Plasma Rich in Growth Factors as an Adjuvant Agent in Non-Penetrating Deep Sclerectomy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surgical Technique
2.2. PRGF Preparation
2.3. Postoperative Treatment
2.4. Study Variables
2.5. Statistical Analisys
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaarawy, T.; Mansouri, K.; Schnyder, C.; Ravinet, E.; Achache, F.; Mermoud, A. Long-term results of deep sclerectomy with collagen implant. J. Cataract Refract. Surg. 2004, 30, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Mendrinos, E.; Mermoud, A.; Shaarawy, T. Nonpenetrating glaucoma surgery. Surv. Ophthalmol. 2008, 53, 592–630. [Google Scholar] [CrossRef] [PubMed]
- Eldaly, M.A.; Bunce, C.; Elsheikha, O.Z.; Wormald, R. Non-penetrating filtration surgery versus trabeculectomy for open-angle glaucoma. Cochrane Database Syst. Rev. 2014, CD007059. [Google Scholar] [CrossRef] [PubMed]
- Guedes, R.A.P.; Guedes, V.M.P.; Chaoubah, A. Factors associated with non-penetrating deep sclerectomy failure in controlling intraocular pressure. Acta Ophthalmol. 2011, 89, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Mermoud, A. Complications of deep nonpenetrating sclerectomy. J. Fr. Ophtalmol. 2006, 29, 1180–1197. [Google Scholar] [CrossRef]
- Sanchez-Avila, R.M.; Merayo-Lloves, J.; Fernandez, M.L.; Rodriguez-Gutierrez, L.A.; Jurado, N.; Muruzabal, F.; Orive, G.; Anitua, E. Plasma Rich in Growth Factors for the Treatment of Dry Eye after LASIK Surgery. Ophthalmic Res. 2018, 60, 80–86. [Google Scholar] [CrossRef]
- Sanchez-Avila, R.M.; Merayo-Lloves, J.; Riestra, A.C.; Fernandez-Vega Cueto, L.; Anitua, E.; Begona, L.; Muruzabal, F.; Orive, G. Treatment of patients with neurotrophic keratitis stages 2 and 3 with plasma rich in growth factors (PRGF-Endoret) eye-drops. Int. Ophthalmol. 2017, 38, 1193–1204. [Google Scholar] [CrossRef]
- Sánchez-Ávila, R.M.; Robayo-Esper, C.A.; Villota-Deleu, E.; Fernández-Vega Sanz, Á.; Fernández-Vega González, Á.; de la Sen-Corcuera, B.; Anitua, E.; Merayo-Lloves, J. Plasma Rich in Growth Factors in Macular Hole Surgery. Clin. Pract. 2022, 12, 57–69. [Google Scholar] [CrossRef]
- Figueroa, M.S.; Mora Cantallops, A.; Virgili, G.; Govetto, A. Long-term results of autologous plasma as adjuvant to pars plana vitrectomy in the treatment of high myopic full-thickness macular holes. Eur. J. Ophthalmol. 2020, 31, 2612–2620. [Google Scholar] [CrossRef]
- Sanchez-Avila, R.M.; Merayo-Lloves, J.; Riestra, A.C.; Berisa, S.; Lisa, C.; Sanchez, J.A.; Muruzabal, F.; Orive, G.; Anitua, E. Plasma rich in growth factors membrane as coadjuvant treatment in the surgery of ocular surface disorders. Medicine 2018, 97, e0242. [Google Scholar] [CrossRef]
- Anitua, E.; de la Sen-Corcuera, B.; Orive, G.; Sánchez-Ávila, R.M.; Heredia, P.; Muruzabal, F.; Merayo-Lloves, J. Progress in the use of plasma rich in growth factors in ophthalmology: From ocular surface to ocular fundus. Expert Opin. Biol. Ther. 2021, 22, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Agirretxe, I.; Freire, V.; Muruzabal, F.; Orive, G.; Anitua, E.; Díez-Feijóo, E.; Acera, A. Subconjunctival PRGF Fibrin Membrane as an Adjuvant to Nonpenetrating Deep Sclerectomy: A 2-Year Pilot Study. Ophthalmic Res. 2018, 59, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, G. Nonstitch suprachoroidal technique for T-flux implantation in deep sclerectomy. J. Glaucoma 2009, 18, 262–264. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, R.; Loscos, J.; Valldeperas, X.; Parera, M.A.; Sabala, A. Supraciliary hema implant in combined deep sclerectomy and phacoemulsification: One year results. Open Ophthalmol. J. 2012, 6, 59–62. [Google Scholar] [CrossRef] [PubMed]
