Kaiso Protein Expression Correlates with Overall Survival in TNBC Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Open Data Sources
2.2. Patients
2.3. Immunohistochemistry
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pourteimoor, V.; Mohammadi-Yeganeh, S.; Paryan, M. Breast cancer classification and prognostication through diverse systems along with recent emerging findings in this respect; the dawn of new perspectives in the clinical applications. Tumor Biol. 2016, 37, 14479–14499. [Google Scholar] [CrossRef] [PubMed]
- Dragun, A.E.; Pan, J.; Rai, S.N.; Kruse, B.; Jain, D. Locoregional recurrence in patients with triple-negative breast cancer: Preliminary results of a single institution study. Am. J. Clin. Oncol. Cancer Clin. Trials 2011, 34, 231–237. [Google Scholar] [CrossRef]
- Selz, J.; Stevens, D.; Jouanneau, L.; Labib, A.; Le Scodan, R. Prognostic Value of Molecular Subtypes, Ki67 Expression and Impact of Postmastectomy Radiation Therapy in Breast Cancer Patients with Negative Lymph Nodes After Mastectomy. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 1123–1132. [Google Scholar] [CrossRef] [PubMed]
- Dent, R.; Hanna, W.M.; Trudeau, M.; Rawlinson, E.; Sun, P.; Narod, S.A. Pattern of metastatic spread in triple-negative breast cancer. Breast Cancer Res. Treat. 2009, 115, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A. Triple-Negative Breast Cancer: Clinical Features and Patterns of Recurrence. Clin. Cancer Res. 2007, 13 Pt 1, 4429–4434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P. Biology and Management of Patients with Triple-Negative Breast Cancer. Oncologist 2016, 21, 1050–1062. [Google Scholar] [CrossRef] [Green Version]
- Marotti, J.D.; de Abreu, F.B.; Wells, W.A.; Tsongalis, G.J. Triple-Negative Breast Cancer: Next-Generation Sequencing for Target Identification. Am. J. Pathol. 2017, 187, 2133–2138. [Google Scholar] [CrossRef]
- Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Shyr, Y.; Pietenpol, J.A. Abstract PD01-07: Transcriptome Analysis of Triple Negative Breast Cancers Identifies Six Distinct Bio-logical Subgroups and Reveals Therapeutic Strategies. Cancer Res. 2010, 70, PD01-07. [Google Scholar] [CrossRef]
- Sporikova, Z.; Koudelakova, V.; Trojanec, R.; Hajduch, M. Genetic Markers in Triple-Negative Breast Cancer. Clin. Breast Cancer 2018, 18, e841–e850. [Google Scholar] [CrossRef]
- Pierre, C.C.; Hercules, S.M.; Yates, C.; Daniel, J.M. Dancing from bottoms up—Roles of the POZ-ZF transcription factor Kaiso in Cancer. Biochim. Biophys. Acta Rev. Cancer 2019, 1871, 64–74. [Google Scholar] [CrossRef]
- Zhenilo, S.; Deyev, I.; Litvinova, E.; Zhigalova, N.; Kaplun, D.; Sokolov, A.; Mazur, A.; Prokhortchouk, E. DeSUMOylation switches Kaiso from activator to repressor upon hyperosmotic stress. Cell Death Differ. 2018, 25, 1938–1951. [Google Scholar] [CrossRef] [PubMed]
