Transcatheter Aortic Valve Replacement for Bicuspid vs. Tricuspid Aortic Stenosis among Patients at Low Surgical Risk in China: From the Multicenter National NTCVR Database
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Procedures and Outcomes
2.3. Statistical Analysis
3. Results
3.1. Patient Population
3.2. Procedural and Clinical Outcomes
3.3. Multivariable Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cribier, A.; Eltchaninoff, H.; Bash, A.; Borenstein, N.; Tron, C.; Bauer, F.; Derumeaux, G.; Anselme, F.; Laborde, F.; Leon, M.B. Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis. Circulation 2002, 106, 3006–3008. [Google Scholar] [CrossRef]
- Leon, M.B.; Smith, C.R.; Mack, M.J.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 2010, 363, 1597–1607. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.R.; Leon, M.B.; Mack, M.J.; Miller, D.C.; Moses, J.W.; Svensson, L.G.; Tuzcu, E.M.; Webb, J.G.; Fontana, G.P.; Makkar, R.R.; et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 2011, 364, 2187–2198. [Google Scholar] [CrossRef] [Green Version]
- Leon, M.B.; Smith, C.R.; Mack, M.J.; Makkar, R.R.; Svensson, L.G.; Kodali, S.K.; Thourani, V.H.; Tuzcu, E.M.; Miller, D.C.; Herrmann, H.C.; et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N. Engl. J. Med. 2016, 374, 1609–1620. [Google Scholar] [CrossRef]
- Thourani, V.H.; Kodali, S.; Makkar, R.R.; Herrmann, H.C.; Williams, M.; Babaliaros, V.; Smalling, R.; Lim, S.; Malaisrie, S.C.; Kapadia, S.; et al. Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: A propensity score analysis. Lancet 2016, 387, 2218–2225. [Google Scholar] [CrossRef]
- Mack, M.J.; Leon, M.B.; Thourani, V.H.; Makkar, R.; Kodali, S.K.; Russo, M.; Kapadia, S.R.; Malaisrie, S.C.; Cohen, D.J.; Pibarot, P.; et al. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N. Engl. J. Med. 2019, 380, 1695–1705. [Google Scholar] [CrossRef]
- Pan, W.Z.; Li, M.F.; Zhou, D.X.; Guan, L.H.; Cheng, L.L.; Ge, J.B. Prevalence and echocardiographic feature of bicuspid aortic valve in patients with severe aortic stenosis: An echocardiography database analysis. Zhonghua Xin Xue Guan Bing Za Zhi 2015, 43, 244–247. [Google Scholar]
- Jilaihawi, H.; Wu, Y.; Yang, Y.; Xu, L.; Chen, M.; Wang, J.; Kong, X.; Zhang, R.; Wang, M.; Lv, B.; et al. Morphological characteristics of severe aortic stenosis in China: Imaging corelab observations from the first Chinese transcatheter aortic valve trial. Catheter. Cardiovasc. Interv. 2015, 85 (Suppl. 1), 752–761. [Google Scholar] [CrossRef]
- Husso, A.; Airaksinen, J.; Juvonen, T.; Laine, M.; Dahlbacka, S.; Virtanen, M.; Niemelä, M.; Mäkikallio, T.; Savontaus, M.; Eskola, M.; et al. Transcatheter and surgical aortic valve replacement in patients with bicuspid aortic valve. Clin. Res. Cardiol. 2021, 110, 429–439. [Google Scholar] [CrossRef]
- Elbadawi, A.; Saad, M.; Elgendy, I.Y.; Barssoum, K.; Omer, M.A.; Soliman, A.; Almahmoud, M.F.; Ogunbayo, G.O.; Mentias, A.; Gilani, S.; et al. Temporal trends and outcomes of transcatheter versus surgical aortic valve replacement for bicuspid aortic valve stenosis. JACC Cardiovasc. Interv. 2019, 12, 1811–1822. [Google Scholar] [CrossRef]
