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Abstract: Purpose: To explore the tumor proteome of patients diagnosed with localized clear cell renal
cancer (ccRCC) and treated with surgery. Material and methods: A total of 165 FFPE tumor samples
from patients diagnosed with ccRCC were analyzed using DIA-proteomics. Proteomics ccRCC
subtypes were defined using a consensus cluster algorithm (CCA) and characterized by a functional
approach using probabilistic graphical models and survival analyses. Results: We identified and
quantified 3091 proteins, including 2026 high-confidence proteins. Two proteomics subtypes of ccRCC
(CC1 and CC2) were identified by CC using the high-confidence proteins only. Characterization
of molecular differences between CC1 and CC2 was performed in two steps. First, we defined
514 proteins showing differential expression between the two subtypes using a significance analysis
of microarrays analysis. Proteins overexpressed in CC1 were mainly related to translation and
ribosome, while proteins overexpressed in CC2 were mainly related to focal adhesion and membrane.
Second, a functional analysis using probabilistic graphical models was performed. CC1 subtype is
characterized by an increased expression of proteins related to glycolysis, mitochondria, translation,
adhesion proteins related to cytoskeleton and actin, nucleosome, and spliceosome, while CC2 subtype
showed higher expression of proteins involved in focal adhesion, extracellular matrix, and collagen
organization. Conclusions: ccRCC tumors can be classified in two different proteomics subtypes. CC1
and CC2 present specific proteomics profiles, reflecting alterations of different molecular pathways in
each subtype. The knowledge generated in this type of studies could help in the development of new
drugs targeting subtype-specific deregulated pathways.

Keywords: proteomics; molecular subtypes; clear cell renal cell carcinoma

1. Introduction

Renal cell carcinoma (RCC) is the sixth most common cancer in men and the eighth
most common cancer in women. It is estimated that in 2022 there will be 79,000 new cases
and that it will cause 13,920 deaths in the United States [1].

Two-thirds of patients have localized disease and an additional 16% have locoregional
disease at diagnosis. A significant proportion of all these patients (up to 40% in stage III)
will relapse [2,3].

Nowadays, there are many drugs approved for the treatment of clear cell renal cancer
(ccRCC); most of them belong to the group of VEGFR inhibitors (Sunitinib, Pazopanib,
Axitinib, Lenvatinib) or to the group of immune checkpoint inhibitors (Pembrolizumab,
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Nivolumab, Atezolizumab, Ipilimumab). Despite their demonstrated effectiveness in
advanced disease [4–8], modest results have been showed in the adjuvant setting [9,10]. In
any case, when these treatments fail, few therapeutic options remain. Therefore, research
into potential new therapeutic targets is a need today.

The molecular characterization of ccRCC is an essential tool to acquire a deeper and
more precise knowledge of the different alterations involved in the carcinogenesis process,
of its capacity to develop metastasis and also to identify possible therapeutic targets.

Genomic profiling techniques, such as next-generation sequencing (NGS), are widely
used to identify DNA sequences altered by somatic mutations that are associated with
carcinogenesis. However, DNA sequencing and the finding of existing mutations provides
little information about the functional consequences of these mutations. In the same
way, transcriptomics analyses are used to assess gene expression by measuring coding
mRNA transcripts; however, although they reflect the functional modules that regulate
cellular processes, they provide little information about the physiological reality of the
cell in comparison with proteomics. Additionally, there is increasing evidence that mRNA
transcript expression and protein expression do not correlate robustly in normal tissues or
tumors [11,12].

The use of proteomics profiling can contribute to a better understanding of the process
of carcinogenesis and also may be helpful in daily clinical practice, such as, for example, in
diagnosis, through the determination of specific ccRCC proteins [13], as serum biomarkers
for follow-up, such as those proposed in the study by White et al. [14], as a prognostic
factor such as the NDRG1 protein [15], to identify patients at greater risk of relapse [16],
and also to determine the most effective treatment in each case [11,17].