- Shumskaya, V.S.; Zhigalova, N.A.; Prokhorchouk, A.V.; Prokhorchouk, E.B. Distribution of Kaiso protein in mouse tissues. Histochem. Cell Biol. 2014, 143, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Lopes, E.C.; Valls, E.; Figueroa, M.E.; Mazur, A.; Meng, F.-G.; Chiosis, G.; Laird, P.W.; Schreiber-Agus, N.; Greally, J.M.; Prokhortchouk, E.; et al. Kaiso Contributes to DNA Methylation-Dependent Silencing of Tumor Suppressor Genes in Colon Cancer Cell Lines. Cancer Res. 2008, 68, 7258–7263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, S.-D.; Wang, Y.; Miao, Y.; Zhao, Y.; Zhang, Y.; Jiang, G.-Y.; Zhang, P.-X.; Yang, Z.-Q.; Wang, E.-H. Cytoplasmic Kaiso is associated with poor prognosis in non-small cell lung cancer. BMC Cancer 2009, 9, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, J.; Wang, H.; Zhou, J.; Hardy, S.; Turner, T.; Austin, D.; He, Q.; Wells, A.; Grizzle, W.E.; Yates, C. Nuclear Kaiso Indicates Aggressive Prostate Cancers and Promotes Migration and Invasiveness of Prostate Cancer Cells. Am. J. Pathol. 2012, 181, 1836–1846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermeulen, J.F.; Van De Ven, R.A.H.; Ercan, C.; Van Der Groep, P.; Van Der Wall, E.; Bult, P.; Christgen, M.; Lehmann, U.; Daniel, J.; Van Diest, P.J.; et al. Nuclear Kaiso Expression Is Associated with High Grade and Triple-Negative Invasive Breast Cancer. PLoS ONE 2012, 7, e37864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bassey-Archibong, B.I.; Hercules, S.M.; Rayner, L.G.A.; Skeete, D.H.A.; Connell, S.P.S.; Brain, I.; Daramola, A.; Banjo, A.A.F.; Byun, J.S.; Gardner, K.; et al. Kaiso is highly expressed in TNBC tissues of women of African ancestry compared to Caucasian women. Cancer Causes Control. 2017, 28, 1295–1304. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Lichtenberg, T.; Hoadley, K.A.; Poisson, L.M.; Lazar, A.J.; Cherniack, A.D.; Kovatich, A.J.; Benz, C.C.; Levine, D.A.; Lee, A.V.; et al. An integrated TCGA pan-cancer clinical data resource to drive high quality survival outcome analytics. Cell 2018, 173, 400–416.e11. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, B.D.; Colaprico, A.; Silva, T.C.; Chen, J.; An, H.; Ban, Y.; Huang, H.; Wang, L.; James, J.L.; Balko, J.M.; et al. Multi-omics analysis identifies therapeutic vulnerabilities in triple-negative breast cancer subtypes. Nat. Commun. 2021, 12, 6276. [Google Scholar] [CrossRef]
- Therneau, T.M.; Grambsch, P.M. Modeling Survival Data: Extending the Cox Model; Springer: New York, NY, USA, 2000. [Google Scholar]
- GitHub—Kassambara/Survminer: Survival Analysis and Visualization. Available online: https://github.com/kassambara/survminer (accessed on 20 December 2022).
- He, M.Y.; Rancoule, C.; Rehailia-Blanchard, A.; Espenel, S.; Trone, J.-C.; Bernichon, E.; Guillaume, E.; Vallard, A.; Magné, N. Radiotherapy in triple-negative breast cancer: Current situation and upcoming strategies. Crit. Rev. Oncol./Hematol. 2018, 131, 96–101. [Google Scholar] [CrossRef]