- Halim, S.A.; Edwards, F.H.; Dai, D.; Li, Z.; Mack, M.J.; Holmes, D.R.; Tuzcu, E.M.; Thourani, V.H.; Harrison, J.K.; Brennan, J.M. Outcomes of transcatheter aortic valve replacement in patients with bicuspid aortic valve disease: A report from the Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy Registry. Circulation 2020, 141, 1071–1079. [Google Scholar] [CrossRef]
- Liu, X.B.; Jiang, J.B.; Zhou, Q.J.; Pu, Z.X.; He, W.; Dong, A.Q.; Feng, Y.; Jiang, J.; Sun, Y.; Xiang, M.X.; et al. Evaluation of the safety and efficacy of transcatheter aortic valve implantation in patients with a severe stenotic bicuspid aortic valve in a Chinese population. J. Zhejiang Univ. Sci. B 2015, 16, 208–214. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.B.; Li, Y.J.; Xiong, T.Y.; Ou, Y.W.; Lv, W.Y.; He, J.L.; Li, Y.M.; Zhao, Z.G.; Wei, X.; Xu, Y.N.; et al. Comparison of procedural, clinical and valve performance results of transcatheter aortic valve replacement in patients with bicuspid versus tricuspid aortic stenosis. Int. J. Cardiol. 2018, 254, 69–74. [Google Scholar] [CrossRef]
- Masri, A.; Svensson, L.G.; Griffin, B.P.; Desai, M.Y. Contemporary natural history of bicuspid aortic valve disease: A systematic review. Heart 2017, 103, 1323–1330. [Google Scholar] [CrossRef]
- Forrest, J.K.; Ramlawi, B.; Deeb, G.M.; Zahr, F.; Song, H.K.; Kleiman, N.S.; Chetcuti, S.J.; Michelena, H.I.; Mangi, A.A.; Skiles, J.A.; et al. Transcatheter aortic valve replacement in low-risk patients with bicuspid aortic valve stenosis. JAMA Cardiol. 2021, 6, 50–57. [Google Scholar] [CrossRef]
- Makkar, R.R.; Yoon, S.H.; Leon, M.B.; Chakravarty, T.; Rinaldi, M.; Shah, P.B.; Skipper, E.R.; Thourani, V.H.; Babaliaros, V.; Cheng, W.; et al. Association Between Transcatheter Aortic Valve Replacement for Bicuspid vs Tricuspid Aortic Stenosis and Mortality or Stroke Among Patients at Low Surgical Risk. JAMA 2021, 326, 1034–1044. [Google Scholar] [CrossRef]
- Hong, N.; Pan, W.; Zhou, D.; Ge, J. The China Heart Valve Center and National Transcatheter Valve Therapeutics Registry database. Cardiol. Plus 2022, 7, 107–110. [Google Scholar] [CrossRef]
- Zhou, D.; Pan, W.; Wang, J.; Wu, Y.; Chen, M.; Modine, T.; Mylotte, D.; Piazza, N.; Ge, J. VitaFlow transcatheter valve system in the treatment of severe aortic stenosis: One-year results of a multicenter study. Catheter. Cardiovasc. Interv. 2020, 95, 332–338. [Google Scholar] [CrossRef]
- Borger, M.A.; Preston, M.; Ivanov, J.; Fedak, P.W.; Davierwala, P.; Armstrong, S.; David, T.E. Should the ascending aorta be replaced more frequently in patients with bicuspid aortic valve disease? J. Thorac. Cardiovasc. Surg. 2004, 128, 677–683. [Google Scholar] [CrossRef] [Green Version]
