologic Disorder Group
3.4. Risk Factors Associated with 30-Day Mortality
3.5. Impact of Etiology and Peak AST Levels on Mortality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Botros, M.; Sikaris, K.A. The de ritis ratio: The test of time. Clin. Biochem. Rev. 2013, 34, 117–130. [Google Scholar] [PubMed]
- Kwo, P.Y.; Cohen, S.M.; Lim, J.K. ACG Clinical Guideline: Evaluation of Abnormal Liver Chemistries. Am. J. Gastroenterol. 2017, 112, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Giannini, E.G.; Testa, R.; Savarino, V. Liver enzyme alteration: A guide for clinicians. CMAJ 2005, 172, 367–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, A.K.H.; Arumugananthan, C.; Lau Hing Yim, C.; Jellie, L.J.; Wong, E.W.W.; Junckerstorff, R.K. A Cross-Sectional Study of the Relationship between Serum Creatine Kinase and Liver Biochemistry in Patients with Rhabdomyolysis. J. Clin. Med. 2019, 9, 81. [Google Scholar] [CrossRef] [Green Version]
- Raurich, J.M.; Llompart-Pou, J.A.; Rodriguez-Yago, M.; Ferreruela, M.; Royo, C.; Ayestaran, I. Role of Elevated Aminotransferases in ICU Patients with Rhabdomyolysis. Am. Surg. 2015, 81, 1209–1215. [Google Scholar] [CrossRef]
- El-Abdellati, E.; Eyselbergs, M.; Sirimsi, H.; Hoof, V.V.; Wouters, K.; Verbrugghe, W.; Jorens, P.G. An observational study on rhabdomyolysis in the intensive care unit. Exploring its risk factors and main complication: Acute kidney injury. Ann. Intensive Care 2013, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Weibrecht, K.; Dayno, M.; Darling, C.; Bird, S.B. Liver aminotransferases are elevated with rhabdomyolysis in the absence of significant liver injury. J. Med. Toxicol. 2010, 6, 294–300. [Google Scholar] [CrossRef]
- Melli, G.; Chaudhry, V.; Cornblath, D.R. Rhabdomyolysis: An evaluation of 475 hospitalized patients. Medicine 2005, 84, 377–385. [Google Scholar] [CrossRef]
- de Meijer, A.R.; Fikkers, B.G.; de Keijzer, M.H.; van Engelen, B.G.; Drenth, J.P. Serum creatine kinase as predictor of clinical course in rhabdomyolysis: A 5-year intensive care survey. Intensive Care Med. 2003, 29, 1121–1125. [Google Scholar] [CrossRef]
- Vangstad, M.; Bjornaas, M.A.; Jacobsen, D. Rhabdomyolysis: A 10-year retrospective study of patients treated in a medical department. Eur. J. Emerg. Med. 2019, 26, 199–204. [Google Scholar] [CrossRef]
- Lofthus, D.M.; Stevens, S.R.; Armstrong, P.W.; Granger, C.B.; Mahaffey, K.W. Pattern of liver enzyme elevations in acute ST-elevation myocardial infarction. Coron. Artery Dis. 2012, 23, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.; Kang, W.; Oh, P.C.; Seo, S.Y.; Lee, K.; Han, S.H.; Ahn, T.; Shin, E. Serum transaminase determined in the emergency room predicts outcomes in patients with acute ST-segment elevation myocardial infarction who undergo primary percutaneous coronary intervention. Int. J. Cardiol. 2014, 177, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Cheng, Y.; Zheng, Y.; Zhang, W.; Wang, L.; Qin, L. Association of serum transaminases with short- and long-term outcomes in patients with ST-elevation myocardial infarction undergoing primary percutaneous coronary intervention. BMC Cardiovasc. Disord. 