Different proteomics profiles have also been found for patients with localized and
metastatic ccRCC. Masui et al. [18], found that three proteins (LGALS1, PFN1 and YWHAZ)
showed higher expression in primary ccRCC compared to normal adjacent tissue (NAT),
and higher expression in metastatic lesions than in primary tumors. In addition, PFN1 was
shown to be associated with poor prognosis.

In the field of ccRCC, the most relevant studies that analyzed proteomics profiles are:
in western populations, the study performed by the clinical proteomics tumor analysis
consortium (CPTAC) [17], and in eastern populations, the study performed by Qu et al. [16].
Both studies identified ccRCC subtypes with differences in the predominant altered path-
ways and in some cases with different survival.

In the CPTAC study [17], 103 samples from patients diagnosed with ccRCC were
analyzed and compared with 84 NAT samples. At the proteomics level, when comparing
ccRCC samples with NAT samples, 820 proteins showed significant differential expression,
with 565 proteins downregulated and 255 upregulated. Enrichment analysis revealed that
the immune response, epithelial mesenchymal transition (EMT) and multiple signaling
pathways (hypoxia, glycolysis and mTOR) were upregulated in tumors, and that the
tricarboxylic acid cycle (TCA), also known as the Krebs cycle, fatty acid metabolism and
OXPHOS were downregulated.

Furthermore, by combining the analysis of transcriptomic profiles (gene signatures)
of immune, stromal and microenvironmental cells with proteomics features, the group
defined four main subtypes of ccRCC. These four subtypes are: CD8 (+) inflammatory,
CD8 (−) inflammatory, VEGF/immune-deserted, and immune-deserted metabolic tumors.
These subtypes not only predicted the response to different treatments such as immune
checkpoints and anti-VEGF therapies, but also predicted patients’ survival [11,17].

Inflamed CD8 (+) tumors were characterized at the proteomics level by upregulation
of CD38 and pathways involved in antigen processing/presentation (APM). Inflammatory
CD8 (−) tumors displayed as a unique feature for this subtype an elevated PDGFRA,
abundance of extracellular matrix (ECM)-associated proteins, and epithelial mesenchymal
transition (EMT). Immune-desert metabolic tumors had increased mTOR signaling and
a unique metabolic profile including elevated expression of mitochondrial proteins, OX-
PHOS and glycolysis [17].
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In the study performed by Qu et al. [14], an exhaustive proteogenomic analysis of
232 pairs of adjacent ccRCC and NAT tumors was performed. They used consensus clus-
tering to identify ccRCC proteomics subtypes, and classified ccRCC into three subtypes, de-
fined by the authors as GP1, GP2 and GP3. These proteomics subtypes exhibited differences
in overall survival (OS) and progression free survival (PFS). Among the three subtypes,
GP1 was shown to have the highest mortality risk.

The GP1 subtype was characterized by a high degree of immune infiltration, including
innate immune system, complement and coagulation cascades, antigen processing and
cross-presentation, interferon signaling and T-cell receptor (TCR) signaling, all of these
alterations resulting in it being the most immunosuppressed subtype. The GP2 subtype
showed increased metabolism-related pathways including the TCA cycle and respiratory
chain, amino acid metabolism, mitochondrial translation, lipid metabolism and glycoly-
sis/gluconeogenesis, and the GP3 subtype had the highest stromal scores, corresponding to
upregulation of extracellular matrix (ECM)-related pathways, including ECM organization,
collagen formation, elastic fiber formation and focal adhesion.

The aims of the study was to explore the tumor proteome of patients diagnosed with
localized ccRCC and treated with surgery and the identification of altered pathways that
could be the target of new treatments.

2. Materials and Methods
2.1. Patient Clinical Characteristics

Formalin-fixed paraffin-embedded (FFPE) samples from patients diagnosed with
ccRCC were recruited from the Hospital La Paz Biobank, Basque Biobank and Biobank of
Servicio de Salud Andaluz. The cohort included a total of 165 patients with diagnosis of
clear cell renal cell carcinoma, stage pT1b-pT3, Nx, M0, with any Furhman grade (Table 1).
Written informed consent was obtained for each participant and the Hospital La Paz Ethics
Committee approved this study (PI3310).