- Girdauskas, E.; Disha, K.; Borger, M.A.; Kuntze, T. Long-term prognosis of ascending aortic aneurysm after aortic valve replacement for bicuspid versus tricuspid aortic valve stenosis. J. Thorac. Cardiovasc. Surg. 2014, 147, 276–282. [Google Scholar] [CrossRef] [Green Version]
- Itagaki, S.; Chikwe, J.P.; Chiang, Y.P.; Egorova, N.N.; Adams, D.H. Long-term risk for aortic complications after aortic valve replacement in patients with bicuspid aortic valve versus marfan syndrome. J. Am. Coll. Cardiol. 2015, 65, 2363–2369. [Google Scholar] [CrossRef] [PubMed]
- Andrei, A.C.; Yadlapati, A.; Malaisrie, S.C.; Puthumana, J.J.; Li, Z.; Rigolin, V.H.; Mendelson, M.; Clennon, C.; Kruse, J.; Fedak, P.W.; et al. Comparison of outcomes and presentation in men-versus-women with bicuspid aortic valves undergoing aortic valve replacement. Am. J. Cardiol. 2015, 116, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Holmgren, A.; Enger, T.B.; Näslund, U.; Videm, V.; Valle, S.; Evjemo, K.J.; Friberg, Ö.; Wahba, A. Long-term results after aortic valve replacement for bicuspid or tricuspid valve morphology in a Swedish population. Eur. J. Cardiothorac. Surg. 2021, 59, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Jiang, H.; Martin, O.; Wilson-Smith, A.R. Procedural and clinical outcomes of transcatheter aortic valve replacement in bicuspid aortic valve patients: A systematic review and meta-analysis. Ann. Cardiothorac. Surg. 2022, 11, 351–362. [Google Scholar] [CrossRef]
- Overtchouk, P.; Modine, T. A comparison of alternative access routes for transcatheter aortic valve implantation. Expert. Rev. Cardiovasc. Ther. 2018, 16, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Kirker, E.B.; Hodson, R.W.; Spinelli, K.J.; Korngold, E.C. The carotid artery as a preferred alternative access route for transcatheter aortic valve replacement. Soc. Thorac. Surg. 2017, 104, 621–629. [Google Scholar] [CrossRef] [Green Version]
- Overtchouk, P.; Folliguet, T.; Pinaud, F.; Fouquet, O.; Pernot, M.; Bonnet, G.; Hubert, M.; Lapeze, J.; Claudel, J.P.; Ghostine, S.; et al. Transcarotid approach for transcatheter aortic valve replacement with the sapien 3 prosthesis: A multicenter French registry. JACC Cardiovasc. Interv. 2019, 12, 413–419. [Google Scholar] [CrossRef]
- Praz, F.; Wenaweser, P. Transcatheter aortic valve replacement via the transcarotid access. Circ. Cardiovasc. Interv. 2018, 11, e007459. [Google Scholar] [CrossRef]
- Mylotte, D.; Sudre, A.; Teiger, E.; Obadia, J.F.; Lee, M.; Spence, M.; Khamis, H.; Al Nooryani, A.; Delhaye, C.; Amr, G.; et al. Transcarotid transcatheter aortic valve replacement: Feasibility and safety. JACC Cardiovasc. Interv. 2016, 9, 472–480. [Google Scholar] [CrossRef]
BAV(n = 229) | TAV(n = 160) | p Value | |
---|---|---|---|
Age, yrs | 72.9 ± 6.9 | 75.3 ± 6.7 | 0.0007 |
Male | 65.1% (149/229) | 66.9% (107/160) | 0.711 |
NYHA functional class III or IV | 57.2% (131/229) | 68.8% (110/160) | 0.021 |
STS-PROM score *, % | 2.6 ± 0.9 | 2.5 ± 1.0 | 0.652 |
Smoking | 21.0% (48/229) | 26.9% (43/160) | 0.175 |
Diabetes mellitus | 13.5% (31/229) | 23.8% (38/160) | 0.009 |