- Belda, J.I.; Loscos-Arenas, J.; Mermoud, A.; Lozano, E.; D’Alessandro, E.; Rebolleda, G.; Rodriguez-Agirretxe, I.; Canut, M.; Rodriguez-Calvo, P.P. Supraciliary versus intrascleral implantation with hema implant (Esnoper V-2000) in deep sclerectomy: A multicenter randomized controlled trial. Acta Ophthalmol. 2018, 96, e852–e858. [Google Scholar] [CrossRef]
- Sánchez-Avila, R.M.; Merayo-Lloves, J.; Fernández, M.L.; Rodríguez-Gutiérrez, L.A.; Rodríguez-Calvo, P.P.; Fernández-Vega Cueto, A.; Muruzabal, F.; Orive, G.; Anitua, E. Plasma rich in growth factors eye drops to treat secondary ocular surface disorders in patients with glaucoma. Int. Med. Case Rep. J. 2018, 11, 97–103. [Google Scholar] [CrossRef]
- Bergin, C.; Petrovic, A.; Mermoud, A.; Ravinet, E.; Sharkawi, E. Baerveldt tube implantation following failed deep sclerectomy versus repeat deep sclerectomy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 161–168. [Google Scholar] [CrossRef]
- Bissig, A.; Rivier, D.; Zaninetti, M.; Shaarawy, T.; Mermoud, A.; Roy, S. Ten years follow-up after deep sclerectomy with collagen implant. J. Glaucoma 2008, 17, 680–686. [Google Scholar] [CrossRef]
- Fan Gaskin, J.C.; Nguyen, D.Q.; Soon Ang, G.; O’Connor, J.; Crowston, J.G. Wound Healing Modulation in Glaucoma Filtration Surgery-Conventional Practices and New Perspectives: The Role of Antifibrotic Agents (Part I). J. Curr. glaucoma Pract. 2014, 8, 37–45. [Google Scholar] [CrossRef]
- Cheng, J.-W.; Cai, J.-P.; Li, Y.; Wei, R.-L. Intraoperative mitomycin C for nonpenetrating glaucoma surgery: A systematic review and meta-analysis. J. Glaucoma 2011, 20, 322–326. [Google Scholar] [CrossRef]
- Kozobolis, V.P.; Christodoulakis, E.V.; Tzanakis, N.; Zacharopoulos, I.; Pallikaris, I.G. Primary deep sclerectomy versus primary deep sclerectomy with the use of mitomycin C in primary open-angle glaucoma. J. Glaucoma 2002, 11, 287–293. [Google Scholar] [CrossRef]
- Mastropasqua, R.; Fasanella, V.; Agnifili, L.; Curcio, C.; Ciancaglini, M.; Mastropasqua, L. Anterior segment optical coherence tomography imaging of conjunctival filtering blebs after glaucoma surgery. Biomed Res. Int. 2014, 2014, 610623. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Buenaga, R.; Rebolleda, G.; Casas-Llera, P.; Muñoz-Negrete, F.J.; Pérez-López, M. A comparison of intrascleral bleb height by anterior segment OCT using three different implants in deep sclerectomy. Eye 2012, 26, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Aptel, F.; Dumas, S.; Denis, P. Ultrasound biomicroscopy and optical coherence tomography imaging of filtering blebs after deep sclerectomy with new collagen implant. Eur. J. Ophthalmol. 2009, 19, 223–230. [Google Scholar] [CrossRef]