- Bianchini, G.; Balko, J.M.; Mayer, I.A.; Sanders, M.E.; Gianni, L. Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat. Rev. Clin. Oncol. 2016, 13, 674–690. [Google Scholar] [CrossRef] [PubMed]
- Kanojia, D.; Garg, M.; Gupta, S.; Gupta, A.; Suri, A. Sperm-Associated Antigen 9, a Novel Biomarker for Early Detection of Breast Cancer. Cancer Epidemiol. Biomark. Prev. 2009, 18, 630–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singhal, S.K.; Sens, D.; Sens, M.A.; Byun, J.; Yancey, R.; Caban, A.; Boisvert, H.; Hennek, S.; Bobrow, M.; Ahmed, S.; et al. Subcellular partitioning of Kaiso (ZBTB33) as a biomarker to predict overall breast cancer survival. J. Clin. Oncol. 2020, 38, 3534. [Google Scholar] [CrossRef]
- Singhal, S.K.; Byun, J.S.; Park, S.; Yan, T.; Yancey, R.; Caban, A.; Gil Hernandez, S.; Hewitt, S.M.; Boisvert, H.; Hennek, S.; et al. Kaiso (ZBTB33) subcellular partitioning functionally links LC3A/B, the tumor microenvironment, and breast cancer survival. Commun. Biol. 2021, 4, 150. [Google Scholar] [CrossRef]
- Jones, J.; Wang, H.; Karanam, B.; Theodore, S.; Dean-Colomb, W.; Welch, D.R.; Grizzle, W.; Yates, C. Nuclear localization of Kaiso promotes the poorly differentiated phenotype and EMT in infiltrating ductal carcinomas. Clin. Exp. Metastasis 2014, 31, 497–510. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yang, J.; Peng, L.; Sahin, A.A.; Huo, L.; Ward, K.C.; O’Regan, R.; Torres, M.A.; Meisel, J.L. Triple-negative breast cancer has worse overall survival and cause-specific survival than non-triple-negative breast cancer. Breast Cancer Res. Treat. 2017, 161, 279–287. [Google Scholar] [CrossRef]
- Winters, S.; Martin, C.; Murphy, D.; Shokar, N.K. Breast Cancer Epidemiology, Prevention, and Screening. Prog. Mol. Biol. Transl. Sci. 2017, 151, 1–32. [Google Scholar]
- Bassey-Archibong, B.I.; Rayner, L.G.A.; Hercules, S.M.; Aarts, C.W.; Dvorkin-Gheva, A.; Bramson, J.; A Hassell, J.; Daniel, J.M. Kaiso depletion attenuates the growth and survival of triple negative breast cancer cells. Cell Death Dis. 2017, 8, e2689. [Google Scholar] [CrossRef] [Green Version]
- Koh, D.-I.; Han, D.; Ryu, H.; Choi, W.-I.; Jeon, B.-N.; Kim, M.-K.; Kim, Y.; Kim, J.Y.; Parry, L.; Clarke, A.R.; et al. KAISO, a critical regulator of p53-mediated transcription of CDKN1A and apoptotic genes. Proc. Natl. Acad. Sci. USA 2014, 111, 15078–15083. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Dong, Q.-Z.; Wang, S.; Xu, H.-T.; Miao, Y.; Wang, L.; Wang, E.-H. Kaiso Interacts with p120-Catenin to Regulate β-Catenin Expression at the Transcriptional Level. PLoS ONE 2014, 9, e87537. [Google Scholar] [CrossRef] [Green Version]
- Bassey-Archibong, B.I.; Kwiecien, J.M.; Milosavljevic, S.B.; Hallett, R.M.; Rayner, L.G.A.; Erb, M.J.; Crawford-Brown, C.J.; Stephenson, K.B.; Bédard, P.-A.; A Hassell, J.; et al. Kaiso depletion attenuates transforming growth factor-β signaling and metastatic activity of triple-negative breast cancer cells. Oncogenesis 2016, 5, e208. [Google Scholar] [CrossRef] [PubMed]