Hypertension | 44.1% (101/229) | 52.5% (84/160) | 0.220 |
Hyperlipidemia | 15.3% (35/229) | 13.1% (21/160) | 0.551 |
Peripheral vascular disease | 3.5% (8/229) | 5.0% (8/160) | 0.462 |
Prior CVA/TIA | 6.1% (14/229) | 8.1% (13/160) | 0.442 |
Chronic lung disease | 8.7% (20/229) | 10.6% (17/160) | 0.532 |
Prior myocardial infarction | 0.4% (1/229) | 4.4% (7/160) | 0.020 |
Prior PCI | 4.4% (10/229) | 9.4% (15/160) | 0.047 |
Pre-existing PPM | 0% (0/229) | 2.5% (4/160) | 0.028 |
Atrial fibrillation/flutter | 6.6% (15/229) | 10.0% (16/160) | 0.216 |
Carcer | 3.9% (9/229) | 2.5% (4/160) | 0.627 |
BAV(n = 229) | TAV(n = 160) | p Value | |
---|---|---|---|
Echocardiographic | |||
LVDD (mm) | 47.8 ± 11.0 | 50.5 ± 9.7 | 0.016 |
Mean gradient (mmHg) | 67.1 ± 21.6 | 64.2 ± 22.0 | 0.210 |
Aortic valve area (cm2) | 0.5 ± 0.3 | 0.6 ± 0.2 | 0.010 |
LVEF, % | 56.9 ± 11.9 | 58.4 ± 9.9 | 0.219 |
Aortic insufficiency | 79.9% (183/229) | 90.6% (145/160) | 0.004 |
Mitral insufficiency | 81.7% (187/229) | 84.4% (135/160) | 0.485 |
Tricuspid insufficiency | 74.2% (170/229) | 72.5% (116/160) | 0.703 |
Coronary CT | |||
Leaflet calcification | 97.8% (224/229) | 92.5% (148/160) | 0.023 |
Annulus calcification | 57.6% (132/229) | 48.1% (77/160) | 0.064 |
Annulus area (mm2) | 456.5 ± 117.4 | 458.4 ± 101.5 | 0.870 |
Annulus circumference (mm) | 79.5 ± 32.6 | 79.1 ± 36.7 | 0.919 |
BAV(n = 229) | TAV(n = 160) | p Value | |
---|---|---|---|
In-hospital outcomes | |||
All-cause death | 0% (0/229) | 0% (0/160) | - |
All stroke | 2.6% (6/229) | 0% (0/160) | 0.045 |
All-cause death or stroke | 2.6% (6/229) | 0% (0/160) | 0.045 |
Major vascular complications | 3.1% (7/229) | 3.1% (5/160) | 1.000 |
Major bleeding | 2.6% (6/229) | 1.3% (2/160) | 0.566 |
MI | 0.9% (2/229) | 0.6% (1/160) | 1.000 |
New-onset atrial fibrillation | 2.2% (5/229) | 1.9% (3/160) | 1.000 |
New-onset LBBB | 10.0% (23/229) | 11.3% (18/160) | 0.703 |
New-onset AVB | 7.4% (17/229) | 8.1% (13/160) | 0.799 |
New PPM implantation | 6.6% (15/229) | 8.8% (14/160) | 0.416 |
Moderate/severe PVL | 2.6% (6/229) | 2.5% (4/160) | 1.000 |
30-day outcomes | |||
Follow-up rate | 93.0% (213/229) | 91.3% (146/160) | 0.521 |
All-cause death | 0.9% (2/213) | 0.7% (1/146) | 1.000 |
All stroke | 3.3% (7/213) | 0% (0/146) | 0.044 |
All-cause death or stroke | 4.2% (9/213) | 0.7% (1/146) | 0.053 |
Major vascular complications | 3.3% (7/213) | 3.4% (5/146) | 1.000 |
Major bleeding | 4.7% (10/213) | 2.1% (3/146) | 0.304 |
MI | 0.9% (2/213) | 0.7% (1/146) | 1.000 |
New-onset atrial fibrillation | 2.8% (6/213) | 2.7% (4/146) | 1.000 |
New-onset LBBB | 12.7% (27/213) | 12.3% (18/146) | 0.922 |
New-onset AVB | 8.5% (18/213) | 8.9% (13/146) | 0.881 |
New PPM implantation | 10.3% (22/213) | 12.3% (18/146) | 0.554 |
Moderate/severe PVL | 3.8% (8/213) | 2.7% (4/146) | 0.820 |
Variables | Univariate Analysis | Multivariate Analysis | ||||||
---|---|---|---|---|---|---|---|---|
OR | Lower 95% CI | Upper 95% CI | p-Value | OR | Lower 95% CI | Upper 95% CI | p-Value | |