2017, 17, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Boxtel, A.G.; Bramer, S.; Soliman Hamad, M.A.; van Straten, A.H. Perioperative serum aspartate aminotransferase level as a predictor of survival after coronary artery bypass grafting. Ann. Thorac. Surg. 2012, 94, 1492–1498. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.M.; Pockros, P.J. Hematologic and oncologic diseases and the liver. Clin. Liver. Dis. 2011, 15, 69–87. [Google Scholar] [CrossRef]
- Murakami, J.; Shimizu, Y. Hepatic manifestations in hematological disorders. Int. J. Hepatol. 2013, 2013, 484903. [Google Scholar] [CrossRef] [Green Version]
- Baumhoer, D.; Tzankov, A.; Dirnhofer, S.; Tornillo, L.; Terracciano, L.M. Patterns of liver infiltration in lymphoproliferative disease. Histopathology 2008, 53, 81–90. [Google Scholar] [CrossRef]
- Walz-Mattmuller, R.; Horny, H.P.; Ruck, P.; Kaiserling, E. Incidence and pattern of liver involvement in haematological malignancies. Pathol. Res. Pract. 1998, 194, 781–789. [Google Scholar] [CrossRef]
- McGill, M.R. The past and present of serum aminotransferases and the future of liver injury biomarkers. EXCLI J. 2016, 15, 817–828. [Google Scholar] [CrossRef]
- Gores, G.J.; Herman, B.; Lemasters, J.J. Plasma membrane bleb formation and rupture: A common feature of hepatocellular injury. Hepatology 1990, 11, 690–698. [Google Scholar] [CrossRef]
- Lim, A.K. Abnormal liver function tests associated with severe rhabdomyolysis. World J. Gastroenterol. 2020, 26, 1020–1028. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, P.; Piper, H.M.; Spahr, R.; Spieckermann, P.G. Ultrastructure of cultured adult myocardial cells during anoxia and reoxygenation. Am. J. Pathol. 1984, 115, 349–361. [Google Scholar] [PubMed]
- Scheimberg, I.B.; Pollock, D.J.; Collins, P.W.; Doran, H.M.; Newland, A.C.; van der Walt, J.D. Pathology of the liver in leukaemia and lymphoma. A study of 110 autopsies. Histopathology 1995, 26, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, Y. Liver in systemic disease. World J. Gastroenterol. 2008, 14, 4111–4119. [Google Scholar] [CrossRef]
- Whitehead, M.W.; Hawkes, N.D.; Hainsworth, I.; Kingham, J.G. A prospective study of the causes of notably raised aspartate aminotransferase of liver origin. Gut 1999, 45, 129–133. [Google Scholar] [CrossRef]
- Bjornsson, H.K.; Olafsson, S.; Bergmann, O.M.; Bjornsson, E.S. A prospective study on the causes of notably raised alanine aminotransferase (ALT). Scand. J. Gastroenterol. 2016, 51, 594–600. [Google Scholar] [CrossRef]
- Van den Broecke, A.; Van Coile, L.; Decruyenaere, A.; Colpaert, K.; Benoit, D.; Van Vlierberghe, H.; Decruyenaere, J. Epidemiology, causes, evolution and outcome in a single-center cohort of 1116 critically ill patients with hypoxic hepatitis. Ann. Intensive Care 2018, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Galvin, Z.; McDonough, A.; Ryan, J.; Stewart, S. Blood alanine aminotransferase levels > 1000 IU/l-causes and outcomes. Clin. Med. 2015, 15, 244–247. [Google Scholar] [CrossRef] [Green Version]