- Zarzynska, J.M. Two Faces of TGF-Beta1 in Breast Cancer. Mediat. Inflamm. 2014, 2014, 141747. [Google Scholar] [CrossRef] [PubMed]
N | Factor | Total |
---|---|---|
1 | Number of patients | 103 |
2 | Observation period (years) | |
mean (SD) | 5.0 (2.1) | |
median (Q1–Q3) | 5.9 (3.4–6.6) | |
min–max | 0.5–8.1 | |
3 | Age | |
mean (SD) | 57.0 (13.4) | |
median (Q1–Q3) | 57 (50–67) | |
min–max | 22–89 | |
4 | Age | |
≤57 | 55 (53.4%) | |
>57 | 53 (46.6%) | |
5 | Premenopausal | 36 (35.0%) |
Postmenopausal | 67 (65.0%) | |
6 | Clinical stage | |
I | 21 (20.4%) | |
II | 61 (59.2%) | |
III | 18 (17.5%) | |
IV | 3 (2.9%) | |
7 | Histopathology | |
No special type | 99 (96.1%) | |
Other | 4 (3.9%) | |
8 | Grading | |
1 | 3 (2.9%) | |
2 | 59 (57.3%) | |
3 | 41 (39.8%) | |
9 | Ki 67 | |
mean (SD) | 50.9 (24.4) | |
median (Q1–Q3) | 50 (30–70) | |
min–max | 1–95 | |
10 | Ki 67 | |
≤50 | 59 (57.3%) | |
>50 | 44 (42.7%) | |
11 | Preoperative chemotherapy | |
Yes | 27 (26.2%) | |
No | 76 (73.8%) | |
12 | Postoperative chemotherapy | |
Yes | 82 (79.6%) | |
No | 21 (20.4%) | |
13 | Surgery | |
Breast conserving treatment (BCT) | 26 (25.2%) | |
Radical mastectomy (RM) | 69 (67.0%) | |
Simple mastectomy (SM) | 3 (2.9%) | |
Subcutaneous mastectomy (SSM) | 5 (4.9%) | |
14 | Axillary dissection | 78 (75.7%) |
Sentinel node biopsy | 25 (24.3%) | |
15 | Radiotherapy | |
Yes | 72 (69.9%) | |
No | 31 (30.1%) | |
16 | Reccurence | |
No | 79 (76.7%) | |
Yes | 24 (23.3%) | |
17 | Death | |
No | 83 (81.6%) | |
Yes | 20 (19.4%) | |
18 | Kaiso Expression | |
0—absent | 19 (18.4%) | |
1—low | 38 (36.9%) | |
2 + 3—medium and high | 46 (44.7%) |
Factor | Kaiso 0 | Kaiso 1+ | Kaiso 2+, 3+ | p-Value |
---|---|---|---|---|
Number of patients—N (%) | 19 (18.4%) | 38 (36.9%) | 46 (44.7%) | |
Age | 0.171 | |||
mean (SD) | 62.1 (11.4) | 56.7 (12.4) | 55.2 (14.6) | |
median (Q1–Q3) | 63 (54–68) | 58 (51–64) | 5 (47–66) | |
min–max | 39–89 | 22–78 | 25–86 | |
Age | 0.1361 | |||
≤57 | 7 (36.8%) | 19 (50.0%) | 29 (63.0%) | |
>57 | 12 (63.2%) | 19 (50.0%) | 17 (37.0%) | 0.0141 |
Premenopausal | 17 (89.5%) | 26 (68.4%) | 24 (52.2%) | |
Postmenopausal | 2 (10.5%) | 12 (31.6%) | 22 (47.8%) | |
Clinical stage | 0.9468 | |||
I | 4 (21.1%) | 9 (23.7%) | 8 (17.4%) | |
II | 10 (52.6%) | 21 (55.3%) | 30 (65.2%) | |
III | 4 (21.1%) | 7 (18.4%) | 7 (15.2%) | |
IV | 1 (5.3%) | 1 (2.6%) | 1 (2.2%) | |
Grading | 0.7923 | |||
1 | 1 (5.3%) | 1 (2.6%) | 1 (2.2%) | |
2 | 9 (47.4%) | 21 (55.3%) | 29 (63.0%) | |
3 | 9 (47.4%) | 16 (42.1%) | 16 (34.8%) | |
Ki 67 | 0.097 | |||
mean (SD) | 48.2 (25.8) | 57.7 (23.7) | 46.5 (23.5) | |
median (Q1–Q3) | 50 (23–68) | 60 (50–80) | 60 (50–80) | |
min–max | 5–90 | 1–95 | 5–90 | |
Ki 67 | 0.0656 | |||
≤50 | 10 (52.6%) | 17 (44.7%) | 32 (69.6%) | |