- Pérez-Rico, C.; Gutiérrez-Ortíz, C.; Moreno-Salgueiro, A.; González-Mesa, A.; Teus, M.A. Visante anterior segment optical coherence tomography analysis of morphologic changes after deep sclerectomy with intraoperative mitomycin-C and no implant use. J. Glaucoma 2014, 23, e86–e90. [Google Scholar] [CrossRef] [PubMed]
- Narita, A.; Morizane, Y.; Miyake, T.; Seguchi, J.; Baba, T.; Shiraga, F. Characteristics of early filtering blebs that predict successful trabeculectomy identified via three-dimensional anterior segment optical coherence tomography. Br. J. Ophthalmol. 2018, 102, 796–801. [Google Scholar] [CrossRef]
- Hirooka, K.; Takagishi, M.; Baba, T.; Takenaka, H.; Shiraga, F. Stratus optical coherence tomography study of filtering blebs after primary trabeculectomy with a fornix-based conjunctival flap. Acta Ophthalmol. 2010, 88, 60–64. [Google Scholar] [CrossRef]
- Singh, M.; Chew, P.T.K.; Friedman, D.S.; Nolan, W.P.; See, J.L.; Smith, S.D.; Zheng, C.; Foster, P.J.; Aung, T. Imaging of trabeculectomy blebs using anterior segment optical coherence tomography. Ophthalmology 2007, 114, 47–53. [Google Scholar] [CrossRef]
- Cerdà-Ibáñez, M.; Pérez-Torregrosa, V.T.; Olate-Pérez, A.; Almor Palacios, I.; Gargallo-Benedicto, A.; Osorio-Alayo, V.; Barreiro Rego, A.; Duch-Samper, A. Qualitative analysis of repaired filtering blebs with anterior segment-optical coherence tomography. Arch. Soc. Esp. Oftalmol. 2017, 92, 359–365. [Google Scholar] [CrossRef]
- Shen, T.-Y.; Hu, W.-N.; Cai, W.-T.; Jin, H.-Z.; Yu, D.-H.; Sun, J.-H.; Yu, J. Effectiveness and Safety of Trabeculectomy along with Amniotic Membrane Transplantation on Glaucoma: A Systematic Review. J. Ophthalmol. 2020, 2020, 3949735. [Google Scholar] [CrossRef]
- Sheha, H.; Kheirkhah, A.; Taha, H. Amniotic membrane transplantation in trabeculectomy with mitomycin C for refractory glaucoma. J. Glaucoma 2008, 17, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Nappi, V.; Empeslidis, T. The developments in amniotic membrane transplantation in glaucoma and vitreoretinal procedures. Int. Ophthalmol. 2023, 43, 1771–1783. [Google Scholar] [CrossRef] [PubMed]
- Raychaudhuri, U.; Millar, J.C.; Clark, A.F. Knockout of tissue transglutaminase ameliorates TGFβ2-induced ocular hypertension: A novel therapeutic target for glaucoma? Exp. Eye Res. 2018, 171, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Agarwal, P. Future target molecules in antiglaucoma therapy: Tgf-Beta may have a role to play. Ophthalmic Res. 2010, 43, 1–10. [Google Scholar] [CrossRef] [PubMed]
Parameter | Group 1 (Control) n = 48 | Group 2 (Is-ePRGF) n = 47 | p Value | ||
---|---|---|---|---|---|
NPDS | NPDS + Phaco | NPDS | NPDS + Phaco | ||
Eyes (n) | 19 | 29 | 31 | 16 | |
Age (years) | 72.7 ± 8.4 | 70.7 ± 12.0 | 69.7 ± 11.1 | 69.6 ± 7.5 | 0.73 |
(58–91) | (34–88) | (51–91) | (52–80) | ||
Sex (Female/Male) | 10/9 | 12/17 | 18/13 | 6/10 | 0.46 |
(52.6%/47.4%) | (41.4%/58.6%) | (58.1%/41.9%) | (37.5%/62.5%) | ||
CDVA (logMAR) | 0.39 ± 0.38 | 0.25 ± 0.44 | 0.27 ± 0.27 | 0.10 ± 0.14 | 0.01 * |
(1.00–0.00) | (1.70–0.00) | (1.30–0.00) | (0.40–0.00) | ||
IOP (mmHg) | 21.9 ± 12.6 | 17.9 ± 7.3 | 18.3 ± 6.8 | 19.6 ± 7.1 | 0.79 |
(9.0–50.0) | (10.0–44.0) | (8.0–37.0) | (11.0–35.0) | ||