- Con, D.; Buckle, A.; Nicoll, A.J.; Lubel, J.S. Epidemiology and outcomes of marked elevations of alanine aminotransferase >1000 IU/L in an Australian cohort. JGH Open 2020, 4, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.D.; O’Connor, M.L.; Kerr, R.M. Extreme serum elevations of aspartate aminotransferase. Am. J. Gastroenterol. 1995, 90, 1244–1245. [Google Scholar]
- Saito, K.; Sugawara, H.; Watanabe, T.; Ishii, A.; Fukuchi, T. A retrospective cross-sectional study for predicting 72-h mortality in patients with serum aspartate aminotransferase levels >/= 3000 U/L. Sci. Rep. 2021, 11, 800. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Initial AST < 657 U/L | Initial AST ≥ 657 U/L | Total |
---|---|---|---|
No. | 215 | 215 | 430 |
Age, year | 61.0 (41.0–72.0) | 61.0 (46.0–74.0) | 60.5 (42.8–72.3) |
Male gender | 154 (71.6%) | 155 (72.1%) | 309 (71.9%) |
Causes | |||
Skeletal muscle damage | 84 (36.1%) | 149 (63.9%) | 233 (54.2%) |
Cardiac muscle damage | 117 (69.6%) | 51 (30.4%) | 168 (39.1%) |
Hematologic disorders | 14 (48.3%) | 15 (51.7%) | 29 (6.7%) |
Liver cirrhosis | 5 (2.3%) | 16 (7.4%) | 21 (4.9%) |
Diabetes | 33 (15.3%) | 25 (11.6%) | 58 (13.5%) |
CHF | 11 (5.1%) | 10 (4.7%) | 21 (4.9%) |
ESRD | 2 (0.9%) | 3 (1.4%) | 5 (1.2%) |
Hepatic decompensation | 6 (2.8%) | 7 (3.3%) | 13 (3.0%) |
Infection | 23 (10.7%) | 42 (19.5%) | 65 (15.1%) |
Hypotension | 53 (24.7%) | 61 (28.4%) | 114 (26.5%) |
Admission at ICU | 54 (25.1%) | 58 (27.0%) | 112 (26.0%) |
Initial values | |||
AST, U/L | 527.0 (477.0–579.0) | 983.0 (775.0–1473.0) | 657.0 (527.0–984.3) |
ALT, U/L | 141.0 (101.0–219.0) | 340.0 (189.0–599.0) | 207.5 (126.8–401.8) |
Albumin, g/dL | 3.5 (2.9–4.0) | 3.6 (3.0–4.1) | 3.5 (3.0–4.0) |
Bilirubin, mg/dL | 1.06 (0.72–1.62) | 1.02 (0.73–1.62) | 1.03 (0.73–1.62) |
ALP, U/L | 73.0 (58.0–97.0) | 74.0 (57.0–103.0) | 73.0 (58.0–100.0) |
LDH, U/L | 910.0 (495.8–1197.0) | 1676.0 (973.0–2700.0) | 1148.0 (716.5–1951.0) |
CK, U/L | 4294.0 (3276.0–14,503.0) | 9250.0 (3301.5–45,757.0) | 5646.0 (3293.8–25,000.0) |
Creatinine, mg/dL | 0.94 (0.70–1.47) | 1.20 (0.85–1.91) | 1.05 (0.76–1.63) |
PT-INR | 1.05 (0.99–1.28) | 1.17 (1.02–1.64) | 1.11 (1.00–1.38) |
Peak values | 168.0 (111.0–310.0) | 462.0 (250.0–927.0) | 264.0 (147.8–572.0) |
AST, U/L | 559.0 (496.0–639.0) | 846.0 (1198.0–2253.0) | 782.0 (559.0–1400.3) |
ALT, U/L | |||
Bilirubin, mg/dL | 1.30 (0.88–2.50) | 1.30 (0.85–2.25) | 1.30 (0.86–2.39) |
Characteristics | Skeletal Muscle Damage | Cardiac Muscle Damage | Hematologic Disorders | p |
---|---|---|---|---|
No. | 233 (54.2%) | 168 (39.1%) | 29 (6.7%) | |
Age, year | 49.0 (34.0–65.5) | 66.0 (56.0–76.0) | 70.0 (58.0–79.5) | <0.001 |
Male gender | 168 (72.1%) | 125 (74.4%) | 16 (55.2%) | 0.103 |
Liver cirrhosis | 18 (7.7%) | 3 (1.8%) | 0 (0%) | 0.011 |
Diabetes | 21 (9.0%) | 35 (20.8%) | 2 (6.9%) | 0.002 |
CHF | 4 (1.7%) | 15 (8.9%) | 2 (6.9%) | 0.004 |
ESRD | 3 (1.3%) | 2 (1.2%) | 0 (0%) | 0.830 |
Hepatic decompensation | 7 (3.0%) | 2 (1.2%) | 4 (13.8%) | 0.001 |
Infection | 32 (13.7%) | 19 (11.3%) | 14 (48.3%) | <0.001 |