>50 | 9 (47.4%) | 21 (55.3%) | 14 (30.4%) | |
Recurrence | 0.2403 | |||
No | 12 (63.2%) | 29 (76.3%) | 38 (82.6%) | |
Yes | 7 (36.8%) | 9 (23.7%) | 8 (17.4%) | |
Death | 0.2573 | |||
No | 13 (68.4%) | 26 (68.4%) | 38 (82.6%) | |
Yes | 6 (31.6%) | 12 (31.6%) | 8 (17.4%) |
Years of Observation | Survival Probability (Standard Deviation) | |
---|---|---|
Disease-Free Survival (DFS) | Overall Survival (OS) | |
1 | 91.1 (2.8) | 98.0 (1.4) |
3 | 78.9 (4.1) | 82.1 (3.8) |
5 | 76.7 (4.3) | 79.9 (4.0) |
Number of events (%) | 24 (23.3) | 26 (25.2) |
Number of censored (%) | 79 (76.7) | 77 (74.8) |
Mean survival * (95% CI) | 6.5 (5.9–7.0) | 6.6 (6.1–7.1) |
Variables | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
HR (95% CI) * | p-Value | HR (95% CI) | p-Value | |
Age | 1.04 (1.00–1.07) | 0.0374 | 1.03 (1.00–1.07) | 0.0390 |
Clinical stage | 2.44 (1.28–4.65) | 0.0066 | 1.76 (0.83–3.74) | 0.1443 |
Postoperative chemotherapy | 0.37 (0.16–0.87) | 0.0228 | 0.68 (0.26–1.75) | 0.4224 |
Preoperative chemotherapy | 2.99 (1.34–6.71) | 0.0075 | 2.61 (0.85–8.07) | 0.0954 |
Radiotherapy | 0.39 (0.18–0.89) | 0.0234 | 0.21 (0.87–0.52) | 0.0007 |
Kaiso expression | 0.62 (0.37–1.04) | 0.0721 | 0.47 (0.26–0.84) | 0.0111 |
Variables | Univariate Analysis | Multivariate Analysis | ||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Age | 1.06 (1.02–1.09) | 0.0012 | 1.06 (1.02–1.09) | 0.0008 |
Clinical stage | 2.27 (1.33–3.87) | 0.0027 | 2.20 (1.09–4.46) | 0.0286 |
Postoperative chemotherapy | 0.37 (0.16–0.83) | 0.0155 | 0.78 (0.33–1.85) | 0.5696 |
Preoperative chemotherapy | 3.03 (1.40–6.57) | 0.0049 | 2.84 (0.95–8.51) | 0.0619 |
Radiotherapy | 0.34 (0.16–0.73) | 0.0056 | 0.17 (0.07–0.41) | 0.0001 |
Kaiso expression | 0.67 (0.41–1.10) | 0.1159 | 0.47 (0.27–0.81) | 0.0067 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bocian, A.; Kędzierawski, P.; Kopczyński, J.; Wabik, O.; Wawruszak, A.; Kiełbus, M.; Miziak, P.; Stepulak, A. Kaiso Protein Expression Correlates with Overall Survival in TNBC Patients. J. Clin. Med. 2023, 12, 370. https://doi.org/10.3390/jcm12010370
Bocian A, Kędzierawski P, Kopczyński J, Wabik O, Wawruszak A, Kiełbus M, Miziak P, Stepulak A. Kaiso Protein Expression Correlates with Overall Survival in TNBC Patients. Journal of Clinical Medicine. 2023; 12(1):370. https://doi.org/10.3390/jcm12010370
Chicago/Turabian StyleBocian, Artur, Piotr Kędzierawski, Janusz Kopczyński, Olga Wabik, Anna Wawruszak, Michał Kiełbus, Paulina Miziak, and Andrzej Stepulak. 2023. "Kaiso Protein Expression Correlates with Overall Survival in TNBC Patients" Journal of Clinical Medicine 12, no. 1: 370. https://doi.org/10.3390/jcm12010370
APA StyleBocian, A., Kędzierawski, P., Kopczyński, J., Wabik, O., Wawruszak, A., Kiełbus, M., Miziak, P., & Stepulak, A. (2023). Kaiso Protein Expression Correlates with Overall Survival in TNBC Patients. Journal of Clinical Medicine, 12(1), 370. https://doi.org/10.3390/jcm12010370