Table 1. Clinical Characteristics of the Patients.

Furhman grade

1 20 12%

2 79 48%

3 53 32%

4 12 7%

Unknown 1 1%

T stage

T1b 75 45%

T2 18 11%

T3 72 44%

2.2. Sample Processing and Protein Isolation

Protein isolation was performed as previously described [19]. Briefly, FFPE sections
were deparaffinized in xylene and washed twice in absolute ethanol. Protein isolates were
prepared in 2% of SDS. Protein quantity was measured using MicroBCA Protein Assay Kit
(Pierce-Thermo Scientific, Langenselbold, Germany). Finally, 10 µg of each protein extract
were digested with trypsin (1:50) and SDS was eliminated from the lysates using Detergent
Removal Spin Columns (Pierce, Langenselbold, Germany). Before mass-spectrometry
experiments, samples were desalted using ZipTips (Millipore, Burlington, MA, USA), dried,
and resolubilized in 15 µL of a 0.1% formic acid and 3% acetonitrile solution.

2.3. DIA Proteomics Experiments

Peptides were cleaned up using C18 stage-tips, re-solubilized in MS sample buffer
and spiked with indexed retention time (iRT) peptides. Ten pools of all samples were used
for data-dependent acquisition (DDA) runs. Mass spectrometry analysis was performed on
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an Orbitrap Fusion (Thermo Scientific, Langenselbold, Germany) equipped with a Digital
PicoView source (New Objective) and coupled to an M-Class UPLC (Waters), operated
in trapping mode. Peptides were loaded onto a commercial MZ Symmetry C18 Trap
Column (5 µm, 180 µm × 20 mm, Waters) followed by nanoEase MZ C18 HSS T3 Column
(1.8 µm, 75 µm × 250 mm, Waters). The peptides were eluted at a flow rate of 300 nl/min,
with a gradient from 5% to 22% for 109 min. The DDA and DIA runs were acquired
in Orbitrap-Orbitrap mode with isolation windows of 1.4 m/z (DDA, cycle time 3 s)
and 20 m/z covering a range from 400 to 1100 m/z (DIA). Spectronaut 14 was used in
conjunction with the Pulsar search engine to generate a hybrid spectral by applying the
default parameter settings to DDA and DIA runs. Spectra were searched against a canonical
SwissProt database for human and common protein contaminants (NCBI taxonomy ID9606,
release date 9 July 2019). Protein quantification was performed in Spectronaut using
the default settings. The quantitative data were extracted using the BGS Factory Report
(default) and used for follow-up analyses. To perform statistical modeling, fragment
intensities were aggregated into precursor and peptide intensities. A quality criterion of
at least 75% of valid values was applied and missing values were imputed to a normal
distribution using Perseus software [20]. Proteomics data is available at PRIDE repository
(http://www.ebi.ac.uk/pride).

2.4. Statistical Analyses

Proteomics ccRCC subtypes were defined using the processing proteomics data em-
ploying a consensus cluster algorithm (CC) [21]. The CC was performed in R environment
using the ConsensusClusterPlus package [22]. The optimum number of groups was deter-
mined by the delta plot and CC was calculated using Eucledian distance, average as linkage
method and k-means as the cluster algorithm.

Comparisons between groups were performed using a non-parametric Mann–Whitney
test and survival analysis was performed using a Kaplan–Meier and log-rank test. All
p-values are two-sided and considered significant under 0.05. Statistical analyses were
performed in GraphPad Prism version 6. Significance analysis of microarrays (SAM) was
performed using TM4 Mev software [23]. SAM allows the identification of differential
proteins, assigning a score to each protein based on the change in protein expression relative
to the standard deviation of repeated measurements [24]. SAM employs permutations of
the repeated measurements to estimate the percentage of proteins identified by chance, the
false discovery rate (FDR). In this case, an FDR below 5% was fixed.

2.5. Systems Biology Analyses

A network using proteomics data without other a priori information was built. For
that, probabilistic graphical models (PGMs) compatible with high-dimensional data were
used, as previously described [19]. Briefly, the network was built in two sequential steps:
first, the spanning tree with the maximum likelihood was determined, and then, the
simplest graph with edges that reduce Bayesian information criterion (BIC) and preserve
decomposability was built [25]. PGMs were calculated using R environment and grapHD
package [26].