Hypotension | 46 (19.7%) | 54 (32.1%) | 14 (48.3%) | <0.001 |
Admission at ICU | 37 (15.9%) | 69 (41.1%) | 6 (20.7%) | <0.001 |
Initial values | ||||
AST, U/L | 765.0 (562.0–1311.0) | 568.0 (502.0–711.5) | 663.0 (504.0–928.5) | <0.001 |
ALT, U/L | 252.0 (168.0–477.0) | 139.0 (100.3–251.5) | 266.0 (146.0–501.5) | <0.001 |
Albumin, g/dL | 3.7 (3.0–4.3) | 3.5 (3.2–3.8) | 2.9 (2.3–3.5) | <0.001 |
Bilirubin, mg/dL | 1.00 (0.71–1.58) | 0.99 (0.73–1.42) | 2.62 (1.17–8.25) | <0.001 |
ALP, U/L | 72.0 (57.0–97.5) | 71.0 (58.0–93.0) | 113.0 (76.5–238.5) | <0.001 |
LDH, U/L | 1383.0 (866.5–2242.3) | 854.5 (285.3–1343.3) | 2318.0 (1143.5–2853.0) | <0.001 |
CK, U/L | 24,000.0 (5922.5–27,750.0) | 4100.0 (2321.3–5220.3) | 71.0 (34.0–459.0) | <0.001 |
Creatinine, mg/dL | 1.03 (0.74–1.89) | 1.05 (0.76–1.50) | 1.44 (0.84–2.15) | 0.229 |
PT-INR | 1.15 (1.00–1.39) | 1.04 (0.99–1.24) | 1.42 (1.19–1.86) | <0.001 |
Peak values | ||||
AST, U/L | 960.0 (619.5–1757.0) | 624.5 (518.0–821.8) | 951.0 (679.0–1300.5) | <0.001 |
ALT, U/L | 361.0 (206.5–658.5) | 155.0 (105.5–339.5) | 345.0 (166.5–595.0) | <0.001 |
Bilirubin, mg/dL | 1.27 (0.83–2.42) | 1.24 (0.87–1.99) | 4.28 (2.27–20.60) | <0.001 |
Variable | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
p | OR (95% CI) | p | OR (95% CI) | |
Male | 0.07 | 0.63 (0.38–1.04) | ||
Age, per year | <0.001 | 1.04 (1.03–1.06) | 0.001 | 1.04 (1.02–1.06) |
Etiology | ||||
Skeletal muscle damage | Reference | Reference | ||
Cardiac muscle damage | 0.182 | 1.43 (0.85–2.42) | 0.008 | 2.76 (1.31–5.80) |
Hematologic disorder | <0.001 | 11.12 (4.76–25.96) | <0.001 | 9.47 (2.95–30.39) |
Hepatic decompensation | 0.001 | 6.95 (2.22–21.83) | 0.462 | 1.80 (0.38–8.56) |
Albumin, g/dL | <0.001 | 0.22 (0.15–0.33) | <0.001 | 0.28 (0.16–0.50) |
Bilirubin, mg/dL | <0.001 | 1.22 (1.10–1.36) | 0.190 | 1.09 (0.96–1.23) |
Creatinine, mg/dL | <0.001 | 1.87 (1.52–2.30) | <0.001 | 1.81 (1.42–2.31) |
PT-INR | <0.001 | 3.35 (2.15–5.23) | 0.591 | 1.17 (0.67–2.03) |
Peak AST | ||||
<1000 U/L | Reference | Reference | ||
<3000 U/L | 0.001 | 2.49 (1.45–4.29) | 0.006 | 2.94 (1.36–6.35) |
≥3000 U/L | <0.001 | 6.83 (3.34–13.95) | <0.001 | 9.61 (3.54–26.08) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.-H.; Kwak, J.-Y.; Lee, S.-S.; Kim, H.-G.; Jeon, H.; Cha, R.-R. Markedly Elevated Aspartate Aminotransferase from Non-Hepatic Causes. J. Clin. Med. 2023, 12, 310. https://doi.org/10.3390/jcm12010310
Han J-H, Kwak J-Y, Lee S-S, Kim H-G, Jeon H, Cha R-R. Markedly Elevated Aspartate Aminotransferase from Non-Hepatic Causes. Journal of Clinical Medicine. 2023; 12(1):310. https://doi.org/10.3390/jcm12010310
Chicago/Turabian StyleHan, Ji-Hee, Ji-Yoon Kwak, Sang-Soo Lee, Hyun-Gyu Kim, Hankyu Jeon, and Ra-Ri Cha. 2023. "Markedly Elevated Aspartate Aminotransferase from Non-Hepatic Causes" Journal of Clinical Medicine 12, no. 1: 310. https://doi.org/10.3390/jcm12010310
APA StyleHan, J. -H., Kwak, J. -Y., Lee, S. -S., Kim, H. -G., Jeon, H., & Cha, R. -R. (2023). Markedly Elevated Aspartate Aminotransferase from Non-Hepatic Causes. Journal of Clinical Medicine, 12(1), 310. https://doi.org/10.3390/jcm12010310