Eyes with glaucoma eyedrop treatment | 19 (100%) | 29 (100%) | 31 (100%) | 16 (100%) | |
No. of hypotensive medications | 2.6 ± 0.6 | 2.9 ± 0.8 | 2.9 ± 0.9 | 2.8 ± 0.8 | 0.44 |
Visual field mean deviation (dB) | −18.7 ± 7.2 | −13.5 ± 7.7 | −16.1 ± 9.2 | −15.0 ± 7.7 | 0.21 |
Glaucoma severity | |||||
Early | 1 (5.3%) | 6 (20.7%) | 5 (16.1%) | 2 (12.5%) | 0.42 |
Moderate | 3 (15.8%) | 8 (27.6%) | 6 (19.4%) | 7 (43.8%) | |
Advanced | 14 (73.7%) | 12 (41.4%) | 15 (48.4%) | 7 (43.8%) | |
Terminal | 1 (5.3%) | 3 (10.3%) | 5 (16.1%) | − | |
Type of glaucoma, n (%) | |||||
POAG | 4 (21.1) | 12 (41.4) | 8 (25.8) | 5 (31.3) | 0.50 |
Glaucoma and high myopia | 6 (31.6) | 3 (10.3) | 11 (35.5) | − | |
PXFG | 5 (26.3) | 11 (37.9) | 9 (29.0) | 7 (43.8) | |
UG | 1 (5.3) | 1 (3.4) | − | 1 (3.2) | |
NTG | 2 (10.5) | 1 (3.4) | 1 (3.2) | 1 (3.2) | |
TG | 1 (5.3) | − | 1 (3.2) | 1 (3.2) | |
PG | – | 1 (3.4) | 1 (3.2) | 1 (3.2) |
Group 1 (Control) | Group 2 (Is-ePRGF) | |||
---|---|---|---|---|
NPDS | NPDS + Phaco | NPDS | NPDS + Phaco | |
(n = 19) | (n = 29) | (n = 31) | (n = 16) | |
Complete success, n (%) | 14 (73.7) | 18 (62.1) | 21 (67.7) | 13 (81.3) |
Qualified success (complete success + success with treatment), n (%) | 16 (84.2) | 24 (82.8) | 29 (93.5) | 15 (93.8) |
Failure, n (%) | 3 (15.8) | 5 (17.2) | 2 (6.5) | 1 (6.3) |
Parameter | Group 1 (Control) | Group 2 (Is-ePRGF) | p Value |
---|---|---|---|
Bleb manipulation | 19 (39.6%) | 18 (38.3%) | 0.58 |
Laser goniopuncture | 14 (29.2%) | 10 (21.3%) | 0.36 |
Needling | 5 (10.4%) | 8 (17.0%) | 0.58 |
Hypotensive medications | 14 (25.0%) | 10 (21.3%) | 0.42 |
Postoperative complications | 12 (25.0%) | 5 (10.6%) | 0.06 |
Hyphema | 4 (8.3%) | 2 (4.3%) | |
Atalamia | 2 (4.2%) | 0 (0.0%) | |
Hypotony | 3 (6.3%) | 1 (2.1%) | |
Iris incarceration | 2 (4.2%) | 0 (0.0%) | |
TDM rupture | 1 (2.1%) | 2 (4.3%) | |
Secondary glaucoma surgery | 3 (6.3%) | 1 (2.1%) | 0.78 |
Bleb revision | 2 (4.2%) | 1 (2.1%) | |
GDD implantation | 1 (2.1%) | 0 (0.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Calvo, P.P.; Rodríguez-Uña, I.; Fernández-Vega-Cueto, A.; Sánchez-Ávila, R.M.; Anitua, E.; Merayo-Lloves, J. Plasma Rich in Growth Factors as an Adjuvant Agent in Non-Penetrating Deep Sclerectomy. J. Clin. Med. 2023, 12, 3604. https://doi.org/10.3390/jcm12103604
Rodríguez-Calvo PP, Rodríguez-Uña I, Fernández-Vega-Cueto A, Sánchez-Ávila RM, Anitua E, Merayo-Lloves J. Plasma Rich in Growth Factors as an Adjuvant Agent in Non-Penetrating Deep Sclerectomy. Journal of Clinical Medicine. 2023; 12(10):3604. https://doi.org/10.3390/jcm12103604
Chicago/Turabian StyleRodríguez-Calvo, Pedro P., Ignacio Rodríguez-Uña, Andrés Fernández-Vega-Cueto, Ronald M. Sánchez-Ávila, Eduardo Anitua, and Jesús Merayo-Lloves. 2023. "Plasma Rich in Growth Factors as an Adjuvant Agent in Non-Penetrating Deep Sclerectomy" Journal of Clinical Medicine 12, no. 10: 3604. https://doi.org/10.3390/jcm12103604
APA StyleRodríguez-Calvo, P. P., Rodríguez-Uña, I., Fernández-Vega-Cueto, A., Sánchez-Ávila, R. M., Anitua, E., & Merayo-Lloves, J. (2023). Plasma Rich in Growth Factors as an Adjuvant Agent in Non-Penetrating Deep Sclerectomy. Journal of Clinical Medicine, 12(10), 3604. https://doi.org/10.3390/jcm12103604