Functional structure of the PGM was established using DAVID webtool, with “Homo
sapiens” as background and GOTERM-FAT, KEGG and Biocarta as categories [27]. To make
comparisons between groups of tumors, functional node activities were calculated as the
mean expression of those proteins related to the main function of each branch.

3. Results
3.1. DIA Proteomics Experiments

A total of 3091 proteins were identified in 165 ccRCC paraffin samples by DIA pro-
teomics experiments. After applying quality criteria (at least 75% of valid values across the
sample series), 2026 proteins were used for the analyses.

http://www.ebi.ac.uk/pride
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3.2. Definition of ccRCC Proteomics Subtypes

With the aim of classifying samples, CC was applied to the proteomics data. Two groups
of ccRCC patients were defined according to their proteomics profile. CC1 included 55 pa-
tients (33%) and CC2, 110 patients (67%). SAM analysis identified 514 proteins differentially
expressed between these two groups (Figure 1). Proteins overexpressed in CC2 were mainly
related to focal adhesion and membrane while proteins overexpressed in CC1 were mainly
related to translation and ribosome.
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There was no significant difference according to disease-free survival (DFS) or overall
survival (OS) between the two ccRCC proteomics subtypes (Figures 2 and 3).
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3.3. Systems Biology Analysis of ccRCC Proteomics Data

A system biology analysis based on PGMs was performed using proteomics data.
The resulting network was divided into eight functional nodes with an overrepresented
function: complement activation, focal adhesion, splicing, translation, nucleoplasm, mito-
chondria, and glycolysis (Figure 4A). Functional node activities were used to determine
biological processes with a different activity between the two proteomics subtypes. There
were significant differences in all the nodes with the exception of the complement activation
node. Adhesion node activity was higher in CC2 and spliceosome, adhesion 2, translation,
nucleosome, mitochondria, and glycolysis had a higher activity in CC1.

The complement node was formed by immunoglobulins and complement proteins.
The translation node was composed of ribosomal proteins. The adhesion node had proteins
related to focal adhesion, extracellular matrix, and collagen organization while adhesion
2 node had proteins involved in cytoskeleton, actin and cadherin binding. The mitochondria
functional node contained proteins involved in mitochondrial metabolism such as OGDH,
PDHA1, NDUFS1, or SDHA. The glycolysis functional node was composed of proteins
involved in glucose metabolism: ALDOA, PGK1, PFKP, ENO1, GPI, LDHA, PKM, etc. The
nucleosome functional node contained some proteins involved in chromatin processes such
as SMARCA4 or PARP1.



J. Clin. Med. 2023, 12, 384 7 of 12

J. Clin. Med. 2023, 12, x FOR PEER REVIEW 14 of 14 
 

 

 
Figure 4. Systems biology analysis of ccRCC proteomics data. A. Network obtained in the probabil-
istic graphical model analysis from the proteomics data. B. Boxplots of functional node activities 
comparing the two proteomics ccRCC groups. 

P value 0.0529 P value < 0.0001 P value < 0.0001

P value < 0.0001 P value < 0.0001 P value < 0.0001

P value < 0.0001 P value < 0.0001

Figure 4. Systems biology analysis of ccRCC proteomics data. (A). Network obtained in the proba-
bilistic graphical model analysis from the proteomics data. (B). Boxplots of functional node activities
comparing the two proteomics ccRCC groups.



J. Clin. Med. 2023, 12, 384 8 of 12

4. Discussion

In this study, a proteomics characterization of 165 localized ccRCC samples cou-
pled with a system biology approach allow us the identification and characterization of
two ccRCC proteomics subtypes (CC1 and CC2). A differential expression of 514 proteins
was found between the two groups.

In functional analysis we found that the CC1 subtype was characterized by an increase
in the expression of proteins related to glycolysis, mitochondria, translation, and adhesion,
specifically proteins related to the cytoskeleton and actin.