Age | 1.033 | 0.926 | 1.153 | 0.556 | - | - | - | - |
Female | 0.766 | 0.147 | 4.004 | 1.000 | - | - | - | - |
NYHA III or IV | 0.454 | 0.100 | 2.057 | 0.434 | - | - | - | - |
STS score | 1.131 | 0.501 | 2.551 | 0.767 | - | - | - | - |
Smoking | 0.557 | 0.066 | 4.687 | 1.000 | - | - | - | - |
Diabetes mellitus | 1.881 | 0.357 | 9.899 | 0.361 | - | - | - | - |
Hypertension | 2.806 | 0.538 | 14.639 | 0.265 | - | - | - | - |
Hyperlipidemia | 0.991 | 0.117 | 8.390 | 1.000 | - | - | - | - |
Peripheral vascular disease | 0.981 | 0.968 | 0.995 | 1.000 | - | - | - | - |
Prior CVA/TIA | 2.282 | 0.265 | 19.672 | 0.398 | - | - | - | - |
Chronic lung disease | 1.652 | 0.193 | 14.120 | 0.496 | - | - | - | - |
Prior myocardial infarction | 0.982 | 0.968 | 0.995 | 1.000 | - | - | - | - |
Prior PCI | 2.486 | 0.288 | 21.492 | 0.374 | - | - | - | - |
Pre-existing PPM | 0.982 | 0.969 | 0.995 | 1.000 | - | - | - | - |
Atrial fibrillation/flutter | 0.980 | 0.966 | 0.995 | 1.000 | - | - | - | - |
Carcer | 0.981 | 0.968 | 0.995 | 1.000 | - | - | - | - |
LVDD | 0.960 | 0.877 | 1.050 | 0.368 | - | - | - | - |
Mean gradient at basement | 1.004 | 0.973 | 1.037 | 0.784 | - | - | - | - |
AVA by echo base | 7.268 | 0.174 | 303.859 | 0.298 | - | - | - | - |
LVEF | 1.019 | 0.946 | 1.098 | 0.624 | - | - | - | - |
Aortic insufficiency | 0.457 | 0.087 | 2.409 | 0.302 | - | - | - | - |
Leaflet calcification | 0.279 | 0.032 | 2.453 | 0.284 | - | - | - | - |
Transcarotid access | 30.160 | 4.685 | 194.15 | 0.006 | 29.200 | 3.965 | 215.06 | 0.001 |
Balloon pre-dilatation | 1.020 | 1.005 | 1.035 | 1.000 | - | - | - | - |
BAV | 1.032 | 1.008 | 1.056 | 0.045 | - | - | - | 0.995 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, N.; Pan, W.; Liu, X.; Zhou, D.; Wang, J.; Ge, J. Transcatheter Aortic Valve Replacement for Bicuspid vs. Tricuspid Aortic Stenosis among Patients at Low Surgical Risk in China: From the Multicenter National NTCVR Database. J. Clin. Med. 2023, 12, 387. https://doi.org/10.3390/jcm12010387
Hong N, Pan W, Liu X, Zhou D, Wang J, Ge J. Transcatheter Aortic Valve Replacement for Bicuspid vs. Tricuspid Aortic Stenosis among Patients at Low Surgical Risk in China: From the Multicenter National NTCVR Database. Journal of Clinical Medicine. 2023; 12(1):387. https://doi.org/10.3390/jcm12010387
Chicago/Turabian StyleHong, Nanchao, Wenzhi Pan, Xianbao Liu, Daxin Zhou, Jianan Wang, and Junbo Ge. 2023. "Transcatheter Aortic Valve Replacement for Bicuspid vs. Tricuspid Aortic Stenosis among Patients at Low Surgical Risk in China: From the Multicenter National NTCVR Database" Journal of Clinical Medicine 12, no. 1: 387. https://doi.org/10.3390/jcm12010387
APA StyleHong, N., Pan, W., Liu, X., Zhou, D., Wang, J., & Ge, J. (2023). Transcatheter Aortic Valve Replacement for Bicuspid vs. Tricuspid Aortic Stenosis among Patients at Low Surgical Risk in China: From the Multicenter National NTCVR Database. Journal of Clinical Medicine, 12(1), 387. https://doi.org/10.3390/jcm12010387