It is known that in normal cells under normoxic conditions, glucose is a major source
of pyruvate, which feeds the tricarboxylic acid (TCA) cycle for energy production, but
under hypoxic conditions, normal cells shift their energy production from the TCA cycle
to lactate fermentation. In contrast, in ccRCC cells, energy is predominantly produced
by lactic acid fermentation, regardless of oxygen level. This shift or reprogramming in
metabolism is known as the Warburg effect or aerobic glycolysis [28]

In order to understand how this metabolic reprogramming occurs, we start from the
knowledge that the loss of function in the von hippel lindau (VHL) gene is a common
phenomenon in ccRCC. In VHL-deficient ccRCC, hypoxia inducible factor 1α (HIF-1α)
increases, which in turn increases the expression of glucose transporter 1 (GLUT-1), which
promotes cellular glucose uptake. HIF-1α also upregulates the expression of genes encoding
enzymes involved in glycolysis, such as hexokinase 1 and 2, glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) and pyruvate kinase (PKM). In addition, HIF-1α upregulates
the expression of Lactate Dehydrogenase A (LDH-A) and thus promotes the conversion
of pyruvate to lactate and shifts cellular metabolism out of the TCA cycle by regulating
pyruvate dehydrogenase [29]. In our work on the glycolysis node, we found overexpression
of several proteins including GAPDH, PKM and LDHA-A.

Interestingly, increased GLUT-1 expression in ccRCC tumors, is correlated with
a decrease in the number of infiltrating CD8+ T cells [29,30], suggesting an additional
mechanism by which ccRCC might suppress the immune system.

HIF-1α also regulates the expression of several microRNAs, including miR-210 [31],
which is overexpressed in ccRCC and has been shown to downregulate mitochond-
rial respiration.

In line with the importance of this pathway, we have to mention that Belzutifan [32],
an HIF-2α antagonist, has been recently approved by the US Food and Drug Administra-
tion (FDA) for the treatment of ccRCC. The CC2 subtype was characterized by a higher
expression of proteins related to the focal adhesion process (the process by which the actin
microfilament cytoskeleton is anchored intracellularly to extracellular matrix proteins).

This adhesion node had proteins related to focal adhesion, extracellular matrix, and
collagen organization. Cell adhesion plays a key role in the development of metastasis,
altered expression of genes involved in adhesion and remodeling of the extracellular matrix
(ECM) causes changes in the contacts between neighboring cells and between cells and the
ECM, contributing to the metastatic process [33].

Wang et al. [34], compared RCC tumor tissue with NAT and found a higher expression
of proteins related to cell adhesion in the tumor tissue; and a group of these proteins
that were associated with a worse prognosis and higher risk of progression such as CD44,
CD86, Fibronectin 1 (FN1), Integrin Subunit Alpha M (ITGAM), and Integrin Subunit Beta
2 (ITGB2). ITGAM and ITGB2 are subunits of integrin, and these cell adhesion-related
molecules are closely related to cancer cell invasion and metastasis. Further studies are
needed to determine their exact role in RCC. In our study we found overexpression of
ITGA6, which belongs to the same family as the previous mentioned proteins.

Other proteins that also showed increased expression in tumor tissue are Protein
Tyrosine Phosphatase Receptor Type C (PTPRC) and Toll-Like Receptor 2 (TLR2). However,
their exact mechanisms are not yet fully understood in RCC [33]. In our work we also
found an overexpression of PTPRC.
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Also, the alteration of this cell adhesion mechanism is involved in the epithelial
mesenchymal transition (EMT) and seems to also contribute to the resistance of tumor cells
to chemotherapy and radiotherapy [35].

The two major studies on proteomics are the one performed by CPTAC [17] and
the work performed by Qu’s group [16]. In both studies different ccRCC subtypes were
identified according to their proteomic profile. In addition, Qu’s group correlated their
classification with the classification established by the CPTAC, finding that the GP1 subtype
was mainly CD8 (+) inflammatory tumors, the GP2 subtype was mainly immune-deserted
metabolic subtype tumors, and the GP3 subtype was mainly CD8 (−) inflammatory tumors.

In contrast to the previously mentioned studies, which included patients with localized
and advanced disease, our work was focused on the group of patients with localized
disease. When we compared our results with those of the CPTAC [17], we found that
our CC1 subtype, which is mainly characterized by alterations in metabolic pathways
(glycolysis, mitochondrial alteration), is similar to the subtype called metabolic-immune-
desert, that presents alterations in the same pathways. While our CC2 subtype is similar
to the CD8 (−) inflammatory tumor subtype, as both at the proteomics level present
alterations in pathways that regulate processes linked to the extracellular matrix (ECM), to
the focal adhesion process and to EMT.

Whereas if we compare our proteomics subtypes with those described by Qu et al. [16],
it is possible to intuit that our CC1 subtype is equivalent to the GP2 subtype, because both
groups present the alteration of metabolic processes such as glycolysis and cellular respira-
tion as their most important characteristic. Also, our subtype CC2 could be equivalent to
GP3, as both groups present the alteration of processes related to the extracellular matrix,
including the focal adhesion process, as a main characteristic. We did not identify a subtype
equivalent to GP1 because it includes a high proportion of stage IV tumors, which were not
analyzed in this work.

In our work, when we compared the progression-free survival (PFS) obtained by
each subtype, we found that there is no statistically significant difference between them.
The same situation occurred when we compared OS between the two subtypes, with no
differences. These results are similar to the results reported by Qu et al. [16], who did not
find significant differences in DFS or OS between the GP2 and GP3 subtypes.

Although our results are largely in agreement with the results obtained by CPTAC [17]
and Qu’s group [16], in our work we did not identify clusters with a predominance of
alterations in the immunity pathway. This difference may be explained by the fact that
our work is only a proteomics analysis whereas in the previously mentioned studies
both proteomics and transcriptomics data were combined for the identification of their
different subtypes. Another reason for this difference between the previously mentioned
papers [16,17] and ours is that they compared tumor tissue with NAT; while we compared
only tumor tissue samples.

Nevertheless, we consider that the proteomics-only study also provides valid data
for the identification of the predominant altered pathways in each subtype, as well as the
usefulness of these proteomics profiles in the search for possible therapeutic targets.

For example, the glycolysis pathway alteration is a characteristic of our CC1 subtype
(metabolic); today we can find several drugs that are accumulating growing evidence that
they could have a role in controlling this pathway. Some examples are:

• Dichloroacetate (DCA), already used to treat acute and chronic lactic acidosis, inborn
errors of metabolism and diabetes, these small molecules selectively target cancer
cells and switch their metabolism from glycolysis to oxidative phosphorylation; but
their clinical administration in cancer therapy is still limited to early phase clinical
trials [36,37].

• 2-deoxy-D-glucose (2-DG) is one of the most effective anti-glycolytic agents. It is phos-
phorylated by hexokinase (HK), which is the first rate-limiting enzyme of glycolysis
and subsequently inhibits the pentose-phosphate pathway (NAPDH) and ATP genera-
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tion [38]. This molecule is one of the most studied nowadays, because if we search in
the clinical trials database we can find 37 open trials, all of them in early phases.

With these examples we have tried to demonstrate that knowing the different altered
metabolic pathways (glycolysis, cellular respiration, focal adhesion) in ccRCC can guide us
in the search for new treatments.

Our group believes that the proteomics study could provide interesting information
for a better understanding of the carcinogenesis process, for better decision making in daily
clinical practice and also for the development of new treatments.

5. Conclusions

In the present work, using proteomics analysis we found two distinct subtypes of
ccRCC, differentiated by the alteration of distinct molecular pathways. CC1 is characterized
by the alteration of metabolic pathways, translation, and adhesion related to cytoskeleton,
spliceosome, and nucleosome, whereas CC2 was characterized by the alteration of focal
adhesion, extracellular matrix and collagen organization. These results are consistent with
those found in other previously cited studies. The importance of this type of study is to
know more about the altered molecular pathways because this provides us with more
knowledge about them and may help us in the development and research of new drugs
that act on these pathways.
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